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ABSTRACT: A system in a spatially (quasi-)degenerate
ground state responds in a qualitatively different way to a
change in the external potential. Consequently, the usual
method for computing the Fukui function, namely, taking the
difference between the electron densities of the N- and N ± 1
electron systems, cannot be applied directly. It is shown how the
Fukui matrix, and thus also the Fukui function, depends on the
nature of the perturbation. One thus needs to use degenerate
perturbation theory for the given perturbing potential to
generate the density matrix whose change with respect to a
change in the number of electrons equals the Fukui matrix.
Accounting for the degeneracy in the case of nitrous oxide
reveals that an average over the degenerate states differs
significantly from using the proper density matrix. We further
show the differences in Fukui functions depending on whether a Dirac delta perturbation is used or an interaction with a true
point charge (leading to the Fukui potential).

I. INTRODUCTION

One reason why Density Functional Theory (DFT) has

become so popular among chemists is that it has allowed

many preexisting, yet often qualitative, concepts to be

rationalized from a quantum chemical perspective. Many

ideas such as the electronegativity equalization principle,1−4

the maximum hardness principle5−9 and the Hard and Soft

Acids and Bases (HSAB)10−16 principle found firm theoretical

footing within what has become known as conceptual

DFT.17−19 Much of chemical reactivity can be rationalized

using conceptual DFT tools. This is because just two, in

principle, relatively simple, ingredients suffice to compute the

energy of a system:17 the number of electrons N and the

external potential v(r) (abbreviated henceforth as v). The

energy thus becomes a function of N and a functional of v.

Chemical interactions and reactions can be considered as

processes where for each of the reacting partners, these

ingredients change as a function of the progress of the

reaction.20 Starting from a number of electrons N0 and external

potential v0, the energy of a system for a number of electrons N

and external potential v is given by
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In practice, this Taylor series is usually carried out no further
than to the second order although explorative theoretical work
has been performed on still higher order terms.21,22 All
derivatives in equation (eq 1) have been examined in detail17,18

and are known respectively as the chemical potential, hardness,
electron density, and the Fukui function for the terms shown
explicitly. The Fukui function thus corresponds to the mixed
second derivative in this expansion of the energy.23−25 It
quantifies the change in the functional derivative of the energy
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with respect to the external potential to a change in the number
of electrons in a molecule, that is,
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The Fukui function is normalized, meaning that its integral
over all space equals 1. Although the Fukui function is among
the most popular conceptual DFT based reactivity indices, not
all of its properties are well understood. For instance, the
possibility of negative Fukui functions in some region(s) of
space in a molecule has been debated (see Echegaray et al.,26

Bultinck et al.27−30 and references therein). Even more
problems31 appear when atom condensing Fukui functions as
originally suggested by Yang and Mortier,32 among other issues
related to the commutation33 of the different mathematical
operations involved when going beyond the Mulliken
approach.34 In the present paper, we deal with the
consequences of state degeneracy on the Fukui function. In
order to state the problem, we must remember that eq 2 is not
the most common representation of the Fukui function. The
Fukui function is most often represented as
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meaning that it is the change in electron density upon changing
the number of electrons under constant external potential v0.
The equality of eq 2 and eq 3 is based on equating (δE/δv(r))N
to ρ(r). Although this formula is generally valid, an often
unspoken assumption is that it equals the difference in electron
density of the system with N0 electrons and charged states with
N ± 1 electrons. This assumption can be proven by taking the
functional derivative of the energy with respect to a change in
the external potential provided there is no spatial degeneracy in
the system. It also assumes that the density is a piecewise linear
function of N,35−37 which is true in the exact theory but not for
many approximate methods.38−42 As Cardenas et al.43 have
shown, the presence of degeneracies means that one must use
degenerate perturbation theory. The consequences of degen-
eracy and, by extension, quasi-degeneracy are quite significant,
and the aim of this paper is to investigate these. To that end,
section II derives the necessary expressions to obtain the Fukui
matrix29,30 and Fukui function in case of degeneracies and
section IV gives a numerical example for the molecular radical
NO, where the neutral state is doubly degenerate and the
charged states are singly degenerate.
The issue of degeneracies in Fukui functions has been

addressed previously and a rather pragmatic approach is usually
taken where, in case of degeneracy, the density entering in eq 3
is taken to be the average density over the degenerate
states.44−48 As will be shown below, such an approach is not
in line with the results of the present derivation, which is based
on the theoretical considerations of Cardenas et al.43 and the
study by Bultinck et al.49 on the effect of degeneracy on the
electrostatic potential and atomic charges.

