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Abstract. Divorced individuals face complex situations when they have children with different ex-partners,
or even more, when their new partners have children of their own. In such cases, and when kids spend
every other weekend with each parent, a practical problem emerges: is it possible to have such a custody
arrangement that every couple has either all of the kids together or no kids at all? We show that in general,
it is not possible, but that the number of couples that do can be maximized. The problem turns out to be
equivalent to finding the ground state of a spin glass system, which is known to be equivalent to what is
called a weighted max-cut problem in graph theory, and hence it is NP-complete.

1 Introduction

The use of techniques borrowed from mathematics and
physics in tackling problems of social sciences has a long
history. One particularly fruitful field of study has been
the analysis of social networks [1,2]. There, individuals
are treated as vertices of a complex network. There is
an interesting family of such problems, where the prop-
erties of a society are related to the individual interac-
tions of the individuals in the same way thermodynam-
ics is related to microscopic pairwise interactions through
statistical mechanics [3]. This point of view has been used
in many recent applications: evolutionary games [4], so-
cial contagion [5], conflict resolution [6], among others. In
some cases, one may study the dynamics of a network by
minimizing the analog of an energy functional, that is,
finding the ground state of a physical system. This tech-
nique has been used, for instance, in the study of social
balance [7,8], where the energy functional turns out to be
the Hamiltonian of an Ising spin system. In these mod-
els, the links between individuals may be of two kinds,
“friends” or “foes”. This family of systems has been exten-
sively studied until very recently [9–13]. They are called
signed networks, and the minimum of the Hamiltonian
measures the degree of tension produced by rivalries.

In this article we explore a similar kind of network,
for which we will also minimize a spin glass Hamiltonian.
The energy to be minimized will measure the degree of un-
happiness of the whole network, and the minimization will
proceed by choosing the orientation of 1/2-spin units with
some given long range interactions. The precise definition
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of “unhappiness” will be given in Sections 2 and 3 be-
low. The methods used are very similar to the ones used
in balance. The original problem, however, is quite differ-
ent, and its relation with spin glasses and social balance
is far from apparent. It has to do with the conformity
of a network of divorced people in relation with the cus-
tody arrangement they agreed for being with their chil-
dren on weekends. These agreements may be a source of
discontent, specially nowadays, when it is common to have
kids with two or more partners (this phenomenon, called
multiple-partner fertility in the scientific literature, gener-
ates many other issues [14]). In those cases, it is usual to
have a custody arrangement such that each parent enjoys
the presence of the kids every other weekend. However,
several inconveniences usually emerge: (i) not all the sib-
lings are together the same weekend (when the parent has
children with various partners); (ii) the parent is engaged
in a new relationship with someone who also has kids, but
they cannot get all the kids together on the same weekend
(along with a romantic one every other weekend). This is-
sue may impose frustration and unhappiness in a quite
large proportion of the population.

Unfortunately, the complex network of ex-wives and
ex-husbands people are waving makes difficult to reach
an arrangement that will make everybody happy. In this
note, we explain why, along with the conditions that may
guarantee a happy solution. Moreover, in the cases where
a perfect solution may not be given, we study the optimal
arrangement, that would maximize the happiness of the
group. It turns out, quite surprisingly, that this problem
is equivalent to find the ground state of a particular spin
glass system [15].
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2 Mathematical setting

In order to simplify the computations, we will make use
of some assumptions that do not appreciably change our
conclusions. First, we will assume only women-men cou-
ples. We will see that this makes our model much easier.
In practice we may also justify it, because the propor-
tion of children of divorced gay and lesbian couples is cur-
rently quite small, and therefore the assumption is a good
approximation.

The domain of our problem is all the people in a popu-
lation satisfying at least one of the following requirements:

– Has children with two or more ex-partners.
– Has children with one or more ex-partners, and cur-

rently married with a new partner who has kids from
other relation.

Note that the world “marriage” is an abuse of notation
here. It is only a convenient way of referring to a cou-
ple living together and with the desire of having all their
kids together every other weekend. Also note that the peo-
ple who has children with only one ex-partner and is not
married will not be affected by the problems listed in the
introduction. They should always enjoy the presence of
their kids together, because they only have one person
(their ex-partner) to negotiate with (we assume that she
or he should also want all siblings together). Therefore,
we do not take them into account. Same for people with
kids from only one ex-partner and married with somebody
with no kids or just common kids.

We may now define a custody arrangement state
(CAS) as an oriented graph, like the one depicted in Fig-
ure 1. Black nodes are single males, white nodes are single
females and grey nodes represent married couples. A con-
nection between a black and a white node means that
both individuals have common children but are not a cou-
ple anymore. Grey nodes may be connected to black or
white ones. In the first case it means that the female in
the couple had kids with the individual represented by
the black node; in the second, the male in that couple
had kids with the female represented by the white node.
Note that lines between grey nodes appear to be ill de-
fined. However, this is not important for the purpose of
our study. No matter who in the couple shares children
with the corresponding individual of the other couple, he
(she) would want to have them all together in the same
weekend, and that is the only variable of happiness in this
study (note that grey nodes could be connected with two
lines in case both members of one couple have kids with
the corresponding member of the other). The orientation
(arrows) in the edges of the graph points towards the place
the kids are going to spend any particular weekend. The
CAS for the next weekend will have all the lines inverted
(inverse orientation). An example is shown in Figure 1.
We see that every individual and couple are happy with
this CAS, except for female labeled 1. Her kids will not
share weekends.

We would like to make a comment now about a tech-
nical point. The man labeled 3 is not part of the domain
of our problem as it was defined at the beginning of this
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Fig. 1. A custody arrangement state, CAS. We have labeled
nodes 1 and 2 to clarify our definitions. The female 1 has kids
with two men. One is single and has children with 4 women.
The other is married; the male of couple labeled 2. This CAS
seems to be a source of discontent in female labeled 1, who has
her kids visiting in different weekends.

section. In fact, he is single and has kids with one ex-wife
only. This means that he will be happy with any arrange-
ment. However, we keep it in the graph, because he is the
reason his ex-wife is part of the domain. In that sense he
may be understood as a “boundary” node of the graph.

Is it possible to find a CAS that brings happiness to
every individual in the domain? The answer is not in gen-
eral. Our goal is to find the best custody arrangement,
that is, the CAS that minimizes the amount of unhappy
people.

It is clear that the CAS of the whole planet must have
disconnected pieces, because not every pair of individu-
als is connected by a series of ex-partnership links. We
will therefore, without any loss of generality, consider con-
nected graphs only. Figure 1 is an example of a connected
CAS.

3 Happy and convenient custody
arrangement states

Let us call a happy CAS one in which its orientations
make everybody happy. This means that at each node the
arrows either all flow in or all flow out. The conditions for
existence of happy CAS are easily found. It is a well-known
fact of graph theory [16] that this kind of graphs, called
bipartite graphs, must have the following property: they
may not have loops of odd length. It is easy to see why.
Consider a happy CAS. The vertices in the graph may
be divided in two groups: those which are only sources
of arrows, and those which are only sinks of arrows. If
one starts a loop from a sink, the next step takes us to a
source, then to a sink, etc. When one closes the loop, back
in the starting sink, it is clear that one must have made
an even number of steps. The reciprocal is true as well,
namely, any graph with no loops of odd length is bipar-
tite [16]. In general, however, the CAS will contain loops
of odd length, as we can see, for instance, in Figure 1,
where the woman 1 and the couple 2 are part of a loop
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1 2

Fig. 2. The grey nodes in Figure 1 have been disentangled
(the couples that were part of the grey nodes are grouped in
dotted lines). We end up with two disconnected graphs (we do
not need to consider graphs of one individual). The restricted
happy CAS has, therefore, 2 independent solutions.

of length 3, which shows that there is no change of ori-
entations that may transform this CAS into a happy one
(although we may transfer the unhappiness from woman
1 to any member of the loop). The problem people in this
loop is facing is analog to the frustration phenomenon in
an Ising antiferromagnet z. Note that if the graph is bi-
partite, that is, if there exists a set of orientations that
makes the CAS happy, then it is unique up to the reversal
of all the arrows (which is the CAS happening the next
weekend). This is obvious, because if the graph is con-
nected, then after choosing the orientation of one edge,
all the others would be immediately defined.

Unfortunately, the graph will not always be bipartite.
However, there is a second best solution we may always
construct. Not a happy CAS, but one we may call a “con-
venient CAS”. A convenient CAS is one in which every
individual enjoys the presence of all of her/his kids to-
gether. In this case, some couples may not be happy. Not
all of their kids will enjoy every weekend together, but at
least siblings will do.

To show that, note that in this case grey nodes are no
longer necessary. We cut the couples in their individual
members (this means that, in contradistinction with the
previous case, now we need to know exactly who are the
parents in a line between two gray nodes). Each node is
now an individual female or male trying to have its ar-
rows all flowing in or all flowing out. The procedure will,
in general, leave a set of disconnected graphs. Now, how-
ever, the graphs are all bipartite, because the edges always
connect black nodes with white nodes, so that any loop
must be of even length. Therefore, there exists a unique
solution for each disconnected graph (up to reversal of all
arrows). Figure 2 shows a solution for the example in Fig-
ure 1. Note that in this case, after cutting couples, there
are two disconnected graphs left. There are, therefore, four
different solutions that arise when inverting orientations
of each disconnected piece. From those only two are really
different solutions. The others will be the global change of
orientation of these two.

In general, once we disentangle the grey nodes, the
graph may end up in a set of N disconnected graphs,
implying the existence of 2N−1 different convenient CAS
solutions.

Fig. 3. The graph of graphs. Each circle in this graph rep-
resents one connected subgraph in a convenient CAS. The
orientations have been all removed. The lines between circles
represent the presence of couples between the subgraphs. The
weight of each line is the number of couples between these two
subgraphs.

4 Bringing the couples back

We now bring the married couples back into the problem.
Note that every connected piece of our convenient CAS
has every male or female on it having the same kind of flow
(either in or out). Let us call “positively oriented” a con-
nected subgraph in which the flow of arrows in women is
outwards, and “negatively oriented” those in which women
have their arrow flow inwards. A key observation is that a
marriage between individuals belonging to two graphs of
the same orientation will be always unhappy. This is be-
cause the woman in one graph and the man in the other
will have their arrows in opposite directions: they will not
have all of their kids together. As a direct consequence, we
see that couples belonging to the same connected piece will
never be happy. There is nothing we can do to avoid that.

We may immediately read where the source of com-
plete happiness resides: every couple must be selected from
disconnected pieces having opposite orientations. Having
all this in mind we may reformulate the problem of finding
the optimal arrow orientation for a CAS. Start by identify-
ing all the disconnected pieces that emerge when married
couples (grey vertices) are disentangled in their two inde-
pendent members. