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Abstract. In this paper, we prove the maximal regularity property of an abstract fractional differential
equation with finite delay on periodic Besov and Triebel–Lizorkin spaces and use these results to guarantee
the existence and uniqueness of periodic solution of a neutral fractional differential equation with finite
delay. The main tool used to achieve our goal is an operator-valued version of Miklhin’s Fourier multiplier
theorem and fixed-point argument.

1. Introduction

The fractional calculus which allows us to consider integration and differentiation
of any order, not necessarily integer, has been the object of an extensive study for
analyzing not only anomalous diffusion on fractals (physical objects of fractional di-
mension, such as some amorphous semiconductors or strongly porous materials. See
[2,34] and references therein), but also fractional phenomena in optimal control (see,
e.g., [35–37]). As indicated in [14,33] and the related references given there, the advan-
tages of fractional derivatives become apparent in modeling mechanical and electrical
properties of real materials, as well as in the description of rheological properties of
rocks, and in many other fields. One of the emerging branches of the study is the
Cauchy problems for abstract differential equations involving fractional derivatives in
time. In recent decades, there has been a lot of interest in this type of problems, its
applications and various generalizations (cf. e.g., [5,11,18] and references therein). It
is significant to study this class of problems, because, in this way, one is more realistic
to describe the memory and hereditary properties of various materials and processes
(cf. [21,28,35,36]).

In the same manner, several systems of great interest in science are modeled by
partial neutral functional differential equations. The reader can see [1,17,38,39]. Many
of these equations can be written as abstract neutral functional differential equations.
Additionally, it is well known that one of the most interesting topics, both from a
theoretical as practical point of view, of the qualitative theory of differential equations
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and functional differential equations is the existence of periodic solutions. In particular,
the existence of periodic solutions of abstract neutral functional differential equation
has been considered in several works [16,19,20,22].

Let 0 < β < α � 2. This paper is devoted to the study of sufficient conditions that
guarantee the existence and uniqueness of a periodic strong solution for the following
fractional order abstract neutral differential equation with finite delay

Dα
(
u(t)− Bu(t − r)

)= Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (1.1)

where the fractional derivative is taken in sense of Liouville–Grünwald–Letnikov, the
delay r > 0 is a fixed number, A : D(A) ⊆ X → X and B : D(B) ⊆ X → X are
closed linear operators defined in a Banach space X such that D(A) ⊆ D(B). The
function ut is given by ut (θ) = u(t + θ) for θ ∈ [−2π, 0], and denotes the history of
the function u(·) at t and Dβut (·) is defined by Dβut (·) = (

Dβu
)

t (·). The operators
F and G are called delay operators, and they belong to appropriate spaces, which will
be described later. The map f is a X -valued function which belongs to either periodic
Besov spaces, or periodic Triebel–Lizorkin spaces.

We prove the maximal regularity property of an auxiliary equation, on periodic
Besov spaces and periodic Triebel–Lizorkin spaces, and using this result together
with fixed-point argument to show existence and uniqueness of periodic solution of
Eq. (1.1). Here, the auxiliary equation is given by

Dαu(t) = Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (1.2)

with boundary periodic conditions depending of the values of the numbers α and β.
All terms in the Eq. (1.2) are defined in the same manner as in the Eq. (1.1).

Our main results involve, among other considerations, a boundedness condition for
the family

{
(ik)α

(
(ik)α − Fk − (ik)βGk − A

)−1}
k∈Z

,

and regularity properties for the families of bounded operators {Fk}k∈Z and {Gk}k∈Z,
defined by

Fk x = F(ek x) and Gk x = G(ek x), where (ek x)(t) = eikt x

with x ∈ X, t ∈ [−2π, 0] and k ∈ Z.

In recent years, several particular cases of the Eq. (1.2) have been studied. If α = 1
and F ≡ G ≡ 0, Arendt and Bu [3,4] have studied L p-maximal regularity and Bs

p,q -
maximal regularity, and Bu and Kim [8], have studied Fs

p,q -maximal regularity. On the
other hand, Lizama [30] has obtained a characterization of the existence and uniqueness
of strong L p-solutions, and Lizama and Poblete [31] study Cs-maximal regularity of
the corresponding equation on the real line. In the same manner, if α = 2 and β = 1,
Bu [6] characterizes Cs-maximal regularity on R. Furthermore, if α = 2 and β = 1,
Bu and Fang [7] have studied this equation simultaneosly in periodic Lebesgue spaces,
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periodic Besov spaces and periodic Triebel–Lizorkin spaces. Moreover, if 1 < α < 2
and G ≡ 0, Lizama and Poblete [32] study L p-maximal regularity for this equation
in the periodic case.

This paper is organized as follows. In Sect. 2, we introduce some important notation
and collect relevant theorems and concepts that are needed to establish our main results.
In Sects. 3, 4, 5 and 6, we present our results of existence and uniqueness of a periodic
solution of the Eqs. (1.1) and (1.2). Finally, in Sect. 7, we apply our abstract results
to concrete situations.

2. Preliminaries

Most of the notation used throughout this work is standard. So, N, Z, R and C

denote the set of natural, integers, real and complex numbers, respectively.
Further, X and Y always are complex Banach spaces with norms ‖ · ‖X and ‖ · ‖Y ;

the subscript will be dropped when there is no danger of confusion. We denote the
space of all bounded linear operators from X to Y by L(X; Y ). In the case X = Y , we
will write briefly L(X). Let A be an operator defined in X . We will denote its domain
by D(A), its domain endowed with the graph norm by [D(A)], its resolvent set by
ρ(A), and its spectrum by σ(A) = C \ ρ(A).

Let 1 � p < ∞, J ⊆ R an interval of real numbers, and X a Banach space.
By L p(J ; X), we denote the Banach space of all p-integrable functions (in sense of
Bochner) endowed with the norm

‖ f ‖L p(J,X) =
(∫

J
‖ f (t)‖p

X

)1/p

.

For the rest of the paper, we will identify T with the group defined as the quotient
R/2πZ, and we shall identify the spaces of vector or operator-valued functions defined
on [0, 2π ] to their periodic extensions to R. Let f ∈ L1(T; X). For k ∈ Z, we denote
the k-th Fourier coefficient of the function f by

f̂ (k) = 1

2π

∫ 2π

0
e−ikt f (t)dt.

There exist several notions of fractional differentiation. In this paper, we use the
fractional differentiation in sense of Liouville–Grünwald–Letnikov. This concept was
introduced in [15,29] and has been widely studied by several authors. In these works,
the fractional derivative is defined directly as a limit of a fractional difference quotient.
In [10], the authors apply this approach based on fractional differences to study frac-
tional differentiation of periodic scalar functions. This idea has been used to extend
the definition of fractional differentiation to vector-valued functions, (see [26]). In the
case of periodic functions, this concept enables one to set up a fractional calculus in
the L p setting with the usual rules, as well as provides a connection with the classical
Weyl fractional derivative (see [37]).
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Let α > 0 and f ∈ L p(T; X) for 1 � p < ∞ the Riemann difference of f is
defined by

�αt f (x) =
∞∑

j=0

(−1) j
(
α

j

)
f (x − t j),

where
(
α
j

) = α(α−1)···(α− j−1)
j ! is the binomial coefficient. The Riemann difference of

the function f exists almost everywhere, (see [10]). Moreover,
∑∞

j=0 |(αj
)| < ∞ , and

‖�αt f ‖L p(T;X) �
∞∑

j=0

∣∣∣∣

(
α

j

)∣∣∣∣ ‖ f ‖L p(T;X).

The following definition is a direct extension of [10, Definition 2.1] to the vector-
valued case. See [26] for its connection with differential equations.

DEFINITION 2.1. Let X be a Banach space, α > 0 and 1 � p < ∞. Let f ∈
L p(T; X). If there is g ∈ L p(T; X) such that limt→0+ t−α�αt f = g in the L p(T; X)
norm, then the funcion g is called the αth-Liouville–Grünwald–Letnikov derivative
of f in the mean of order p.

We abbreviate this terminology by αth-derivative and we denote it by Dα f = g.
We also mention here a few properties of this fractional derivative. The proof of
the following proposition follows the same steps as in the scalar case given in [10,
Proposition 4.1].

PROPOSITION 2.2. Let 1 � p < ∞ and f ∈ L p(T; X). For α, β > 0 the
following properties hold:

• If Dα f ∈ L p(T; X), then Dβ f ∈ L p(T; X) for all 0 < β < α.
• DαDβ f = Dα+β f whenever one of the two sides is well defined.

REMARK 2.3. Let f ∈ L p(T; X) and α > 0. It has been proved by Butzer and
Westphal [10] that Dα f ∈ L p(T; X) if and only if there exists g ∈ L p(T; X) such

that for all k ∈ Z it holds (ik)α f̂ (k) = ĝ(k), where (ik)α = |k|αe
π iα

2 sgn(k). In this
case Dα f = g.

On the other hand, periodic Besov spaces and periodic Triebel–Lizorkin spaces form
part of functions spaces which have a lot of interest in mathematics. They generalize
many important functions spaces. For example, if 0 < s < 1, the periodic Hölder
continuous functions space of index s, is a particular case of periodic Besov spaces,
see [4] for more details. However, the main reason for working in these spaces is
that a certain form of Mikhlin’s multiplier theorem holds for operator-valued symbols
defined in arbitrary Banach spaces X . This is a dramatic contrast to Lebesgue spaces
where the corresponding theorem merely holds for Hilbert spaces even when p = 2
(for more information [13]).

Let X be a Banach space. Let S(R) be the Schwartz space of all rapidly decreasing
smooth functions on R. Let D(T) be the space of all infinitely differentiable functions
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on T equipped with the topology given by the seminorms ‖ f ‖n = supt∈T | f (n)(t)|,
where n ∈ N ∪ {0}. Let D′(T; X) = L(D(T); X) be the space of all bounded linear
operators from D(T) to X . The elements of D′(T; X) are called X -valued distributions
on T. Let k ∈ Z, denote by ek the function ek(t) = eikt for t ∈ T. For x ∈ X , we
denote by (ek ⊗x) the X -valued function given by (ek ⊗x)(t) = ek(t)x . Consequently
we have that (ek ⊗ x) ∈ D′(T; X).

In order to define the periodic X -valued Besov spaces, we denote by 	(R) the set
of all systems {φ j } j�0 ⊆ S(R) such that supp(φ0) ⊆ [−2, 2], and for all j ∈ N

supp(φ j ) ⊆
[
−2 j+1,−2 j−1

]
∪
[
2 j−1, 2 j+1

]
,

∑

j�0

φ j (t) = 1, for t ∈ R

and, for α ∈ N ∪ {0}, there is a Cα > 0 such that sup j�0,x∈R 2α j‖φ(α)j (x)‖ � Cα .

DEFINITION 2.4. [4] Let 1 � p, q � ∞, s ∈ R and φ = {φ j } j�0 ∈ 	(R). The
X -valued periodic Besov space is defined by

Bs,φ
p,q(T; X) = {

f ∈ D′(T; X) : ‖ f ‖
Bs,φ

p,q
< ∞}

,

where

‖ f ‖
Bs,φ

p,q
=
⎛

⎝
∑

j�0

2 jsq
∥∥∥
∑

k∈Z

ek ⊗ φ j (k) f̂ (k)
∥∥∥

q

p

⎞

⎠

1
q

,

with usual modifications when q = ∞. The space Bs,φ
p,q is independent of φ ∈ 	(R)

and different choices of φ ∈ 	(R) generate equivalent norms. As consequence, we
will denote ‖ · ‖

Bs,φ
p,q

simply by ‖ · ‖Bs
p,q

.

Moreover, if r ∈ T is fixed, we say that a function u : [r, r + 2π ] → X belongs
Bs

p,q([r, r +2π ]; X) if and only if the periodic extension to R of the function u belongs
to Bs

p,q(T; X).

We recall some important properties of these spaces. Let 1 � p, q � ∞, s ∈ R be
fixed.

• The X -valued periodic space Bs
p,q(T; X) is a Banach space.

• If s > 0, the natural injection from Bs
p,q(T; X) into L p(T; X) is a continuous linear

operator.
• For all ε > 0, we have that Bs+ε

p,q (T; X) ⊆ Bs
p,q(T; X).

• (Lifting property) Let f ∈ D′(T; X) and γ ∈ R then f ∈ Bs
p,q(T; X) if and only

if
∑

k �=0 ek ⊗ (ik)γ f̂ (k) ∈ Bs−γ
p,q (T; X).

To define the periodic X -valued Triebel–Lizorkin spaces, we use the same notation
for S(R), D(T), D′(T; X) and	(R) as those which we have used in the definition of
X -valued periodic Besov spaces.

DEFINITION 2.5. [9] Let φ = {φ j } j�0 ∈ 	(R) be fixed, for 1 � p, q � ∞, and
s ∈ R. The X -valued periodic Triebel–Lizorkin space is defined by
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Fs,φ
p,q (T; X) = {

f ∈ D′(T; X) : ‖ f ‖
Fs,φ

p,q
< ∞}

,

where

‖ f ‖
Fs,φ

p,q
=

∥∥∥
∥∥∥∥

⎛

⎝
∑

j�0

2 jsq

∥∥
∥∥∥

∑

k∈Z

ek ⊗ φ j (k) f̂ (k)

∥∥
∥∥∥

q

X

⎞

⎠

1
q

∥∥∥
∥∥∥∥

p

,

with the usual modification when q = ∞. The space Fs,φ
p,q is independent of φ ∈ 	(R)

and different choices of φ ∈ 	(R) generate equivalent norms. Consequently, we
simply denote ‖ · ‖

Fs,φ
p,q

by ‖ · ‖Fs
p,q

.

Moreover, if r ∈ T is fixed, we say that a function u : [r, r + 2π ] → X belongs
Fs

p,q([r, r +2π ]; X) if and only if the periodic extension to R of the function u belongs
to Fs

p,q(T; X).

Note that X -valued periodic Triebel–Lizorkin spaces have similar properties to those
of X -valued periodic Besov spaces, the reader can see [9]. The following list sum-
marizes the most elementary properties of Triebel–Lizorkin spaces. Let 1 � p, q �
∞, s ∈ R be fixed.

• The X -valued periodic space Fs
p,q(T; X) is a Banach space.

• If s > 0, then the natural injection from Fs
p,q(T; X) into L p(T; X) is a continuous

linear operator.
• For all ε > 0, we have that Fs+ε

p,q (T; X) ⊆ Fs
p,q(T; X).

• (Lifting property) Let f ∈ D′(T; X) and γ ∈ R then f ∈ Fs
p,q(T; X) if and only

if
∑

k �=0 ek ⊗ (ik)γ f̂ (k) ∈ Fs−γ
p,q (T; X).

REMARK 2.6. It is simple to verify from the definition that if u ∈ Bs
p,q(T; X)

and t0 ∈ [0, 2π ] is fixed, then the function ut0 defined on [−2π, 0] by the formula
ut0(θ) = u(t0 + θ), is an element of the Besov space Bs

p,q(T; X), and ‖ut0‖Bs
p,q

=
‖u‖Bs

p,q
. For periodic Triebel–Lizorkin, we have a similar result.

Let X be a Banach space. In order to develop certain conditions which we will need
for the rest of the paper, we establish the following notation. Let {Lk}k∈Z ⊂ L(X) be
a bounded family of operators. Set

�0 Lk = Lk, �Lk = �1Lk = Lk+1 − Lk

and for n = 2, 3, . . . , set

�n Lk = �
(
�n−1Lk

)
.

DEFINITION 2.7. [25] We say that a family of operators {Lk}k∈Z ⊂ L(X) is a
M-bounded family of order n (n ∈ N0) if

sup
0�l�n

sup
k∈Z

‖kl �l Lk‖ < ∞. (2.1)
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Note that, for j ∈ Z fixed, sup0�l�n supk∈Z ‖kl �l Lk‖ < ∞, if and only if
sup0�l�n supk∈Z ‖kl �l Lk+ j‖ < ∞. The statement follows directly from the bi-
nomial formula.

In the preceding definition when n = 0, the M-boundedness of order n for {Lk}k∈Z

simply means that the family of operators {Lk}k∈Z is bounded. When n = 1, this is
equivalent to

sup
k∈Z

‖Lk‖ < ∞ and sup
k∈Z

‖k (Lk+1 − Lk)‖ < ∞. (2.2)

If n = 2, in addition to (2.2), we must have

sup
k∈Z

‖k2 (Lk+2 − 2Lk+1 + Lk)‖ < ∞. (2.3)

For n = 3, in addition to (2.2) and (2.3), we must have

sup
k∈Z

‖k3 (Lk+3 − 3Lk+2 + 3Lk+1 − Lk)‖ < ∞. (2.4)

In the scalar case, that is, {ak}k∈Z ⊆ C, we will write �nak = �(�n−1ak).

DEFINITION 2.8. [23] A sequence {ak}k∈Z ⊆ C is called

(a) 1-regular if the sequence
{

k
�1ak

ak

}

k∈Z

is bounded;

(b) 2-regular if it is 1-regular and the sequence
{

k2 �
2ak

ak

}

k∈Z

is bounded;

(c) 3-regular if it is 2-regular and the sequence
{

k3 �
3ak

ak

}

k∈Z

is bounded.

For useful properties and further details about n-regularity, see [27].

REMARK 2.9. Note that if {ak}k∈Z is an 1-regular sequence then, for all j ∈ Z

fixed, the sequence

{
k

ak+ j − ak

ak+ j

}

k∈Z

is bounded. In the cases n = 2, 3, analogous

properties hold.

The following definitions will be used with Besov and Triebel–Lizorkin spaces. Let
X be a Banach space. We denote the space consisting of all 2π -periodic, X -valued
functions by E(T; X).

One of the most powerful methods for proving maximal regularity of evolution
equations is the technique of Fourier multipliers. For this reason, we recall some
operator-valued Fourier multipliers theorems.

DEFINITION 2.10. Let X be a Banach space. We say that the family of operators
{Lk}k∈Z ⊆ L(X) is an E-multiplier if for each f ∈ E(T; X), there exists a function
u ∈ E(T; X) such that

û(k) = Lk f̂ (k), for all k ∈ Z.
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The following theorem, proved by Arendt and Bu in [4], establishes a sufficient
condition ensuring when a family of operators {Lk}k∈Z is a Bs

p,q -multiplier. It is
remarkable that this theorem is valid on an arbitrary Banach space X .