II. FUKUI MATRICES AND FUNCTIONS FOR
DEGENERATE STATES

As mentioned above, eq 3 is a generally valid equation, but in
case of degeneracies, one needs to carefully establish how the

density ρ(r) is to be computed. In order to show this, we first
extend the Fukui function to a Fukui matrix,29,30 as the latter is
more directly related to a wave function. Despite the Fukui
function being usually linked to purely DFT, it is more
informative to work with a wave function based derivation
because it facilitates accounting properly for degeneracy. The
Fukui matrix corresponds to taking the derivative of the density
matrix:29,30
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It is thus an extension of eq 3 in the same sense as that the
density matrix is an extension of the electron density. The
density to be used in eq 3 depends on the functional derivative:
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If no degeneracies appear, functional differentiation17 allows us
immediately to establish that it corresponds to the electron
density of that nondegenerate state.
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Here, ε is a scalar taken to the zero limit and Δv is a suitable
change in the external potential (“suitable” reflecting that it
must lie in the same function space as v). The same result is
obtained from first order perturbation theory. In the remainder,
the perturbation approach is used and we therefore introduce
the external potential operator (assuming only nuclear attraction
and thus no external fields):

∑ ∑̂ = −
| − |α

α

α= =

v
Z

r Ri

N M

i1 1 (7)

for a system with M nuclei located at positions {Rα} with
nuclear charges {Zα} and N electrons located at positions {ri}.
We further consider the perturbation operator, Δv,̂ which
denotes the change in the external potential operator. We can
then introduce the perturbation matrix to find the energy and
wave function corrections. If the state is nondegenerate, the
perturbation matrix has dimension 1 × 1 and the first-order
change in energy, E(1), is simply ∫ ρ(r)Δv(r)dr, where ρ(r) is
the electron density of the nondegenerate state. If degeneracies
do exist, one needs to consider the perturbation matrix:

⟨Ψ|Δ |̂Ψ⟩ ⟨Ψ|Δ |̂Ψ ⟩ ··· ⟨Ψ|Δ |̂Ψ ⟩

⟨Ψ |Δ |̂Ψ⟩ ⟨Ψ |Δ |̂Ψ ⟩ ··· ⟨Ψ |Δ |̂Ψ ⟩

⋮ ⋮ ⋱ ⋮
⟨Ψ |Δ |̂Ψ⟩ ⟨Ψ |Δ |̂Ψ ⟩ ··· ⟨Ψ |Δ |̂Ψ ⟩

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

v v v
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g
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g g g g

1 1 1 2 1

2 1 2 2 2

1 2 (8)

The eigenvectors of the above matrix, in case of g degenerate
states, correspond to the correct zeroth order wave functions
accompanying each eigenvalue. So, there no longer is a one-to-
one correspondence between the electron density obtained
from that eigenvector and that from a single state. Each
eigenvector is in general a linear combination of all degenerate
wave functions where this linear combination depends in a
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parametric way on the actual perturbation, Δv,̂ considered. The
ansatz above is not only valid when considering the Fukui
function but is much more general and was used recently to
show the ill-defined nature of the electrostatic potential for
degenerate states.49 Once a specific eigenvalue of the
perturbation matrix is chosen, one can use its eigenvector to
compute a new density matrix which will in general not be a
simple linear combination of density matrices of the different
degenerate states but will also involve the transition density
matrices between states. Each eigenvector is a linear
combination of all (quasi-)degenerate states (real wave
functions are assumed throughout):

∑Φ = Ψ
=

ca
i

g

ai i
1 (9)

resulting in a density matrix composed of the density matrices
of the states Ψi and transition density matrices between states:

∑ ∑ ∑ρ ρ ρ′ = ′ + ′
= = =

≠

c c cr r r r r r( , ) ( , ) ( , )a
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Here, ρij(r,r′) denotes the spin summed density matrix
obtained from ∫Ψi(x1,x2,···,xN)Ψj(x′1,x2,···,xN)dx2···dxN. Tran-
sition density matrices thus contribute, and this already
establishes that approaches taken based on averages of density
matrices44,45,47,48 ρij(r,r′) will be subject to error. It is the
diagonal of the density matrix in eq 10 that is the electron
density to be used in eq 3 for the Fukui function. Another
important observation is that the density, through the
dependence of the eigenvector on the nature of the
perturbation, does not exactly correspond to the functional
derivative, as eq 6 is not linear anymore in the change in
external potential, which means that the functional derivative
does not exist. Finally, it must be stressed that in eq 9, the
coefficients cai depend on the nature of Δv.̂
To compute the Fukui matrix, the derivative of the density

matrix with respect to the number of electrons must be
computed (see eq 4). This is usually done using a finite
difference approach. Due to the discontinuity of the density
with respect to the number of electrons,17,23,24 two separate
Fukui functions must be considered, namely one for the
removal of an electron and one for adding an electron as
follows respectively:

ρ ρ′ = ′ − ′− −f r r r r r r( , ) ( , ) ( , )N N 1
(11)

ρ ρ′ = ′ − ′+ +f r r r r r r( , ) ( , ) ( , )N N1
(12)

where the notation ρN(r,r′) indicates the electron density of the
N electron system and these density matrices are obtained
either via the nondegenerate density matrix or via eq 8
depending on whether the N(±1) system(s) exhibit(s)
degeneracies.
The Fukui matrix exhibits many interesting properties.29,30

Several of these are only manifest when separating the density
matrix in an α and β part depending on the electron spin (note
that the Fukui matrix was originally introduced in spin specific
form29,30 and was studied in spin integrated and spin polarized
form by Alcoba et al.50,51). The trace of the Fukui matrix always
equals 1 for the spin for which the number of electrons
effectively changes (here we consider the α electrons always in
the majority for any system) and equals zero for the other. In

the specific case of idempotent density matrices, it has been
shown that both the α and β Fukui matrices have an interesting
spectrum. All eigenvalues must always come in pairs x and −x
except eigenvalues identical to zero or 1. This effect disappears
when the density matrices are no longer idempotent, as is the
case when introducing electron correlation. Another possibility,
predicted by Bultinck et al.,29,30 is degeneracy, and this paper
indeed establishes this (see the following text).
It is important to note that, for degenerate systems, the Fukui

matrix and Fukui function will, through eq 8, depend on the
nature of Δv.̂ This is not the case for nondegenerate systems. If
one considers as a perturbation a point charge q0 > 0 located at
position R0, g negative eigenvalues are obtained because of the
attraction between the negatively charged electrons and the
positive point charge q0.

49 Ordering these as λmin
(+) ≤ ... ≤ λmax

(+) <
0 (note the superscript (+) denoting that these values were
obtained from the perturbation matrix for a positive point
charge) but changing the sign of the point charge to q0 < 0
results in positive eigenvalues of the same magnitude as
previously, differing only in sign and such that λmax

(−) = −λmin
(+) ≥ ...

≥ λmin
(−)−λmax(+) ≥ 0. Seeking the lowest energy, the eigenvalue E(1)

= λmin
(+) is chosen for the positive point charge and E(1) = λmin

(−) =
−λmax(+) for a negative point charge, such that the limit differs
depending on whether one approaches it from above or
below.49 There is thus no hope of finding a unique Fukui matrix
or function even for a point charge at the same position and of
the same magnitude, differing only in sign. As different
eigenvectors are followed, different reactivity and regioselectiv-
ity may be expected.
All these effects are further enhanced when one then also

considers that the point charges may be moved. The density
matrices used in computing the Fukui function involving at
least one species with degenerate states may change sometimes
in a rather unpredictable way depending on the Δv ̂ considered.
In case species are encountered that exhibit degeneracy, the
only way forward is to obtain as good as possible a model for
Δv ̂ and to carry out the degenerate perturbation theory. All
these findings also hold for systems with quasi-degeneracy
where it was previously found that these effects may even
worsen.49 Exact degeneracy is often a consequence of
symmetry, and this puts extra constraints on the properties of
the Fukui matrices, constraints that are relaxed in less
symmetrical systems.
Besides a point charge, an often used perturbation in

conceptual DFT is a Dirac delta type operator, which has the
advantage of mathematical simplicity. It does, however, not
correspond to a clear physical interaction as the point charge
potential does. Both are, however, of interest in their own right.
To show this, consider the eigenvalues of the perturbation
matrix with a Dirac delta operator:

∫ ρ δ ρ= − − = −E r r R r R( ) ( )d ( )(1)
0 0 (13)

Taking the difference in these eigenvalues between the neutral
molecule and an ion, results immediately in the Fukui function
f±(R0) where the influence of degeneracy appears in ρ(R0) for
the degenerate system. On the other hand, with the point
charge operator, one has

∫ ρ= −
| − |

E q
r

r R
r

( )
d(1)

0 (14)

Taking q = 1 and making the difference between the molecule
with N and N ± 1 electrons, one finds that eq 14 leads to the
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Fukui potential: a different, yet promising, reactivity descrip-
tor52−55

∫=
| − |

v R
f r

r R
r( )

( )
df 0

0 (15)

Note that in both eq 13 and eq 14 a minus sign appears. This is
due to the negative (stabilizing) interaction between an
electronic charge density (the negative of the electron density)
and a positive point charge.

III. COMPUTATIONAL METHODS

The molecular radical NO is chosen as an example as it has a
degenerate neutral state and nondegenerate ionic states and has
been used previously to examine effects of degeneracy on Fukui
functions.45 Moreover, it is an interesting molecule in
biomodelling (see for example recent work by Lee et al.56).
All (degenerate) state(s) of all systems needed for computing
Fukui functions were computed at the complete active space
(CAS) level for all valence electrons in all valence orbitals using
the cc-pvtz basis set. Throughout, the NO radical geometry
optimized at that same level was used. The integrals needed in
eq 8 were obtained using the Obara−Saika scheme,57 and all
required calculations are performed using our own software
except for the CAS calculations, where Gamess (U.S.)58 was
used. All required density matrices were obtained directly from
the Slater determinant expansion coefficients of the different
states computed with the Gamess (U.S.) full CI code.59 As a
basis, the orthonormal Hartree−Fock orbitals are used
although, where of interest, this basis was expressed in
nonorthonormal basis function space. Both representations
are naturally equivalent, as, where needed, nonzero overlap is
taken into account.60

As perturbing operators, we opt for a point charge with
charge q0 at R0. The operator Δv ̂ in eq 8 is thus given by

∑Δ ̂ = −
| − |=

v
q

r Ri

N

i1

0

0 (16)

In the following, only unit point charges |q0| = 1 are considered.
The eigenvalues and eigenvectors of eq 8 have the same
magnitude for q0 of the same magnitude, but in order to reach
the lowest energy, the opposite eigenvector and eigenvalue pair
is followed. So, the eigenvalue/eigenvector pair followed for q0
> 0 for the ground state would be the one that brings the
system with q0 < 0 to an excited state and vice versa (note also
that the sign of the eigenvalues changes depending on the sign
of q0 but the set of eigenvectors remains exactly the same, see
above). We furthermore also consider both a positive and a
negative Dirac delta operator. As a physically significant grid of
R0 values, we have chosen a set of points on the van der Waals
surface of the molecule. To facilitate discussion, we have
aligned the molecule along the z-axis with the origin in the
geometrical center of the molecule and use the zenith angle θ
and azimuthal angle ϕ to locate the source of the perturbation
(see Figure 1). Note also that the choice for a point charge or a
Dirac delta are just two specific cases and one could consider
also other operators in eq 8 and eq 16, for example the “soft”
potentials used by Besalu and Carbo-Dorca.61 However, the
point charge and Dirac delta perturbations suffice to illustrate
the most important points.

IV. RESULTS AND DISCUSSION
The molecular radical NO has a degenerate ground state where
the unpaired electron can occupy one of two equivalent
molecular orbitals. The ions, on the other hand, are all
nondegenerate. One could alternatively have chosen a molecule
with degenerate ionized states or even both degenerate ground
and excited states. The present case of degeneracy in the
ground state, however, is of prime interest in the context of NO
being a reactant of interest in biomodeling.56 For the
degenerate NO ground state, a point charge q0 or a Dirac
delta is placed at R0 using the grid introduced in section III. For
this operator, the lowest eigenvalue of eq 8 is sought, and the
associated eigenvector is used to compute the corresponding
density matrix. Using this density matrix, the Fukui matrix is
computed as in eqs 11 and 12. This matrix is then diagonalized
to examine the structure of its eigenvalues and its eigenvectors.
The number of possible Fukui matrices, and thus Fukui
functions, doubles for a given R0 and interaction potential
model. This is due to the fact that there are two Fukui functions
to be considered according to eqs 11 and 12, and there is a
parametric dependence on the nature of the perturbation (here
a point charge or Dirac delta operator of two possible signs).
Given the parametric dependence of the Fukui matrix on q0 and
R0 and the fact that it is a function of r and r′, the following
notation will be used:

′±
±f r r R( , ; )0 (17)

The superscript denotes removal or addition of an electron, the
subscript ± denotes the sign of the point charge used in case of
a point charge perturbation or the sign of the Dirac delta
operator and ″;R0″ denotes the parametric dependence on R0.
In the following, we present data illustrating the complexity of
Fukui matrices and functions involving species with degenerate
states and emphasize the symmetry in both the solutions of the
perturbation matrix and the Fukui matrix.

Properties of the Perturbation Matrix of NO. NO is a
somewhat special case in the sense that the neutral state of the
molecule is degenerate whereas in most other cases it is the
ionized systems that exhibit degenerate states. In line with eq 8,
we find two solutions of the perturbation matrix. Depending on
the location of the perturbation, R0, the two associated
eigenvalues and eigenvectors differ to a smaller or a larger
extent, with a maximum difference of roughly 20 kcal/mol. This

Figure 1. Coordinate system for the R0 points.
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is in line with the previous findings by Bultinck et al.49 Figure 2
shows the difference between the eigenvalues for a positive unit
point charge located at the different R0 grid points.

Besides this difference in eigenvalues, an important require-
ment for the method described is that it must fulfill all
symmetry requirements imposed by the lowering from the C∞ν

symmetry in the unperturbed case to Cs symmetry. Physically,
for a specific zenith angle θ, the eigenvalues of the perturbation
matrix should remain the same independent of the azimuthal
angle ϕ (see Figure 1). Our results indeed reveal that this
symmetry is fully respected, as is shown in Figure 3. Figure 3
shows the minimum eigenvalue of the perturbation matrix for a

positive unit point charge located in each of the grid points for
the neutral molecule. The maximum eigenvalue exhibits the
same symmetry. Another symmetry is that in the eigenvector.
Taking the same perturbation but considering now the
eigenvector symmetry for the lowest eigenvalue and plotting
the coefficient of the first state, we find that the coefficient is
independent of the zenith angle but depends on the azimuthal
angle. Figure 4 illustrates this. This symmetry is expected. In

NO the HOMO is of π* type and doubly degenerate. The
corresponding orbitals are denoted πx* and πy*. For the double
degeneracy encountered here, one expects that for a positive
point charge in, for example, the xz plane, the entire response
comes from the πy* orbital whereas for a point in the yz plane
with the same zenith angle, one expects it to correspond to the
πx* orbital (see below for a detailed analysis), accounting for the
dependence on the azimuthal angle. The independence with
respect to the zenith angle is also expected. This is illustrated in
Figure 4. For every point in the xz plane, the entire response
comes from the πy* orbital, revealing constancy of the
coefficient for the corresponding state. Other points outside
this plane can be rationalized in the same way. Symmetry-wise,
the important things are that the eigenvalues are constant for a
given zenith angle and independent of the azimuthal angle,
while the eigenvectors are constant for a given azimuthal angle
and independent of the zenith angle.
An interesting question is to what extent the eigenvalues

differ between different forms of the perturbation; e.g., a unit
positive point charge versus a Dirac delta perturbation. It turns
out that these are also significant differences, as is clear from
comparison between Figure 3 and Figure 5. We refer in this
context to the meaning of the eigenvalues (eq 13 and eq 14). In
case of a point charge, the eigenvalues correspond to
electrostatic potentials whereas in the case of a Dirac delta
operator, they are simply electron densities.

Properties of the Fukui Matrix. If one were to consider
only one state of NO and compute the Hartree−Fock Fukui

Figure 2. Difference between the two eigenvalues (λmax
(+) − λmin

(+) , in kcal/
mol) of the perturbation matrix for the chosen grid for a positive unit
point charge.

Figure 3. Minimal eigenvalue λmin
(+) of the perturbation matrix for the

chosen grid for a positive unit point charge (in kcal/mol). Each point
corresponds to the location of the point charge.

Figure 4. Coefficient of the first degenerate state in the eigenvector
corresponding to the minimal eigenvalue λmin

(+) of the perturbation
matrix for the chosen grid for a positive unit point charge. Each point
corresponds to the location of the point charge.
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matrix f ±
− (r,r′;R0) but for the β-spin density matrices only, it

would have one strict unit eigenvalue because all density
matrices are then idempotent.29,30 This effect is, however, lost
upon proper introduction of electron correlation and is further
lost when one uses the true density matrix based on the
eigenvector of the perturbation matrix, as was shown
previously.30 The effect is very similar for all other Fukui
matrices.
The above-discussed symmetry aspects also have a large

impact on the eigenvalues and eigenvectors of the Fukui matrix.
Take, for example, f+

