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Regular transport dynamics produce chaotic travel times
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In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated
bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence
of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge
even when the route is empty and straight, stops and lights are equidistant and regular, and loading times
are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a
single object following Newton’s laws of motion in a regularized one-dimensional system.
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As well as representing a major global socioeconomic
challenge in the 21st century, the problem of city traffic has
developed into an active area of theoretical research [1–12],
in particular among physicists. The underlying assumption
is that by understanding the collective dynamics of vehicles
in realistic road layouts, insights can be gleaned which
will translate into practical solutions. Such insights may
also have an application to other areas, for example, for
understanding the intracellular transport of kinesin motors on
microtubules [13].

Similar to kinesin motors, whose function is to carry a
molecular load, buses serve the function of regularly transport-
ing groups of people according to some externally determined
scheduling criteria. Since they feature so heavily in everyday
urban traffic, buses are also the target of frequent complaints
concerning erratic waiting and travel times. Studies exist of
school buses [14], the effect of bus stops on city traffic [15,16],
bus-flow optimization and vehicle location techniques
[17–19], priority lane usage [20–25], and bus priority methods
for traffic light control [26]. Moreover the notoriety of buses
for arriving in threes, otherwise known as bus bunching or
platooning [27], has been explained in terms of a snowball
collective effect whereby a particular bus suffers a momentary
delay for some external reason, introducing a bottleneck
behind which other buses bunch. The focus in such studies
is implicitly towards the collective behavior of traffic, in
particular the effects of multivehicular interactions.

Here we strip down the analysis of bus travel to a bare
minimum: A single bus traveling along an empty, straight
road with equidistant, regular stops and traffic lights showing
no phase lags. Even in the absence of unexpected external
delays due to loading times at bus stops or interactions
with other vehicles, we find that a remarkably complex
dynamics emerges. We conclude that chaotic passenger travel
and waiting times are an inherent feature of public transport
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systems, emerging from the need for regular stops combined
with background flow control (i.e., periodic traffic lights).

Our model employs Newton’s laws of motion in continuous
time and space, thereby allowing us to include realistic effects
such as acceleration after stopping, deceleration ahead of a red
light, and a finite speed limit. Moreover, the motion during each
portion of the journey (see Fig. 1) is determined analytically
as shown in the Appendix. The fact that the complexity of the
emerging dynamics is so unexpected may explain why this
simple one-body, one-dimensional system has received such
little attention to date [6]. Each of its rules and parameters can
be generalized without affecting the main results, however,
for simplicity we take the separation between light n and
n + 1 as L for all n, and assume the nth light is green at
time t if sin ωt � 0 and is red otherwise. The parameter ω

is the frequency of the traffic lights, which for simplicity we
assume the same for all traffic lights. To avoid introducing
spurious incommensurability effects, we set the bus stop
midway between consecutive lights, at l = L/2. We assume
that the bus stops at this bus stop for a time γ , before it starts
to move again. Under optimal conditions the bus will stop for
a very short time, namely γ = 0, however, in many situations
we will have γ > 0 as shown in Region 4 of Fig. 1. The road
speed limit is vmax. In an attempt to reach that velocity, the bus
is free to accelerate at a fixed rate a+, which is predetermined
by its motor capacity. Likewise, it can decelerate at a fixed rate
a−. The dynamics described above corresponds to a nontrivial
modification of the car model presented in Ref. [6], and
analyzed in detail in Refs. [1,7,8], which is adapted for buses as
it introduces the intricacies of the bus stops into the dynamics.
Even when the bus spends a negligible amount of time at the
bus stop (i.e., γ = 0), the bus dynamics is different from the
one defined in the car model, as the bus must brake with a−
from the cruising speed vmax for a finite time and distance to
stop at the bus stop, for a time γ , and then accelerate from
rest at the bus stop with a+ to reach the cruising speed vmax

for a finite time and distance. Although at first sight one may
conclude that the dynamics is exactly the same as that of a car
with a reduced speed between lights, this is not the case since
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FIG. 1. Distance x traveled by a bus between two consecutive
traffic lights at x = 0 and x = L, with a compulsory passenger stop
at x = l, as a function of time t . Case shown corresponds to bus
starting from a red light (x = 0, t = 0), while the upcoming light is
red when x = xs2, but changes to green before the bus reaches x = L.