THEOREM 2.11. Let 1 � p, q � ∞, and s ∈ R. Let X be a Banach space. If
the family of operators {Lk}k∈Z ⊆ L(X) is M-bounded of order 2, then {Lk}k∈Z is a
Bs

p,q -multiplier.

Next theorem, proved by Bu and Kim in [9] , establishes a sufficient condition which
guarantees when a family of operators {Lk}k∈Z is a Fs

p,q -multiplier. We remark, as
well as in theorem 2.11, this theorem is valid for arbitrary Banach space X , however,
more conditions are imposed to the family {Lk}k∈Z.

THEOREM 2.12. Let 1 � p, q � ∞, and s ∈ R. Let X be a Banach space. If
the family of operators {Lk}k∈Z ⊆ L(X) is M-bounded of order 3, then {Lk}k∈Z is a
Fs

p,q-multiplier.

In order to abbreviate the text of this work, we introduce the following nota-
tion. Let 1 � p, q � ∞ and s > 0 and 0 < β < α � 2. Assume that A is
an operator defined in a Banach space X, and that F ∈ L(Bs+α

p,q ([−2π, 0]; X); X)

and G ∈ L(Bs+α−β
p,q ([−2π, 0]; X); X) or F ∈ L(Fs+α

p,q ([−2π, 0]; X); X) and G ∈
L(Fs+α−β

p,q ([−2π, 0]; X); X) are linear, bounded operators. For k ∈ Z, we will write

ak = (ik)α and bk = (ik)β, (2.5)

where (ik)γ = |k|γ e
π iγ

2 sgn(k). Note that {ak}k∈Z and {bk}k∈Z are 2, 3−regular se-
quences.

Now, the bounded linear operators Fk and Gk are defined by Fk x = F(ek x) and
Gk x = G(ek x), where (ek x)(t) = eikt x for all t ∈ [−2π, 0] and x ∈ X.

For reference purposes, we introduce the following conditions for the families
{Fk}k∈Z and {Gk}k∈Z.

(F2) For l = 0, 1, 2, the family of operators

{
kl

ak
�l Fk

}

k∈Z\{0}
are bounded.

(F3) The family {Fk}k∈Z satisfies (F2) and the family

{
k3

ak
�3 Fk

}

k∈Z\{0}
is bounded.

(G2) For l = 0, 1, 2, the families of operators

{
bk

ak
kl �l Gk

}

k∈Z\{0}
are bounded.

(G3) The family{Gk}k∈Z satisfies (G2) and the family

{
bk

ak
k3�3Gk

}

k∈Z\{0}
is bounded.

3. Maximal regularity on periodic Besov spaces

Let 1 � p, q � ∞, s > 0 and 0 < β < α � 2. The first objective of this section is
the study of Bs

p,q -maximal regularity of the fractional neutral equation

Dαu(t) = Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (3.1)
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where the fractional derivative is taken in sense of Liouville–Grünwald–Letnikov. The
operator A : D(A) ⊆ X → X is a closed linear operator defined in a Banach space X .
The function ut is defined by ut (θ) = u(t+θ) for θ ∈ [−2π, 0], and denotes the history
of the function u(·) at t . Further, Dβut (·) is defined by Dβut (·) = (

Dβu
)

t (·). We

suppose that F ∈ L(Bs+α
p,q ([−2π, 0]; X); X) and G ∈ L(Bs+α−β

p,q ([−2π, 0]; X); X).
The mapping f is a X -valued function which belongs to the periodic Besov space
Bs

p,q(T; X). Moreover, we assume that this equation has periodic boundary conditions
depending of the numbers α and β,

u(0) = u(2π) if 0 < β < α � 1,
u(0) = u(2π) and Dα−1u(0) = Dα−1u(2π) if 0 < β � 1 < α � 2,
u(0) = u(2π) , Dα−1u(0) = Dα−1u(2π) ,
Dβ−1u(0) = Dβ−1u(2π) if 1 < β < α � 2,

⎫
⎪⎪⎬

⎪⎪⎭

Let α > 0.We establish a characterization of the periodic Besov space Bs+α
p,q (T; X)

in terms of the fractional derivative.

PROPOSITION 3.1. Let X be a Banach space and 1 � p, q � ∞ and s > 0. If
α > 0 then

Bs+α
p,q (T; X) =

{
u ∈ Bs

p,q(T; X) : Dαu ∈ Bs
p,q(T; X)

}
.

Proof. Suppose that u ∈ Bs
p,q(T; X) and Dαu ∈ Bs

p,q(T; X). By the lifting property
we have that

∑

k �=0

ek ⊗ D̂αu(k) ∈ Bs
p,q(T; X).

Since s > 0,we have that Dαu ∈ L p(T; X) then D̂αu(k) = (ik)α û(k), for all k ∈ Z,

hence
∑

k �=0

ek ⊗ (ik)α û(k) ∈ Bs
p,q(T; X).

Using again the lifting property we obtain that u ∈ Bs+α
p,q (T; X).

Reciprocally, let u ∈ Bs+α
p,q (T; X), it is clear u ∈ Bs

p,q(T; X). Furthermore,
∑

k �=0

ek ⊗ (ik)α û(k) ∈ Bs
p,q(T; X) ⊂ L p(T; X). (3.2)

It follows from [10, Theorem 4.1] that there exists g ∈ L p(T; X) such that ĝ(k) =
(ik)α û(k) for all k ∈ Z. From (3.2) we have that g ∈ Bs

p,q(T; X). Therefore Dαu ∈
Bs

p,q(T; X) and D̂αu(k) = (ik)α û(k) for all k ∈ Z. �
REMARK 3.2. Let 1 � p, q � ∞ and s > 0. According to the preceding Propo-

sition if u ∈ Bs+α
p,q (T; X) and 0 < β < α then Dβu ∈ Bs+α−β

p,q (T; X).

Let s > 0, using the previous characterization we define the concept of Bs
p,q -

maximal regularity of the Eq. (3.1).
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DEFINITION 3.3. Let 1 � p, q � ∞, s > 0 and let f ∈ Bs
p,q(T; X). A function

u is called strong Bs
p,q -solution of the Eq. (3.1) if u ∈ Bs+α

p,q (T; X)∩ Bs
p,q(T; [D(A)])

and u satisfies the Eq. (3.1) for almost t ∈ [0, 2π ] and the functions t �→ Fut , t �→
G Dβut belong to Bs

p,q(T; X). We say that the Eq. (3.1) has Bs
p,q -maximal regularity

if, for each f ∈ Bs
p,q(T; X) the Eq. (3.1) has unique strong Bs

p,q -solution.

One of the main results of this paper is the Theorem 3.9. Its proof depends of our
next results related with some bounded families of operators.

LEMMA 3.4. Let X be a Banach space. Consider 1 � p, q � ∞, s > 0, and
0 < β < α � 2. Let G ∈ L(Bs+α−β

p,q ([−2π, 0]; X); X). If the family {Gk}k∈Z satisfies
the condition (G2) then

{
k

ak
�1(bk Gk

)}

k∈Z\{0}
and

{
k2

ak
�2(bk Gk

)}

k∈Z\{0}

are bounded families of operators.

Proof. Is clear that�1(bk Gk) = (
�1bk

)
Gk+1 + bk �

1Gk, for all k ∈ Z. Therefore,

k

ak
�1(bk Gk) = k

�1bk

bk

bk

ak
Gk+1 + bk

ak
k�1Gk, for all k ∈ Z \ {0}.

On the other hand, a direct computation shows that

�2(bk Gk)=�1bk+1
[
�1Gk+1 +�1Gk

] + (
�2bk

)
Gk + bk+1�

2Gk, for all k ∈ Z.

Now, for all k ∈ Z \ {0}, we have

k2

ak
�2(bk Gk)=k

�1bk+1

bk
k

bk

ak
[�1Gk+1+�1Gk]+k2 �

2bk

bk

bk

ak
Gk + bk+1

ak
k2�2Gk .

Since the sequence {bk}k∈Z is 2-regular and the family {Gk}k∈Z satisfies the condition
(G2), all terms included in the right-hand side of the preceding identities are uniformly
bounded. Hence, the families of operators

{
k

ak
�1(bk Gk

)
}

k∈Z\{0}
and

{
k2

ak
�2(bk Gk

)
}

k∈Z\{0}
are bounded.

�

If there exist the following inverses, we will denote

Nk = (ak I − Fk − bk Gk − A)−1, (3.3)

and

Mk = ak
(
ak I − bk Gk − Fk − A

)−1 = ak Nk . (3.4)



Vol. 14 (2014) Periodic solutions of a fractional neutral equation 427

LEMMA 3.5. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let A be a
closed linear operator defined in a Banach space X. Assume F ∈ L(Bs+α

p,q ([−2π, 0];
X); X) and G ∈ L(Bs+α−β

p,q ([−2π, 0]; X); X) and that the operators Nk ∈ L(X), for
all k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy the condition (F2) and (G2)
respectively, and the family of operators {Mk}k∈Z is bounded, then

{
kak �

1 Nk
}

k∈Z
and

{
k2ak �

2 Nk
}

k∈Z

are bounded families of operators.

Proof. Observe that the equality

�1 Nk = Nk+1
(
ak − Fk − bk Gk − ak+1 + Fk+1 + bk+1Gk+1

)
Nk

= (−�1ak
)
Nk+1 Nk + Nk+1

(
�1 Fk

)
Nk + Nk+1 (�

1bk Gk) Nk . (3.5)

holds for all k ∈ Z. Therefore, for all k ∈ Z \ {0}, we have

kak �
1 Nk = −k�

1ak
ak

ak Nk+1 Mk +ak Nk+1
k
ak
(�1 Fk)Mk +ak Nk+1

k

ak
�1(bk Gk)Mk .

Is obvious that if k = 0 the operator kak �
1 Nk is bounded. Since the sequence {ak}k∈Z

is 2-regular and the families of operators {Fk}k∈Z and {Gk}k∈Z verify (F2) and (G2)
respectively, it follows from Lemma 3.4 that

{
kak �

1 Nk
}

k∈Z
is bounded family of

operators.
On the other hand, for all k ∈ Z, we have

�2 Nk = [
�1 Nk+1 +�1 Nk

][−�1ak+1 +�1 Fk+1 +�1(bk+1Gk+1)
]
Nk+1

+Nk
[−�2ak +�2 Fk +�2(bk Gk)

]
Nk+1. (3.6)

Therefore, for all k ∈ Z \ {0}

k2ak �
2 Nk = kak

[
�1 Nk+1 +�1 Nk

] k

ak

[
−�1ak+1 +�1 Fk+1 +�1(bk+1Gk+1)

]
,

ak Nk+1 + Mk

[
−k2 �

2ak

ak
+ k2

ak
�2 Fk + k2

ak
�2(bk Gk)

]
ak Nk+1.

Is clear that if k = 0 the operator k2ak �
2 Nk is bounded. Since the sequence {ak}k∈Z

is 2-regular, the families {Fk}k∈Z and {Gk}k∈Z satisfy the conditions (F2) and (G2)
respectively, and the family {kak �

1 Nk}k∈Z is bounded, it follows from Lemma 3.4
that the family of operators

{
k2ak �

2 Nk
}

k∈Z
is bounded. �

LEMMA 3.6. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let A be a
closed linear operator defined in a Banach space X. Assume F ∈ L(Bs+α

p,q ([−2π, 0];
X); X) and G ∈ L(Bs+α−β

p,q ([−2π, 0]; X); X) and that the operators Nk ∈ L(X),
for all k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy the condition (F2) and
(G2) respectively, and the family of operators {Mk}k∈Z is bounded, then the family
{Fk Nk}k∈Z is a Bs

p,q -multiplier.
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Proof. According to Theorem 2.11, it suffices to show that the family of operators
{Fk Nk}k∈Z is a M-bounded family of order 2. With this purpose, note that

‖Fk Nk‖ = ‖ 1

ak
Fk ak Nk‖,

The family {Fk}k∈Z satisfies (F2) and {Mk}k∈Z is bounded, hence the family of
operators

{
Fk Nk

}
k∈Z

is bounded.
On the other hand, for all k ∈ Z we have

k�1(Fk Nk) = k

ak

(
�1 Fk

)
ak Nk+1 + 1

ak
Fk k ak �

1 Nk,

and

k2�2(Fk Nk) = 1

ak
Fk+1 k2 ak �

2 Nk + k2

ak

(
�2 Fk

)
Mk

+ k

ak

(
�1 Fk+1

)
kak

[
�1 Nk+1 +�1 Nk

]
.

It follows from Lemmas 3.4 and 3.5 that {Fk Nk}k∈Z is a M-bounded family of order
2. �

LEMMA 3.7. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let
A be a closed linear operator defined in a Banach space X. Assume further that
F ∈ L(Bs+α

p,q ([−2π, 0]; X); X) and G ∈ L(Bs+α−β
p,q ([−2π, 0]; X); X). Suppose that

the operators Nk ∈ L(X), for all k ∈ Z. If the family {Fk}k∈Z satisfies the condition
(F2), {Gk}k∈Z satisfies the condition (G2), and the family of operators {Mk}k∈Z is
bounded, then the family {bk Gk Nk}k∈Z is a Bs

p,q -multiplier.

Proof. According to the Theorem 2.11 it suffices to show that the family {bk Gk Nk}k∈Z

is a M-bounded family of operators of order 2.

For this, note that ‖bk Gk Nk‖ = ‖bk

ak
Gkak Nk‖. The family {Gk}k∈Z satisfies (G2)

and {Mk}k∈Z is bounded, hence the family of operators
{
bk Gk Nk

}
k∈Z

is bounded.
On the other hand, for all k ∈ Z \ {0} we have

k
(
�1bk Gk Nk

) = k

ak

(
�1bk Gk

)
ak Nk+1 + bk

ak
Gkkak

(
�1 Nk

)

and

k2�2(bk Gk Nk) = k

ak
�1(bk+1Gk+1) kak

[
�1 Nk+1 +�1 Nk

] + k2

ak
�2(bk Gk)Mk

+bk+1

ak
Gk+1 k2ak

(
�2 Nk

)
.

Writing in this manner the preceding families, it follows from Lemmas 3.4 and 3.5
that the family {bk Gk Nk}k∈Z is a M-bounded family of order 2. �
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LEMMA 3.8. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let A be a
closed linear operator defined in a Banach space X. Assume F ∈ L(Bs+α

p,q ([−2π, 0];
X); X) and G ∈ L(Bs+α−β

p,q ([−2π, 0]; X); X) and that the operators Nk ∈ L(X), for
all k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy the condition (F2) and (G2)
respectively, then the following assertions are equivalent.

(i) The family of operators {Mk}k∈Z is bounded.
(ii) The family of operators {Mk}k∈Z is a Bs

p,q-multiplier.

Proof. (i) ⇒ (i i). According to Theorem 2.11, it suffices to show that {Mk}k∈Z is a
M-bounded family of order 2. From the hypotheses we already know that sup

k∈Z

‖Mk‖ <
∞. Moreover, for all k ∈ Z \ {0} we have the identity

k�1 Mk = k
�1ak

ak
ak Nk+1 + kak �

1 Nk .

On the other hand, we have

k2�2 Mk = k
�1ak+1

ak
kak

[
�1 Nk+1 +�1 Nk

] + k2 �
2ak

ak
Mk + k2ak+1�

2 Nk .

Since the sequence {ak}k∈Z is 2-regular, it follows from Lemmas 3.4 and 3.5 that
{Mk}k∈Z is a M-bounded family of order 2.
(i i) ⇒ (i). It follows from closed graph theorem that there exists C � 0 (indepen-

dent of f ) such that for f ∈ Bs
p,q(T; X) we have,

∥∥∥
∑

k∈Z

ek ⊗ Mk f̂ (k)
∥∥∥

Bs
p,q

� C
∥∥ f

∥∥
Bs

p,q
.

Let x ∈ X and define f (t) = eikt x for k ∈ Z fixed. Then the above inequality implies

‖ek‖Bs
p,q

‖Mk x‖Bs
p,q

= ‖ek Mk x‖Bs
p,q

� C‖ek‖Bs
p,q

‖x‖Bs
p,q
.

Hence for all k ∈ Z we have ‖Mk‖ � C . Thus supk∈Z ‖Mk‖ < ∞. �

The next theorem establishes a characterization of Bs
p,q -maximal regularity for the

Eq. (3.1).

THEOREM 3.9. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let
A be a closed linear operator defined in a Banach space X. If the families {Fk}k∈Z

and {Gk}k∈Z satisfy the conditions (F2) and (G2) respectively, then the following
assertions are equivalent.

(i) The Eq. (3.1) has Bs
p,q -maximal regularity.

(ii) The families {Nk}k∈Z and {Mk}k∈Z are bounded.

Proof. (i) ⇒ (i i).We show that for k ∈ Z the operators ((ik)α I −(ik)βGk − Fk − A)
are invertible. For this, let k ∈ Z and x ∈ X , and define h(t) = eikt x . By the assertion
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(i) there exists u ∈ Bs+α
p,q (T; X) ∩ Bs

p,q(T; [D(A)]) such that the functions t �→ Fut

and t �→ G Dβut belong to Bs
p,q(T; X) and the function u satisfies the equation

Dαu(t) = Au(t)+ Fut + G Dβut + h(t). (3.7)

Since the function Fu. ∈ Bs
p,q(T; X) and s > 0, we have that Fu. ∈ L p(T; X).

Hence, by Fejér’s Theorem (see [24]), we have F̂u.(k) = Fkû(k) for all k ∈ Z. By

using Remark 3.2, in similar manner, we have that Ĝ Dβu.(k) = Gk D̂βu(k) for all
k ∈ Z. It follows from α > β and u ∈ Bs+α

p,q (T; X), that u ∈ Bs+β
p,q (T; X). Therefore

D̂βu(k) = (ik)β û(k) for all k ∈ Z. Consequently, Ĝ Dβu.(k) = (ik)βGkû(k) for all
k ∈ Z.

Applying the Fourier transform on both sides of the Eq. (3.7), we obtain

(
(ik)α − Fk − (ik)βGk − A

)
û(k) = ĥ(k) = x,

since x is arbitrary, we have that for k ∈ Z the operators
(
(ik)α − Fk − (ik)βGk − A

)

are surjective.
On the other hand, let z ∈ D(A), and assume that ((ik)α− Fk −(ik)βGk − A)z = 0.

Substituting u(t) = eikt z in Eq. (3.1), we see that u is a periodic solution of this
equation when f ≡ 0. The uniqueness of solution implies that z = 0.