− (r,r′;R0), which reflects a positively
charged perturbation removing an electron from the system, an
archetypical electrophilic attack on the system. For a given
zenith angle, based on cylindrical symmetry, we expect the
same eigenvalues of the Fukui matrix for every value of the
azimuthal angle. Our calculations indeed reveal that this is the
case. On the other hand, we also expect that for a given
azimuthal angle irrespective of the zenith angle the same

eigenvalues be obtained. This is due to the fact that the
eigenvectors of the perturbation matrix are also required to
respect symmetry and that the physics of the interaction
requires that for every zenith angle, the same zero-th order
wave function gives the first-order energy correction.
Combining these two effects, it is clear that in all cases the
same Fukui matrix eigenvalues must be found. The f+

− (r,r′;R0)
matrix has as dominant (most positive) eigenvalue 0.9455 with
negative eigenvalues as low as −0.1363. With such large
negative eigenvalues, regions with negative Fukui functions
appear with high probability. Although negative eigenvalues
already appear for systems lacking degenerate states,29,30 the
need to treat degeneracy makes them more significant. As
expected, the existence of two roots in eq 8 implies that the
Fukui matrix f−

+ (r,r′;R0) has different eigenvalues. This is
indeed what is found. The most positive eigenvalue equals
0.9360. The two remaining Fukui matrices also have mutually
different spectra for the Fukui matrix. As a consequence, there
are not two Fukui functions to be considered but four per
model potential (unit point charge or Dirac delta or other
models). Although within one type of Fukui function the
eigenvalue spectrum of the Fukui matrix remains the same for
every R0, this does not apply to the eigenvectors. These must
also obey symmetry and indeed, as expected, the eigenvector
adapts to the location of the point charge perturbation. If, for
example, a positive point charge lies in the xz plane, the entire
response comes from the πx* molecular orbital and the
eigenvector of the Fukui matrix reflects this.
Given the above-described effects, one readily understands

that also the Fukui functions differ significantly depending on
the model of the perturbing operator and of q0 and, in general,
on its position R0. It would be far too lengthy to plot every
possible Fukui function; hence, we limit ourselves largely to a
numerical comparison of the so-called Fukui orbitals ϕi(r).

49

These correspond to the eigenvectors of the Fukui matrix, for
the present purpose expressed in terms of the nonorthogonal
real Gaussian basis functions referred to using Greek symbols.
The Fukui function is the diagonal of the Fukui matrix, such
that it corresponds to

∑ ϕ ϕ=
μ ν

μ μν ν±
±f r r R r F r( , ; ) ( ) ( )0

, (18)

Figure 5. Lowest eigenvalue λmin
(+) of the perturbation matrix for the

chosen grid for a positive Dirac delta operator.

Table 1. Fukui Orbital Coefficients for f±
− (r,r′;R0) for a Number of Positions R0 and Positive and Negative q0 for the

Perturbation Treatment versus the Average Density Approach (For the Latter No R0 or q0 Are Shown, See Text)a

R0 (x,0,z) (0,x,z) (x,y,z)

q0 1 −1 1 −1 1 −1 avg

eigenvalue 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.4744 0.4744
N px(1) −0.3069 0.0000 0.0000 −0.3069 −0.2170 0.2170 0.3026 0.0000
N px(2) −0.4281 0.0000 0.0000 −0.4281 −0.2170 −0.2170 0.4290 0.0000
N px(3) −0.3479 0.0000 0.0000 −0.3479 −0.3027 0.3027 0.3623 0.0000
N py(1) 0.0000 −0.3069 −0.3069 0.0000 −0.3027 −0.3027 0.0000 0.3026
N py(2) 0.0000 −0.4281 −0.4281 0.0000 −0.2460 0.2460 0.0000 0.4290
N py(3) 0.0000 −0.3479 −0.3479 0.0000 −0.2460 −0.2460 0.0000 0.3623
O px(1) 0.2816 0.0000 0.0000 0.2816 0.1991 −0.1991 −0.2702 0.0000
O px(2) 0.3645 0.0000 0.0000 0.3645 0.1991 0.1991 −0.3589 0.0000
O px(3) 0.3196 0.0000 0.0000 0.3196 0.2578 −0.2578 −0.3465 0.0000
O py(1) 0.0000 0.2816 0.2816 0.0000 0.2578 0.2578 0.0000 −0.2702
O py(2) 0.0000 0.3645 0.3645 0.0000 0.2260 −0.2260 0.0000 −0.3589
O py(3) 0.0000 0.3196 0.3196 0.0000 0.2260 0.2260 0.0000 −0.3465

aThe row Eigenvalue gives the largest eigenvalue of the Fukui matrix.
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Note that in eq 18 on the right-hand side, the explicit and
parametric dependencies remain hidden not to overload
notation. Restricting ourselves to just f ±