a finite loading time (γ �= 0) provides a nontrivial interplay
between the time scales of the traffic light period and the
travel time of the buses. Hence, these two features are finally
responsible for the nontrivial behavior that occurs in this model
(see the Appendix). The distance L between traffic lights is
restricted so that the bus has enough time and distance to brake
from vmax and accelerate to vmax after the bus stop within the
traffic lights. We will see below that this additional bus-stop
dynamics, compounds in a natural manner the complexity
of the vehicle motion, especially when the bus-stop time
γ �= 0. This nontrivial behavior is only possible under the
assumption of finite accelerating and braking capacities, and
it disappears when these parameters are taken to infinity, as
it happens, for example, in the popular cellular automaton
model proposed by the authors of Ref. [28] (see the analysis
below). Appendix A details how the motion is iterated between
the nth and (n + 1)th traffic light. We choose typical traffic
parameters, which happen to closely match the Transmilenio
bus system in Bogota, Colombia: L = 400 m, a+ = 1 m/s2,
vmax = 60 km/h, and a− = −5.5 m/s2.

Figure 1 illustrates the dynamics between two consecutive
lights, in the case where the bus was initially stopped at a red
light. The general case is given in the Appendix. In region 1,
the bus accelerates until it reaches vmax, i.e., at xc1 = v2

max/2a+
following Newton’s laws of motion. It continues at vmax in
region 2. It starts to decelerate at xs1 = l − v2

max/2a− (region 3)
so that it stops at the upcoming bus stop (x = l), where it sits for
time γ (region 4). It then accelerates (region 5), reaching vmax

at xc2 = l + v2
max/2a+ (region 6). If the upcoming light is green

at xs2, it continues with vmax and crosses the light. If it is red,
the bus starts to decelerate when xs2 = L − v2

max/2a− (region
7). If it turns green after deceleration starts, the bus accelerates
again (region 8). We take l > (v2

max/2a+ + v2
max/2a−) so

that regions 2 and 6 are guaranteed to exist. We also take
ω/2π � min(a+,a−)/vmax so that the light does not change
more than once while the bus is in regions 7 and 8. Defining
the cruising time Tc = L/vmax, it is convenient to write the
normalized accelerations A± = a±L/v2

max, and the normalized
waiting time � = γ /Tc. With these definitions, the minimum
time tmin between two consecutive lights when γ = 0 is

tmin

Tc

= 1 + 1

2

(
1

A+
+ 1

A−

)
. (1)
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FIG. 2. Bifurcation diagrams as a function of ω tmin/2π for (a)
speed at the nth light; (b) travel time between consecutive lights; and
(c) the Lyapunov exponent. Here the bus-stop loading time is γ = 0.
For a given value of ω tmin/2π the first 1000 points of the trajectory
are erased as a transient, and we plot only the following 1000
values.

Initially we assume that the bus stops at the bus stop
for an extremely short time γ (i.e., γ = 0), however, we
will generalize this later. Figure 2(a) shows the bifurcation
diagrams which emerge as a function of ω tmin/(2π ) for (a)
the normalized speed v/vmax as the bus passes the nth light.
Figure 2(b) demonstrates the travel time between successive
traffic lights �t/tmin and Fig. 2(c) shows the Lyapunov
exponent. Figure 2 represents the steady-state dynamics of
the system. Even though the bus-stop loading time is γ = 0,
complex dynamics including chaos emerges for ωL < ω <