Since for all k ∈ Z the linear operators Nk are closed defined in whole space X , it
follows from closed graph theorem that Nk ∈ L(X). Thus {Nk}k∈Z ⊆ L(X).

Let f ∈ Bs
p,q(T; X). By (i), there exists a function u ∈ Bs+α

p,q (T; X) ∩ Bs
p,q(T;

[D(A)]) such that the functions t �→ Fut and t �→ G Dβut belong to Bs
p,q(T; X) and

u is the unique strong solution of the equation

Dαu(t) = Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ].
Applying Fourier transform on the both sides of the preceding equation, we have

(
(ik)α − Fk − (ik)βGk − A

)
û(k) = f̂ (k), for all k ∈ Z.

Since for all k ∈ Z the operators
(
(ik)α − Fk − (ik)βGk − A

)
are invertible, we have

û(k) = (
(ik)α − Fk − (ik)βGk − A

)−1
f̂ (k), for all k ∈ Z.

Hence, (ik)α û(k) = D̂αu(k) = (ik)αNk f̂ (k) = Mk f̂ (k) for all k ∈ Z.

Since u ∈ Bs+α
p,q (T; X), it follows from Proposition 3.1 that Dαu ∈ Bs

p,q(T; X).
Therefore, by definition the family {Mk}k∈Z is a Bs

p,q -multiplier. It follows from
Lemma 3.8 that {Mk}k∈Z is a bounded family of operators.
(i i) ⇒ (i). We are assuming that the hypothesis and (ii) condition of Lemma 3.8

are satisfied. Therefore, {Mk}k∈Z is a Bs
p,q -multiplier. Define the family of operator

{Ik}k∈Z, by Ik = 1
(ik)α I when k �= 0 and I0 = I . It follows from Theorem 2.11 that

{Ik}k∈Z is a Bs
p,q -multiplier. Since Nk = Ik Mk for all k ∈ Z \ {0} we have {Nk}k∈Z is
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a Bs
p,q -multiplier. For an arbitrary function f ∈ Bs

p,q(T; X) there are two functions
u, w ∈ Bs

p,q(T, X) such that

û(k) = Nk f̂ (k) and ŵ(k) = (ik)αNk f̂ (k) for all k ∈ Z. (3.8)

Therefore, ŵ(k) = (ik)α û(k) = D̂αu(k) for all k ∈ Z. By the uniqueness of the
Fourier coefficients, Dαu = w. This implies that Dαu ∈ Bs

p,q(T; X). It follows from

Proposition 3.1 that u ∈ Bs+α
p,q (T; X) and Dβu ∈ Bs+α−β

p,q (T; X).
On the other hand, it follows from Lemma 3.6 that {Fk Nk}k∈Z is a Bs

p,q -multiplier.
Consequently, there exists a function g ∈ Bs

p,q(T; X) such that

ĝ(k) = Fk Nk f̂ (k) for all k ∈ Z.

By equality in (3.8) we have ĝ(k) = Fkû(k) for all k ∈ Z.

As we have shown, F̂u.(k) = Fkû(k) for all k ∈ Z.By the uniqueness of the Fourier
coefficients, Fu. = g. This implies that that Fu. ∈ Bs

p,q(T; X). Hence, the function
t �→ Fut belongs to Bs

p,q(T; X).

In the same manner, it follows from Lemma 3.7 that {(ik)βGk Nk}k∈Z is a Bs
p,q -

multiplier. Hence there exists a function h ∈ Bs
p,q(T; X) such that

ĥ(k) = (ik)βGk Nk f̂ (k) for all k ∈ Z.

Using again the equality (3.8) we have

ĥ(k) = (ik)βGkû(k) for all k ∈ Z.

Since (ik)βGkû(k) = Ĝ Dβu.(k) for all k ∈ Z. By the uniqueness of the Fourier
coefficients we have that G Dβu. = h. This implies that that G Dβu. ∈ Bs

p,q(T; X),
and the function t �→ G Dβut belongs to Bs

p,q(T; X). It follows from equality (3.8)
that

û(k) = (
(ik)α − Fk − (ik)βGk − A

)−1
f̂ (k).

Thus,
(
(ik)α − Fk − (ik)βGk − A

)
û(k) = f̂ (k)

for all k ∈ Z. Using the fact that A is a closed operator, from the fact that Bs
p,q(T; X) is

continuously embedded into L p(T; X) and [3, Lemma 3.1] it follows that u(t) ∈ D(A)
for almost t ∈ [0, 2π ]. Moreover, by uniqueness of Fourier coefficients we have

Dα
t u(t) = Au(t)+ Fut + G Dβut + f (t)

for almost t ∈ [0, 2π ]. Since f, Fu., G Dβu. and Dαu ∈ Bs
p,q(T; X), we conclude

that Au ∈ Bs
p,q(T; X). This implies that u ∈ Bs

p,q(T; [D(A)]). Therefore, u is a
strong Bs

p,q -solution of Eq. (3.1).

Since
(
(ik)α I − (ik)βGk − Fk − A

)−1 is invertible for all k ∈ Z, this strong
Bs

p,q -solution is unique. Therefore the Eq. (3.1) has Bs
p,q -maximal regularity. �



432 V. Poblete and J. C. Pozo J. Evol. Equ.

When the operators A, F and G satisfy some additional conditions, our next corol-
lary provides a simple criterion to verify that the family {Nk}k∈Z is bounded. Let
α > 0, for k ∈ Z, we define the operators Sk = ((ik)α − A)−1.

COROLLARY 3.10. Let 1 � p, q � ∞, s > 0 and 0 < β < α � 2. Let X be a
Banach space. Assume further that the sequence {(ik)α}k∈Z ⊆ ρ(A) and the families
{Fk}k∈Z and {Gk}k∈Z satisfy the conditions (F2) and (G2) respectively. If the family of

operators
{
(ik)α

(
(ik)α− A

)−1}k∈Z is bounded, and supk∈Z

∥∥∥
(
(ik)βGk + Fk

)(
(ik)α−

A
)−1

∥
∥∥ < 1, then the Eq. (3.1) has Bs

p,q -maximal regularity.

Proof. Since supk∈Z

∥∥((ik)βGk + Fk
)(
(ik)α − A

)−1∥∥ < 1, we have that the family

{(
I − (

(ik)βGk + Fk
)
Sk
)−1

}

k∈Z

is bounded. In addition

Nk =
[(
(ik)α − A

)(
I − (

(ik)βGk + Fk
)
Sk
)]−1

= (
I − (

(ik)βGk + Fk
)
Sk
)−1(

(ik)α − A
)−1

.

Therefore the family {(ik)αNk}k∈Z is bounded. Since the families {Fk}k∈Z and {Gk}k∈Z

satisfy the conditions (F2) and (G2) respectively, it follows from Theorem 3.9 that the
Eq. (3.1) has Bs

p,q -maximal regularity. �

4. Existence and uniqueness of periodic strong solution of a neutral equation
in Besov spaces

Let 1 � p, q � ∞, s > 0, and 0 < β < α � 2, and 0 < r < 2π . Consider
A : D(A) ⊆ X → X and B : D(B) ⊆ X → X linear closed operators such
that D(A) ⊆ D(B), and the operators F ∈ L(Bs+α

p,q ([−2π, 0]; X); X) and G ∈
L(Bs+α−β

p,q ([−2π, 0]; X); X). In this section we use the results about Bs
p,q -maximal

regularity of the Eq. (3.1) to prove that the abstract fractional neutral differential
equation

Dα
(
u(t)− Bu(t − r)

)= Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (4.1)

has a unique periodic strong Bs
p,q -solution, provided that f ∈ Bs

p,q(T; X).
Let 1 � p, q � ∞ and s > 0. Suppose that the Eq. (3.1) have Bs

p,q -maximal
regularity, hence for each g ∈ Bs

p,q(T; X) there exists a unique strong Bs
p,q -solution

v of the equation
Dαv = Av + Fvt + G Dβvt + g(t). (4.2)

Denote by 
 the operator 
 : Bs
p,q(T; X) → Bs

p,q(T; X) defined by the formula

(g) = Dαv, where v is the unique strong Bs

p,q -solution of the Eq. (4.2). This linear
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operator is well defined. Moreover, by the closed graph theorem there exists a constant
M � 0 such that for all f ∈ Bs

p,q(T; X) we have

‖Dαu‖Bs
p,q

+ ‖Au‖Bs
p,q

+ ‖Fu.‖Bs
p,q

+ ‖G Dβu.‖Bs
p,q

� M‖ f ‖Bs
p,q
.

LEMMA 4.1. Let 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let be X a Banach
space. Assume that B is a bounded linear operator such that ‖B‖ ‖
‖ < 1 and Nk ∈
L(X), for all k ∈ Z. Suppose further that the families {Fk}k∈Z and {Gk}k∈Z satisfy the
conditions (F2) and (G2) respectively. If {(ik)αNk}k∈Z is a bounded family of opera-
tors, such that supk∈Z |k|α‖B‖‖Nk‖ < 1, then the family {(I −e−ikr (ik)αB Nk)

−1}k∈Z

is a Bs
p,q -multiplier.

Proof. Denote Rk = (I−e−ikr (ik)αB Nk)
−1 for all k ∈ Z. Since supk∈Z |k|α‖B‖‖Nk‖

< 1, the family of operators {Rk}k∈Z ⊆ L(X). Let f ∈ Bs
p,q(T; X) fixed. Define the

map P : Bs
p,q(T; X) → Bs

p,q(T; X) by

Pϕ(t) = B
(ϕ)(t − r)+ f (t).

By Theorem 3.9 the map P is well defined. Moreover, this mapping is a contraction,
thus there exists a function g ∈ Bs

p,q(T; X) such that

g(t) = B
(g)(t − r)+ f (t) = B Dαu(t − r)+ f (t), (4.3)

where u is the unique strong Bs
p,q -solution of the equation

Dαu(t) = Au(t)+ Fut + G Dβut + g(t), t ∈ [0, 2π ], 0 < β < α � 2. (4.4)

Applying the Fourier transform to the both sides of Eq. (4.3) we have

ĝ(k) = e−ikr (ik)αBû(k)+ f̂ (k), for all k ∈ Z. (4.5)

On the other hand, applying the Fourier transform to the both sides of Eq. (4.4) we
have

û(k) = Nk ĝ(k), for all k ∈ Z. (4.6)

Therefore, ĝ(k) = e−ikr (ik)αB Nk ĝ(k)+ f̂ (k), for all k ∈ Z.This implies that ĝ(k) =
Rk f̂ (k) for all k ∈ Z. Hence, the family of operators {(I − e−ikr (ik)αB Nk)

−1}k∈Z is
a Bs

p,q -multiplier. �

The following theorem establishes the existence and uniqueness of a strong Bs
p,q -

solution for the Eq. (4.1). We use the same notations introduced in the preceding
lemma.

THEOREM 4.2. Let 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let be X a
Banach space. Assume that B is a bounded linear operator such that ‖B‖ ‖
‖ < 1
and Nk ∈ L(X), for all k ∈ Z. Suppose further that the families {Fk}k∈Z and {Gk}k∈Z

satisfy the conditions (F2) and (G2) respectively. If {(ik)αNk}k∈Z is a bounded family
of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1, then for each f ∈ Bs

p,q(T; X) there
exists an unique strong Bs

p,q -solution of Eq. (4.1).
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Proof. It follows from Lemma 4.1 that the family of operators {(I − e−ikr (ik)α

B Nk)
−1}k∈Z is a Bs

p,q -multiplier. Denote Rk = (I − e−ikr (ik)αB Nk)
−1. Let f ∈

Bs
p,q(T; X). Since {Rk}k∈Z is Bs

p,q -multiplier, there exists g ∈ Bs
p,q(T; X) such that

ĝ(k) = Rk f̂ (k) for all k ∈ Z. (4.7)

On the other hand, by Theorem 3.9, there exists a function u ∈ Bs
p,q(T; X) such that

u is the unique strong Bs
p,q -solution of equation

Dαu(t) = Au(t)+ Fut + G Dβut + g(t), t ∈ [0, 2π ], 0 < β < α � 2. (4.8)

Applying the Fourier transform to the both sides of the preceding equality we have
û(k) = Nk ĝ(k) for all k ∈ Z.

It follows from equality (4.7) that û(k) = Nk Rk f̂ (k) for all k ∈ Z. Note that

Nk Rk = (
(ik)α − e−ikr (ik)αB − (ik)βGk − Fk − A

)−1 for all k ∈ Z.

Thus,
(
(ik)α − e−ikr (ik)αB − (ik)βGk − Fk − A

)
û(k) = f̂ (k) for all k ∈ Z.

Since A is a closed linear operator, it follows from uniqueness of Fourier coefficients
that u satisfies the equation

Dα
(
u(t)− Bu(t − r)

)= Au(t)+ Fut + G Dβut + f (t) for almost t ∈ [0, 2π ].
Hence u is a strong Bs

p,q -solution of Eq. (4.1). It only remains to show that the strong
Bs

p,q -solution is unique. Indeed, let f ∈ Bs
p,q(T; X). Suppose that the Eq. (4.1) has

two strong Bs
p,q -solutions, u1 and u2. A direct computation shows that

(
(ik)α − e−ikr (ik)αB − (ik)βGk − Fk − A

)
(û1(k)− û2(k)) = 0

for all k ∈ Z. Since
(
(ik)α − e−ikr (ik)αB − (ik)βGk − Fk − A

)
is invertible, for all

k ∈ Z we have that û1(k) = û2(k). By the uniqueness of the Fourier coefficients we
conclude that u1 ≡ u2. �

5. Maximal regularity on periodic Triebel–Lizorkin spaces

Let 1 � p, q � ∞, s > 0 and 0 < β < α � 2. In this section, we study
Fs

p,q -maximal regularity of the equation

Dαu(t) = Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (5.1)

where the mapping f is a X -valued function belonging to the periodic Triebel–Lizorkin
space Fs

p,q(T; X) and the delay operators F ∈ L(Fs+α
p,q ([−2π, 0]); X) and G ∈

L(Fs+α−β
p,q ([−2π, 0]); X). The rest of the terms of this equation are defined as those

of the Eq. (3.1). For this reason, we present a characterization of the periodic X -valued
Triebel–Lizorkin Fs+α

p,q (T; X) using the fractional derivative of Liouville–Grünwald–
Letnikov.
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PROPOSITION 5.1. Let X be a Banach space, 1 � p, q � ∞, and s > 0. If
α > 0 then

Fs+α
p,q (T; X) = {u ∈ Fs

p,q(T; X) : Dαu ∈ Fs
p,q(T; X)}.

Proof. The proof follows the same lines as those made in the proof Proposition 3.1. �

REMARK 5.2. Let 1 � p, q � ∞ and s > 0. According to the preceding Propo-
sition if u ∈ Fs+α

p,q (T; X) and 0 < β < α then Dβu ∈ Fs+α−β
p,q (T; X).

Using this characterization, we define the Fs
p,q -maximal regularity for the solutions

of Eq. (5.1) in the particular case s > 0.

DEFINITION 5.3. Let 1 � p, q � ∞, s > 0 and let f ∈ Fs
p,q(T; X). A function u

is called strong Fs
p,q -solution of Eq. (5.1) if u ∈ Fs+α

p,q (T; X)∩ Fs
p,q(T; [D(A)]) and u

satisfies the Eq. (5.1) for almost t ∈ [0, 2π ] and the functions t �→ Fut , t �→ G Dβut

belongs to Fs
p,q(T; X). We say that the Eq. (5.1) has Fs

p,q -maximal regularity if, for
each f ∈ Fs

p,q(T; X) the Eq. (5.1) has unique strong Fs
p,q -solution.

One of the most important results of this chapter is the theorem 5.9. To prove it, we
need the following results which are related with bounded families of operators.

LEMMA 5.4. Let X be a Banach space. Consider 1 � p, q � ∞, s > 0 and
0 < β < α � 2. Assume further G ∈ L(Fs+α−β

p,q ([−2π, 0]; X); X). If the family
{Gk}k∈Z satisfies the condition (G3), then

{
k3

ak
�3(bk Gk

)}

k∈Z\{0}

is a bounded family of operators.

Proof. For all k ∈ Z, we obtain

�3(bk Gk) = bk �
3Gk + (bk+3 − bk)�

2Gk+1 + (�2bk+1)(�
1Gk+1)

+(�3bk)Gk+2 − 2(�2bk)(�
1Gk+1).

Now, for all k ∈ Z \ {0} we have the identity

k3

ak
�3(bk Gk) = k3 bk

ak
�3Gk +k

bk+3 − bk

bk
k2 bk

ak
�2Gk+1+k2 �

2bk+1

bk
k

bk

ak
�1Gk+1

+k3 �
3bk

bk

bk

ak
Gk+2−2k2 �

2bk

bk
k

bk

ak
�1Gk+1.

Since the sequence {bk}k∈Z is 3-regular and {Gk}k∈Z is a family satisfying condition
(G3), it follows from Lemma 3.4 that

{
k3

ak
�3(bk Gk)

}

k∈Z\{0}
is a bounded family of operators. �
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LEMMA 5.5. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let
A be a closed linear operator defined in a Banach space X. Assume further that
F ∈ L(Fs+α

p,q ([−2π, 0]); X) and G ∈ L(Fs+α−β
p,q ([−2π, 0]); X). Suppose that the

operators Nk ∈ L(X), for all k ∈ Z, and the families {Fk}k∈Z and {Gk}k∈Z satisfy the
conditions (F3) and (G3) respectively. If the family of operators {Mk}k∈Z is bounded,
then

{
k3ak �

3 Nk
}

k∈Z

is a bounded family of operators.

Proof. Note that, for all k ∈ Z, we have

�3 Nk = [
�2 Nk+1 +�2 Nk

][−�1ak+2 +�1 Fk+2 +�1(bk+2Gk+2)
]

Nk+1

+[
�1 Nk+1 +�1 Nk

][−�2ak+1 +�2 Fk +�2(bk+1Gk+1)
]

Nk+1

+[
�1 Nk+1 +�1 Nk

][−�1ak+1 +�1 Fk +�1(bk+1Gk+1)
]
�1 Nk

+�1 Nk
[−�2ak+1 +�2 Fk+1 +�2(bk+1Gk+1)

]
Nk+2

+Nk
[−�3ak +�3 Fk +�3(bk Gk)

]
Nk+2

+Nk
[−�2ak +�2 Fk +�2(bk Gk)

]
�1 Nk+1.

From the preceding identity, we conclude

k3ak �
3 Nk = k2ak

[
�2 Nk+1 +�2 Nk

] k

ak

[−�1ak+2 +�1 Fk+2 +�1(bk+2Gk+2)
]

ak Nk+1

+kak
[
�1 Nk+1 +�1 Nk

] k2

ak

[−�2ak+1 +�2 Fk +�2(bk+1Gk+1)
]

ak Nk+1

+kak
[
�1 Nk+1 +�1 Nk

] k

ak

[−�1ak+1 +�1 Fk +�1(bk+1Gk+1)
]

kak �
1 Nk

+kak (�
1 Nk)

k2

ak

[−�2ak+1 +�2 Fk+1 +�2bk+1Gk+1
]

ak Nk+2

+Mk
k3

ak

[−�3ak +�3 Fk +�3(bk Gk)
]

ak Nk+2

+Mk
k2

ak

[−�2ak +�2 Fk +�2(bk Gk)
]

kak �
1 Nk+1,

for all k ∈ Z \ {0}. Since the sequence {ak}k∈Z is a 3-regular sequence, it follows
from Lemmas 3.4 and 3.5 that all the terms in the right hand of the preceding equality
are uniformly bounded. Moreover, for k = 0 is clear that k3ak �

3 Nk is a bounded
operator. Therefore,

{
k3ak �

3 Nk
}

k∈Z
is a bounded family of operators. �

LEMMA 5.6. Consider 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let
A be a closed linear operator defined in a Banach space X. Assume further that
F ∈ L(Fs+α

p,q ([−2π, 0]); X) and G ∈ L(Fs+α−β
p,q ([−2π, 0]); X). Suppose that the

operators Nk ∈ L(X), for all k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy
the conditions (F3) and (G3) respectively, and the family of operators {Mk}k∈Z is
bounded, then the family {Fk Nk}k∈Z is a Fs

p,q-multiplier.



Vol. 14 (2014) Periodic solutions of a fractional neutral equation 437

Proof. According to the Theorem 2.12, it suffices to show that the family of opera-
tors {Fk Nk}k∈Z is a M-bounded family of order 3. It follows from Lemma 3.6 that
{Fk Nk}k∈Z is a M-bounded family of order 2. It remains to show that {k3�3(Fk

Nk)}k∈Z is bounded. To prove this we first observe that for all k ∈ Z we have

�3(Fk Nk) = Fk �
3 Nk + (Fk+3 − Fk)�

2 Nk+1 + (�2 Fk+1)(�
1 Nk+1)

+(�3 Fk) Nk+2 − 2(�2 Fk)(�
1 Nk+1).

Thus, for all k ∈ Z \ {0}, it holds

k3�3(Fk Nk) = 1

ak
Fk k3ak �

3 Nk + k

ak
(Fk+3 − Fk) k2ak �

2 Nk+1

+k2

ak
(�2 Fk+1) kak �

1 Nk+1 + k3

ak
(�3 Fk) ak Nk+2

−2
k2

ak
(�2 Fk)kak �

1 Nk+1.

Since the family {Fk}k∈Z satisfies the condition (F3), and clearly, when k = 0 the
operator k3�3(Fk Nk) is bounded, the family {Fk Nk}k∈Z is a M-bounded family of
order 3. �

LEMMA 5.7. Consider 1 � p, q � ∞, s > 0 and 0 < β < α � 2. Let
A be a closed linear operator defined in a Banach space X. Assume further that
F ∈ L(Fs+α

p,q ([−2π, 0]); X) and G ∈ L(Fs+α−β
p,q ([−2π, 0]); X). Suppose that the

operators Nk ∈ L(X), for all k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy
the conditions (F3) and (G3) respectively, and the family of operators {Mk}k∈Z is
bounded, then the family {bk Gk Nk}k∈Z is a Fs

p,q-multiplier.

Proof. According to Theorem 2.12, it suffices to show that the family of operators
{bk Gk Nk}k∈Z is M-bounded of order 3. It follows from Lemma 3.7 that {bk Gk Nk}k∈Z

is M-bounded of order 2. It remains to show that {k3�3(bk Gk Nk)}k∈Z is bounded.
Note that, for all k ∈ Z,

�3(bk Gk Nk) = bk Gk �
3 Nk + (bk+3Gk+3 − bk Gk)�

2 Nk+1 +�2(bk+1Gk+1)�
1 Nk+1

+(�3bk Gk) Nk+2−2�2(bk Gk)�
1 Nk+1.

Therefore, for all k ∈ Z \ {0}, we have

k3�3(bk Gk Nk) = bk

ak
Gk k3ak �

3 Nk + k

ak
(bk+3Gk+3 − bk Gk) k2ak �

2 Nk+1

+k2

ak
�2(bk+1Gk+1) kak �

1 Nk+1 + k3

ak
�3(bk Gk) ak Nk+2

−2
k2

ak
�2(bk Gk) kak �

1 Nk+1.

Since {Gk}k∈Z satisfies the condition (G3), it follows from Lemmas 3.4, 3.5, 5.4 and 5.5
that all the terms in the right hand of the preceding identity are uniformly bounded. In
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addition, k3�3(bk Gk Nk) is a bounded operator when k = 0. Consequently, the family
{bk Gk Nk}k∈Z is a M-bounded family of order 3. �

LEMMA 5.8. Let 1 � p, q � ∞, s > 0 and 0 < β < α � 2. Let A be a closed lin-
ear operator defined in a Banach space X. Suppose that F ∈ L(Fs+α

p,q ([−2π, 0]); X)

and G ∈ L(Fs+α−β
p,q ([−2π, 0]); X). Assume that the operators Nk ∈ L(X), for all

k ∈ Z. If the families {Fk}k∈Z and {Gk}k∈Z satisfy the conditions (F3) and (G3)
respectively, then the following assertions are equivalent.

(i) The family of operators {Mk}k∈Z is bounded.
(ii) The family of operators {Mk}k∈Z is a Fs

p,q-multiplier.

Proof. (i) ⇒ (i i).According to Theorem 2.12 it suffices to show that {Mk}k∈Z is M-
bounded of order 3. It follows from Lemma 3.8 that {Mk}k∈Z is a family of operators
M-bounded of order 2. It remains to show that {k3�3 Mk}k∈Z is a bounded family of
operators. For this we note

�3 Mk =ak �
3 Nk + (ak+3 − ak)�

2 Nk+1 + (�2ak+1)(�
1 Nk+1)

+(�3ak)Nk+2 − 2�2ak �
1 Nk+1.

Therefore, for all k ∈ Z \ {0},

k3�3 Mk = k3ak �
3 Nk + k

ak+3 − ak

ak
kak �

2 Nk+1 + k2�
2ak+1

ak
kak �

1 Nk+1

+k3�
3ak

ak
ak Nk+2 − 2k2�

2ak

ak
kak �

1 Nk+1.

Since the sequence {ak}k∈Z is 3-regular, and all hypotheses of the Lemmas 3.5 and
5.4 are fulfilled, we conclude that all the operators included in the right-hand side
of the equality above are uniformly bounded. Additionally, when k = 0 the op-
erator k3�3 Mk is bounded. In consequence, the family of operators {Mk}k∈Z is a
M-bounded family of order 3.
(i i) ⇒ (i) This proof is analogous to the proof of the implication (i i) ⇒ (i) of the

Lemma 3.8, so we omit it. �

We are now ready to prove the main results of this section. We omit their proof
because are analogous to the proof of the Theorem 3.9 and Corollary 3.10, respectively.

THEOREM 5.9. Let 1 � p, q � ∞, s > 0. Let be X a Banach space. If the
families {Fk}k∈Z and {Gk}k∈Z satisfy the conditions (F3) and (G3) respectively, then
the following assertions are equivalent.

(i) The Eq. (5.1) has Fs
p,q -maximal regularity.

(ii) The families {Nk}k∈Z ⊆ L(X) and {Mk}k∈Z are bounded.

Our next objective is to give other conditions on the operators A, F and G that
imply the hypotheses of Theorem 5.9 and are easier to verify in applications. With
this purpose, for k ∈ Z, we define the operators Sk = ((ik)α − A)−1.
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COROLLARY 5.10. Let 1 � p, q � ∞, s > 0. Let be X a Banach space. Assume
that {(ik)α}k∈Z ⊆ ρ(A) and the families {Fk}k∈Z and {Gk}k∈Z satisfy the conditions
(F3) and (G3) respectively. If the family of operators

{
(ik)αSk}k∈Z is bounded, and

supk∈Z

∥∥∥
(
(ik)βGk + Fk

)
Sk

∥∥∥ < 1, then the solution of Eq. (5.1) has Fs
p,q-maximal

regularity.

6. Existence and uniqueness of periodic strong solution of neutral equation
in Triebel–Lizorkin spaces

Let 1 � p, q � ∞, s > 0 and 0 < β < α � 2. Let A : D(A) ⊆ X → X and
B : D(B) ⊆ X → X linear closed operators such that D(A) ⊆ D(B). By using the
results about Fs

p,q -maximal regularity of the Eq. (5.1) obtained in Sect. 5, we prove
that the fractional neutral differential equation

Dα
(
u(t)− Bu(t − r)

)= Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (6.1)

has a unique periodic strong Fs
p,q -solution. Suppose that the Eq. (5.1) have Fs

p,q -
maximal regularity, then for each g ∈ Fs

p,q(T; X) there exists a unique strong Fs
p,q -

solution v of the equation

Dαv = Av + Fv. + G Dβv. + g(t). (6.2)

Denote by 
 the operator 
 : Fs
p,q(T; X) → Fs

p,q(T; X) defined by the formula

(g) = Dαv, where v is the unique strong Fs

p,q -solution of the Eq. (6.2). This linear
operator is well defined. Moreover, by the closed graph theorem there exists a constant
M � 0 such that for all f ∈ Fs

p,q(T; X) we have

‖Dαu‖Fs
p,q

+ ‖Au‖Fs
p,q

+ ‖Fu.‖Fs
p,q

+ ‖G Dβu.‖Fs
p,q

� M‖ f ‖Fs
p,q
.