− (r,r′;R0) using a
point charge model, the dominant eigenvalue/vector pair, the
px and py basis functions and a small set of symmetrically
important positions of R0, we can infer the differences in Fukui
functions. Table 1 illustrates many important points.
Using a set of admittedly special points R0, the first two

columns with numerical data illustrate important physics: if a
positive point charge is placed in the nodal plane of the πy*
orbital (denoted as a point with coordinates (x,0,z)), the point
charge attracts the electron in an orbital pointed toward it,
hence the significant coefficients for the px basis functions. A
negative point charge in the same location drives the electrons
into the πy* orbital such that they escape the repulsion. Similar
findings apply to point charges in a point (0,y,z). Putting a
point charge on a bisecting line (denoted here (x,y,z)) mixes
these extremes to make sure at every possible position R0 all
symmetries are respected. Figure 6 shows the Fukui function f+

−

(r;R0) for a point charge interaction originating from the R0
indicated.

Properties of the Average Density Approximation for
NO: Derivative with Respect to the External Potential.
Using average densities does not lead to different responses as
in the proper treatment based on eq 8. This shows this
approximation to be flawed. Consistent with having only one
“eigenvalue” is that that approach also leads to only one
“eigenvector”. Fundamentally, this is because in the average
density approach, one disregards the importance of the
transition density matrix. An interesting question is whether
there is a significant difference between the two eigenvalues
from a degenerate perturbation treatment versus an average
density treatment. Figure 7 shows, as a function of the Z-
coordinate, the difference between the minimum and maximum
eigenvalue for a unit point charge (note again that the
eigenvalues are independent of the azimuthal angles). The
unique “eigenvalue” from the average density is chosen as

baseline. The differences are obviously significant and not
uniform over all zenith angles.

Properties of the Average Density Approximation for
NO: The Fukui Matrix. Having obtained the above algebraic
insight into the structure of the Fukui matrix (see Table 1), it is
possible to shed more light on the shortcomings of the average
density44−48 approach. Taking the average of the density matrix
(which then leads to the average density) neglects the
transition density matrices and thus is not in line with eq 8.
It also introduces some artificial degenerate eigenpairs in the
Fukui matrix. Indeed, the spectrum has no longer one large
positive eigenvalue for f+

− (r,r′;R0) but has the highest positive
eigenvalues 0.4744 (doubly degenerate), 0.1393 and 0.1350
(doubly degenerate). An average density (matrix) is thus a
rather different and flawed approach because it does not take
into account the undefined nature of the electron density43 and
thus the existence of different roots for eq 8.49 As a logical
consequence the average density approach does not result in
different Fukui matrices for a positive or negative point charge.
Using the average density approach, the Fukui orbitals are

the same irrespective of R0 or q0. This is illustrated in Figure 8.
Figure 8 does not only differ in magnitude from Figure 6 but
has an artificial extra symmetry.
Note that all symmetries are automatically respected in the

correct degenerate perturbation theory approach without the
need for any special symmetry corrections. This means that all
symmetries from the Hamiltonians and wave functions are
automatically present and that no artificial extra symmetry is
introduced nor that some symmetries remain disregarded. The
perturbation matrix and its elements automatically take into
account the correct symmetry provided the initial geometries
and wave function calculations reflect these symmetries
properly, as is the case for the all valence CAS calculations in
this work. For highly symmetrical molecules and in the case of
exact degeneracies, the weighted average approach means that
one considers all possible symmetry equivalent positions of the
perturbation, computes the eigenvectors, and then takes the
average. Taking a random value for the zenith angle and the full
360° span for the azimuthal angle, the average weight of the
first (c11

2 in eq 10) and second state (c12
2 in eq 10) equals 0.5

with the products of the coefficients of both states (c11c12 in eq
10) averaging to exactly zero, independent of the sign of the
unit point charge. In this sense, the average ensemble at no
point corresponds to the solution of the perturbation matrix,
although it equals the average over all values for the azimuthal
angle for a given zenith angle.

Figure 6. Fukui function f+
− (r;R0) originating from a positive unit

point charge located at the point (arrow) indicated.