ωU . The parameter ωU is the first frequency below ω1 where
a period-doubling bifurcation occurs, while ωL indicates the
intersection between the lower branch of the period two orbit
and the zero velocity state. Full details of the phase space
and trajectories will be presented elsewhere. For ω = ω1 ≡
2π/tmin, the bus is in resonance with the traffic light, crossing
it at a speed vmax without stopping. For ω � ω1, the travel
time grows because the vehicle spends a larger fraction of its
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time waiting for red lights to change. The regime ω � ω1 is
much richer: The bus has to decelerate, at least temporarily,
before every light and chaos emerges as the light frequency is
reduced. We can show that the chaotic region is indeed chaotic
by computing the numerical maximum Lyapunov exponent as
was done by the authors of Refs. [6,8] for a single car model.
We evolve (v0,t0) = (0,0) for 104 iterations to make sure we are
at the attractor, and then we follow the actual trajectory (xn,tn)
and a different perturbed trajectory (x̄n,t̄n), in which the initial
normalized time was perturbed by 10−5 for 20 additional steps.

We calculate the Euclidean distance δn between the two
trajectories and fit a Lyapunov exponent as

δn = δoe
λn. (2)

This is repeated for ten initial conditions on the attractor and
we report the Lyapunov exponent as the average of λ over these
ten initial conditions. Of course, due to the nonsmooth nature
of the map, we do not consider situations in which λ → ∞.
This is shown in Fig. 2(c), which clearly demonstrates that the
dynamics is chaotic for the expected range of ω.

As ω → ω0, the bus stops completely at every traffic light and hence spends increasing time waiting for the green light. The
parameters ω0, ωL, ωU , and ω1 can all be calculated analytically as functions of a+, a−, γ , vc, and Tc. For example, in terms of
the normalized quantities, we have

ωUTc

2π
= 2A−A+(A− + A+)

A2−(2A+(� + 1) + 1) + 2A+A−(A+(� + 1) + 1) + 5A2+
,

(3)
ωLTc

2π
= A−A+(A− + A+)

A2−(A+(� + 1) + 1) + A2+A−(� + 1) + 3A2+
.

The resonant frequency ω1 can be derived from Eq. (1), as

ω1Tc

2π
= 1

tmin

Tc

+ �

. (4)

These expressions have been used to label the relevant points
in Fig. 2. It is interesting to note that when the braking capacity
tends towards infinity, namely A− → ∞, we have

ω1Tc

2π
= 2A+

2A+(� + 1) + 1
,

(5)
ω0Tc

2π
= ωUTc

2π
= ωLTc

2π
= A+

A+(� + 1) + 1
,

hence, all the chaotic and nontrivial behavior disappears. Since
most of the cellular automaton models [28] assume A− → ∞,
we conclude that they are not able to describe the unpredictable
behavior and complexities we are analyzing in this paper.
Hence, the need to use the continuous models, with finite
braking and accelerating capacities, to observe this complex
and nontrivial behavior of the buses.

We find that both the light frequency ω and the bus-stop
loading time γ can be used by planners to manipulate the
bus travel time away from, or towards, regions of chaos.
Increasing the bus-stop waiting time γ from zero, but keeping it
nonstochastic, increases the travel time between lights, hence
the bus motion resonates with the lights at a decreasing ω1

while the complex dynamical regime is shifted to lower values
of ω.

Figure 3 shows the effect of γ on the normalized average
speed 〈v〉/veff which is computed as follows. First, we start the
bus from rest at the first traffic light and iterate the map through
the next N = 100 traffic lights to eliminate the transient and
reach the attractor. Then we take another N = 100 iterations
of the map and calculate 〈v〉/veff = N tmin/tN where tN is
the time taken to travel through the last N traffic lights, and
veff = vcTc/tmin is the maximum average speed of the buses.
A number of resonance peaks emerge, and we can deduce that

the maximum possible value at resonance is

〈v〉
veff

∣∣∣∣
max

= 2A+A− + (A+ + A−)

2A+A−(1 + �) + (A+ + A−)
. (6)

Hence we have a synchronized state for a traffic light period
P ∼ tmin (namely at ω = ω1) in the case of γ = 0.

We now consider what happens if the city planners cannot
impose specific bus-stop loading time restrictions, i.e., γ

at the nth bus stop becomes a stochastic variable dictated
by instantaneous demand at that bus stop. For simplicity
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FIG. 3. (Color online) Average normalized speed 〈v〉/veff as a
function of the light’s frequency for bus-stop loading times γ = 0
(thick line), γ = Tc (thin line), and γ = 2Tc (dashed line). After
iterating the system to eliminate the transient and reach the attractor,
we take another N = 100 iterations of the map and then calculate
〈v〉/veff = N tmin/tN where tN is the time taken to travel through N

traffic lights. Peaks indicate light frequencies for which the bus never
has to brake at traffic lights, i.e., the bus is synchronized with the
green light. Horizontal lines correspond to Eq. (6). In red, we have
included the behavior related to ten traffic lights, averaged over initial
conditions with respect to the first traffic light. The predicted critical
behavior near the resonance is shown in blue.
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FIG. 4. Effect of stochastic bus-stop loading time γ (see text) on
average travel time tN/Ntmin (black curves). Stochasticity parameter
β = 0, 0.1, and 0.5. Gray curves show minimum and maximum values
for 100 different simulations using N = 100.

we choose γn/Tc ∈ [0,β], β > 0, where γn is a uniformly
distributed random number. Figure 4 shows the effect on the
normalized average travel time between two successive traffic
lights. The resonance frequency decreases as β increases,
however, the average travel time increases, accompanied by an
increase in its variability and hence unreliability of travel and
arrival times. Given that we have used a uniform probability
distribution for γ and that

1

βTc

∫ βTc

0

1

γ + ζ
dγ = 1

β
ln

(
ζ + β

ζ

)
, (7)

we can approximate, from the expression for ω1 in Eq. (4),
the frequency at which we obtain the average minimum travel
time for a given β. The result is

ω̄1Tc

2π
≈ 1

β
ln(1 + βTc/tmin). (8)

In principle, we could also derive the analytical form for
the standard deviation, but the result is not particularly
illuminating.

Hence, we have shown that regimes of highly nontrivial
dynamics (including chaos) lie close to the optimal solution
in a simple one-body, one-dimensional system with periodic
control lights and scheduled stops, even if loading times are
negligible.

From Fig. 4 we can see that there are at least three effects
that can be attributed to the stochastic waiting time. First,
there is a shift in the resonance frequency to smaller values
and an increase in the traveling time as expected from our
previous discussion. Let us note that this combined effect
is quite difficult to account for in advance since it requires
having an estimation of the real time distribution of bus stop
times, e.g., the number of passengers at each bus stop. This
expected increase in the average traveling time is accompanied
by an increase in its variability as 〈γ 〉 increases, i.e., the
introduction of a small degree of uncertainty in the bus-stop
times is responsible for a high variability of traveling times
near the resonance value. The last observation gives us some
insight on strategies regarding the optimization of bus traveling

times. One could think that forcing the bus dynamics to
synchronize with the traffic lights, assuming small bus-stop
times, would tend to diminish, and thus optimize, the traveling
times. However, here we have shown, with a very simple model
under optimal conditions, that there is a nontrivial amount of
traveling time unpredictability because the resonant behavior,
in the case of minimal bus stopping time, is close to the region
that displays nontrivial dynamics. Hence, having higher travel
times and variability implies that any optimization scheme that
relies on small stop times is destined to have high errors on
the predicted traveling times due to the nontrivial behavior of
this system close to resonance.

The observed increase in the variability of the travel time as
we increase β can be explained in an intuitive manner. First,
we note that for β = 0 the bus moving close to resonance
on average will make it through many traffic lights before
being forced to stop by a red light as it encounters almost the
same green phase most of the time. For small β the velocity
matching is not perfect so that the bus loses a small amount of
the green phase at each traffic light. Eventually the bus exhausts
the green phase and is required to stop, hence increasing the
average number of times it is forced to stop at the traffic lights.
This dynamics of exhausting the “green phase” occurs more
often for larger β, hence increasing the variability.

These results provide certain suggestions for some realistic
scenarios. First, although tmin depends on L, vmax, a+,
and a−, the values of L and vmax are city dependent. We can
observe from Fig. 3 (under the optimal situation with γn = 0)
that P = tmin ∼ 33 s is the longest period for which we can
have a synchronized state with a maximum average velocity.
Of course, this estimation was done for γ = 0, therefore we
should add to tmin an expected passenger loading time 〈γ 〉
so that we can synchronize the traffic lights with an effective
period equal to the effective travel time between traffic lights,
namely P ∼ tmin + 〈γ 〉. Taking an average loading time of
about 30 s, we reach an effective traffic light period of about
a minute, which is similar to traffic light periods used in
many cities. Furthermore, we note that for smaller vmax or
longer distances between traffic lights, the effective period
may increase even more. Second, it is important to note that
accounting for 〈γ 〉 in the period is not enough, as Fig. 4 shows
that fluctuations become relevant in the dynamics of the buses.
Indeed, one of the most interesting results of our study is that
we can see from Fig. 4 that the optimal frequency of the traffic
lights depends on the distribution of the bus-stop waiting time
γ , making it difficult to optimize the travel time of buses in
cities a priori. Thus, this study may provide an explanation
about the difficulty of optimizing the traveling time of buses in
cities since the nontrivial and chaotic region, which is inherent
in the bus behavior, lies close to the optimal resonant condition.
Third, one may consider a sequence of traffic lights with an
adaptive period, to account for variable loading time at each
bus stop, a study that will be done elsewhere.

Even though there are many bus routes that have less bus
stops than the number used to exhaust the transient in Figs. 2
and 3, characterizing the properties of the attractor as a function
of ω provides intuition as to the inherent unpredictability of the
bus system for ω below the resonance condition, even under the
optimal situation of γn = 0. Furthermore, for the parameters
in question, most of the effects of the transient behavior can
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be disregarded in an average sense just after a few traffic
lights (as few as ten), as shown by the red curve in Fig. 3 that
displays the average velocity, averaged over an ensemble of
initial conditions, after only ten traffic lights. This average is
done by taking 100 buses that enter the road with a uniform
distribution of initial time delays between zero and the period
of the traffic light. We note that this curve is very similar to
the corresponding γ = 0 curve (transient removed), with only
very small deviations. Thus, we believe that the model may
also be relevant for traffic situations with bus routes with just
some tens of stops.

Some bus systems allow for a time slack that can be
utilized by the bus drivers to control their schedule due to the
passenger loading time unpredictability, however, this is done
at the cost of increasing the travel time. Another possibility
to reduce the unpredictability is to vary a± and vmax to adjust
to a specific schedule. In this paper we have assumed the
maximum values of a± and vmax, as restricted by speed limits
and the acceleration capacity of the buses, therefore varying
these parameters may reduce the unpredictability, but such a
schedule would have a longer travel time.

In traffic systems we can expect the appearance of other
stochastic and irregular elements, beyond the ones considered
here, that would compound the above effects, increasing the
unpredictability of the bus dynamics. If we include interacting
buses in the system, we can introduce extra uncertainties in
the bus behavior. For example, the authors of Ref. [29] showed
that the passenger travel time of buses, using a different model,
becomes unpredictable as two buses compete for passengers.
Even though the variability introduced in the present paper
is produced by the competition between two different time
scales of a one-bus system, namely the traffic light timing
and the stochastic loading passenger time, the introduction of
interacting buses can increase the complexity of the passenger,
or bus, travel times. We plan to analyze this situation elsewhere.
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APPENDIX

The map below completely determines the bus dynamics
between consecutive traffic lights, given a set of initial
conditions. For ease of description, we drop the n subscript
and use the sequence of events described in Fig. 1, but we do
not assume the bus starts standing still at a red light.

Region 1. The bus crosses the nth traffic light at position xn,
time tn, with velocity vn. It accelerates with a+ until reaching
velocity vmax at position xc1 = xn + (v2

max − v2
n)/2a+, at time

tc1 = tn + (vmax − vn)/a+. Note that if vn = vmax there is no
need for this region.