With the following two results, we study the existence and uniqueness of a strong
Fs

p,q -solution for the Eq. (6.1). We omit the details of their proofs because the are
analogous to Lemma 4.1 and Theorem 4.2 respectively.

LEMMA 6.1. Let 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let be X a Banach
space. Assume that B is a bounded linear operator such that ‖B‖ ‖
‖ < 1 and Nk ∈
L(X), for all k ∈ Z. Suppose further that the families {Fk}k∈Z and {Gk}k∈Z satisfy the
conditions (F3) and (G3) respectively. If {(ik)αNk}k∈Z is a bounded family of opera-
tors, such that supk∈Z |k|α‖B‖‖Nk‖ < 1, then the family {(I −e−ikr (ik)αB Nk)

−1}k∈Z

is a Fs
p,q -multiplier.

THEOREM 6.2. Let 1 � p, q � ∞, s > 0, and 0 < β < α � 2. Let be X a
Banach space. Assume that B is a bounded linear operator such that ‖B‖ ‖
‖ < 1
and Nk ∈ L(X), for all k ∈ Z. Assume further that the families {Fk}k∈Z and {Gk}k∈Z

satisfy the conditions (F3) and (G3) respectively. If {(ik)αNk}k∈Z is a bounded family
of operators, such that supk∈Z |k|α‖B‖‖Nk‖ < 1, then for each f ∈ Fs

p,q(T; X) there
exists an unique strong Fs

p,q -solution of Eq. (6.1).



440 V. Poblete and J. C. Pozo J. Evol. Equ.

7. Applications

In this last section, we present an application of our results to partial neutral func-
tional differential equations. As we have already mentioned, equations of type (1.1)
and (1.2), have been studied by several authors to model important physical systems.
Next, we consider an integro-differential perturbation of the equation studied in [1,12].

EXAMPLE 7.1. Let 1 � p, q � ∞, s > 0 and 1 < β < α < 2 and 0 < r < 2π .
Consider the following neutral fractional differential equation with finite delay

∂α

∂tα
[
w(t, ξ)− bw(t − r, ξ)

] = ∂2

∂ξ2w(t, ξ)+
∫ 0

−2π
q1γ (s)w(t + s, ξ)ds

+
∫ 0

−2π
q2γ (s)

∂β

∂tβ
w(t + s, ξ)ds

+ f̃ (t, ξ), t ∈ R, ξ ∈ [0, π ],

w(t, ξ)− bw(t − r, ξ) = 0, ξ = 0, π, t ∈ R.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.1)

In order to rewrite the Eq. (7.1) in the abstract form of the Eq. (1.1), we consider X
as the space L2([0, π ]; R). The operators A and B are defined by

Aϕ = ∂2ϕ(ξ)

∂ξ2 with domain

D(A) = {
ϕ ∈ L2([0, π ]; R) : ϕ′′ ∈ L2([0, π ]; R), ϕ(0) = ϕ(π) = 0

}
,

Bϕ = bϕ, where the constant b is a positive number.

We assume that the function γ : [−2π, 0] → R is a function of class C2, and
the operators F : Bs+α

p,q ([−2π, 0]; L2([0, π ]; R)) → L2([0, π ]; R) and G : Bs+α−β
p,q

([−2π, 0]; L2([0, π ]; R)) → L2([0, π ]; R) are described by the formula

(Fψ)(ξ) =
∫ 0

−2π
q1γ (s)ψ(s)(ξ)ds and (Gψ)(ξ) =

∫ 0

−2π
q2γ (s)ψ(s)(ξ)ds.

It follows from Cauchy–Schwartz inequality that Fψ and Gψ are elements of L2

([0, π ]; R). Moreover, since Bs+α
p,q ([−2π, 0]; L2([0, π ]; R)) is continuously embed-

ded in C([−2π, 0]; L2([0, π ]; R)), the maps F and G define bounded linear operators
from Bs+α

p,q ([−2π, 0]; L2([0, π ]; R)) and Bs+α−β
p,q ([−2π, 0]; L2([0, π ]; R)) respec-

tively to L2([0, π ]; R).
Let identify f (t) = f̃ (t, ·), and assume that f̃ (t, ξ) is 2π -periodic at the variable

t .
With all these considerations, the Eq. (7.1) takes the abstract form of the Eq. (1.2).
We will show that there exists b > 0 sufficiently small such that there exists a

unique strong Bs
p,q -solution of Eq. (7.1), whenever f ∈ Bs

p,q(T; L2([0, π ])). For this
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purpose, we assume that q1 and q2 are positive numbers such that

∣
∣∣q1 + q2 cos

(βπ
2

)∣∣∣ �
∣
∣∣q2 cos

(βπ
2

)∣∣∣

and

q2 K < sin
(απ

2

)
,

where K is a constant satisfying ‖F‖ � K and ‖G‖ � K .
Note that for k ∈ Z the operators Fk and Gk take the form

Fkϕ =
∫ 0

−2π
q1γ (s)(ekϕ)(s)ds and Gkϕ =

∫ 0

−2π
q2γ (s)(ekϕ)(s)ds.

By using the Cauchy–Schwartz inequality, we conclude that Fk ∈ L(L2([0, π ]; R))

and Gk ∈ L(L2([0, π ]; R)) for all k ∈ Z. Integrating by parts twice, we obtain the
following representation for the operator Fk and Gk .

Fkϕ = iq1[γ (−2π)− γ (0)]ϕ
k

+ q1[γ ′(0)− γ ′(−2π)]ϕ
k2 − q1

k2

∫ 0

−2π
γ ′′(s)eiksϕds,

and

Gkϕ = iq2[γ (−2π)− γ (0)]ϕ
k

+ q1[γ ′(0)− γ ′(−2π)]ϕ
k2 − q2

k2

∫ 0

−2π
γ ′′(s)eiksϕds.

With this representation, by a direct computation, it follows that the families {Fk}k∈Z

and {Gk}k∈Z satisfy the conditions (F2) and (G2) respectively.
On another hand, the spectrum of A consists of eigenvalues −n2, for n ∈ N. Their

associated eigenvectors are given by

xn(ξ) =
√

2

π
sin(nξ).

Moreover, the set {xn : n ∈ N} is an orthonormal basis of L2([0, π ]; R). In particular

Aϕ =
∞∑

n=1

−n2〈ϕ, xn〉xn, for all ϕ ∈ D(A). (7.2)

Therefore {(ik)α}k∈Z ⊆ ρ(A) and

(
(ik)α I − A

)−1
ϕ =

∑

n∈N

1

(ik)α + n2 〈ϕ, xn〉xn . (7.3)

Since 1 < α < 2 we have that Re(ik)α < 0 for k �= 0. Thus, for k ∈ Z \ {0} and
n ∈ N we have

|(ik)α + n2| �
∣∣I m

(
(ik)α

)∣∣ = |k|α sin
(απ

2

)
.
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Hence, for k �= 0 we have the following estimative

∥∥
∥
(
(ik)α I − A

)−1
∥∥
∥ � 1

|k|α sin(απ2 )
. (7.4)

It is clear from equality (7.3) that
∥
∥∥
(
(ik)α I − A

)−1
∥
∥∥ < ∞, in the case k = 0. On the

other hand, for all k �= 0 we have that

∥∥(ik)βGk + Fk
∥∥ � |(ik)βq2 + q1|K � q2|(ik)β |K = q2|k|βK . (7.5)

Hence, we have that

sup
k∈Z

‖(ik)α((ik)α I − A
)−1‖ < ∞,

and

∥∥∥
(
(ik)βGk + Fk

)(
(ik)α I − A

)−1
∥∥∥ � q2 |k|β K

|k|α sin(απ2 )
.

Since q2 K < sin(απ2 ) we have supk∈Z

∥∥((ik)βGk + Fk
)
Sk
∥∥ < 1. From Corollary

3.10, it follows that fractional delay equation

Dαu(t) = Au(t)+ Fut + G Dβut + f (t), t ∈ [0, 2π ], (7.6)

where the operators A, F and G are described as above, has Bs
p,q -maximal regularity.

Thus, the mapping
 : Bs
p,q(T; X) → Bs

p,q(T; X), defined by
( f ) = Dαu where u
is the unique strong Bs

p,q -solution of Eq. (7.6), is a bounded linear operator. Therefore,
there exists C2 � 0 such that ‖
‖ � C2.

Moreover, there exists C1 � 0 such that supk∈Z |k|α‖Nk‖ � C1. If the constant

b > 0 satisfies the condition b < min
{

1
C1
, 1

C2

}
we have

sup
k∈Z

b|k|α‖Nk‖ < 1 and b‖
‖ < 1.

It follows from Theorem 3.9 that Eq. (7.1) has a unique strong Bs
p,q -solution.
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