Figure 7. Minimal λmin
(+) and maximal λmax

(+) eigenvalues (in kcal/mol) of
the perturbation matrix as a function of the z-coordinate (in bohr) of
the unit positive point charge with respect to the energetic response of
a density average (λaverage

(+) , used as baseline to emphasize the
differences).
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We agree with Flores-Moreno48 that atom condensing may
hide some of the problems described in the present paper. In
this sense, they give the right answer but not for the right
reasons. Taking as an example the Mulliken34 atom or atom
plus bond condensed Fukui functions,32,60 one readily under-
stands that through multiplication of the Fukui matrix in terms
of the Gaussian basis functions with the overlap matrix in this
same basis, the effect of the transition density matrices
disappears. This is due to the fact that the basis functions
composing the πx* and πy* orbitals are mutually orthogonal.
This is, however, a consequence of using the Mulliken recipe,
and one must also consider that Mulliken charges do quite
badly at reproducing the electrostatic potential62 and are thus
of limited interest for reactivity prediction. We strongly suggest
to use the correct derivation and to wisely determine whether
atom condensation is advised, as this raises other issues such as
the impact of choosing a specific model for the atom in the
molecule, commutability of operations etc. Moreover, it has
been shown before that one can now also treat the entire Fukui
function as a descriptor in, for example, 3-D QSAR.63

All these results clearly indicate that the Fukui matrix and
Fukui function can be extended to systems with degenerate
states but that they will differ as they depend in a parametric
fashion on R0 and the sign of q0 for the case considered here.
Still other cases, differing in the nature of the perturbation
(such as a set of point charges, or smoother charge distributions
for example61), will result in still other Fukui matrices and
Fukui functions. Choosing a good representative perturbing
potential to derive the Fukui matrix and function from for cases
with degenerate states will always require thorough knowledge
of the nature of the interaction (e.g., spatial arrangement). This
is a fundamental consequence of the need to use degenerate
perturbation theory and is inescapable. For nondegenerate
states this is not so as the functional derivatives are
straightforward. Nevertheless, the nondegenerate case can be
expressed in exactly the same way as presently described with
the understanding that the perturbation matrix has dimension 1
× 1.

In the above example, the degeneracy is a consequence of
exact symmetry, which always entails some constraints. As was
previously shown for the electrostatic potential,49 quasi-
degeneracies may lead to still larger effects, and it is therefore
suggested to always use the degenerate theory in both cases of
degeneracies and quasi-degeneracies.

V. CONCLUSIONS

The Fukui function and, by extension, the Fukui matrix for
systems containing degeneracies depend in a parametric sense
on the nature of the perturbation considered for the calculation
of the derivative of the energy with respect to the external
potential. Using a perturbation theory approach, it is shown
how the density matrix derived from the lowest eigenvalue of
the perturbation matrix reflects the effects of changing the
nature of the perturbation. This is illustrated using the molecule
NO, which has a degenerate ground state in the neutral radical.
It is further shown that the Fukui matrix loses its special

spectral properties (such as the coupling of eigenvalues as −x
and +x) even when the states are obtained using Hartree−Fock
level calculations, where the Slater determinant for each state
separately results in an idempotent density matrix. This is a
clear manifestation of the need to always invoke all degenerate
states. It is furthermore shown that the Fukui function can
depend significantly on the nature of the perturbation by
choosing point charge perturbations with unit charges of
different sign or considering a Dirac delta operator as
perturbing potential and changing the location of the
perturbing charge or potential.
All this shows that for systems where degenerate states are

present, one cannot use a single Fukui function for a given
process of electron removal or attachment. One must model
the perturbing potential and compute the corresponding Fukui
function. A simple average over the states does not suffice
because the Fukui function, such as other r-dependent
indicators in conceptual DFT, dependsoften dramatically
and even discontinuouslyon the type and sign of the
perturbing potential used to mimic an attacking reagent. The
dependence of reactivity indicators on the nature of the
reaction-partner is inconvenient but also potentially elucidating.
For example, molecules with degenerate states in the N, N ± 1
electron systems have an increased ability to adapt to their
reaction partner; they should therefore be able to react more
vigorously, with a larger range of reaction partners. This also
stresses that the present work is not merely an academic
exercise. As more and more often the reactivity of molecules
containing transition metals is studied, proper treatment of
degenerate or quasi-degenerate states will become more
important. The same is true for radical species but even for
molecules such as benzene where the requirement to keep the
molecular geometry fixed introduces degeneracies in the
ionized species. Moreover, it is always very important to
make theories generally and widely applicable and not
constrained to special cases. In this sense, the generalization
of reactivity descriptors to degenerate systems is of prime
interest. Our work succeeds in this and, as expected, the more
common expressions for nondegenerate cases appear as special
cases of the more general theory.
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