Region 2. The bus moves at velocity vmax until braking to
fully stop at x = xn + l. Braking must occur at the decision
position xs1 = xn + l − v2

max/a−. The bus reaches the decision
point at time ts1 = tc1 + (xs1 − xc1)/vmax.

Region 3. The bus brakes with a−. It reaches the bus stop
at xn + l with speed 0, at time tl = ts1 + vmax/a−.

Region 4. The bus loads and unloads passengers during a
time γ .

Region 5. The bus accelerates with a+. So it is like region
1, but it now always starts from rest. At the end of the region,
the bus is at position xc2 = xn + l + v2

max/2a+ with velocity
vc2 = vmax, at time tc2 = tl + γ + vmax/a+.

Region 6. The bus moves at velocity vmax until it reaches
a second decision point, where it checks the status of the
upcoming traffic light. If red, it has to be able to fully stop
at x = xn + L. As in region 2, the decision point is at xs2 =
xn + Ln − v2

max/2a−, and it happens at time ts2 = tc2 + (xs2 −
xc2)/vmax. At this point, the bus has velocity vs2 = vmax.

Region 7. The behavior depends on the light’s status (i.e.,
red or green) at the decision time ts2.

(A) If green, the bus does not brake. It reaches the
next traffic light, which is at position xn+1 = xn + L, with
velocity vn+1 = vmax at time tn+1 = ts2 + (v2

max/2a−)/vmax =
ts2 + vmax/2a−.

(B) If red, the bus starts braking. To decide what happens
next, the time of the next green light must be calculated as
follows:

tg = 2π

ω

([
ωts2 + φn

2π

]
+ 1

)
− φn

ω
, (A1)

where [ ] represents the integer part. This time must now be
compared to the time it will take the bus to fully stop tt =
ts2 + vmax/a−.

(a) If tt � tg , then the bus fully stops, and stays at the traffic
light at position xn+1 = xn + Ln, with velocity vn+1 = 0, until
the next green light at tn+1 = tg .

(b) If tt > tg then the light turns green while the bus is
braking (see region 8 in Fig. 1). This occurs at time tg ,
at which the bus is at position xg = xs2 + vs2(tg − ts2) −
1
2a−(tg − ts2)2, with velocity vg = vs2 − a−(tg − ts2). Now the
bus starts accelerating again. Again there are two cases. To
decide, the position xc = xs2 + (v2

max − v2
g)/2a+ at which the

bus reaches velocity vmax, must be compared to the position of
the next light, xn + L.

(i) If xc < xn + L, the bus reaches maximum velocity
before reaching the light. Thus it reaches the position xc

with velocity vmax at time tc = tg + (vmax − vg)/a+. Then
it continues with velocity vmax until reaching the light at
position xn+1 = xn + L with velocity vn+1 = vmax, at time
tn+1 = tc + (xn + L − xc)/vmax.

(ii) If xc > xn + L, the bus reaches the next light at
position xn+1 = xn + L with nonmaximum velocity vn+1 =√

v2
g + 2a+(xn + L − xg), at time tn+1 = (vn+1 − vg)/a+.
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R. Zarama, N. Lammoglia, and J. A. Valdivia, Chaos 20, 013109
(2010).

[9] S. Tadaki, M. Kikuchi, A. Nakayama, K. Nishinari, A. Shibata,
Y. Sugiyama, and S. Yukawa, J. Phys. Soc. Jpn. 75, 034002
(2006).

[10] Y. Bar-Yam, Unifying Themes in Complex Systems, New
England Complex Systems Institute Series on Complexity
(Westview, Boulder, CO, 2003).

[11] G. Nicolis and I. Prigogine, Exploring Complexity: An Introduc-
tion (W. H. Freeman and Company, New York, 1989).

[12] A. Varas, M. D. Cornejo, B. A. Toledo, V. Muñoz, J. Rogan, R.
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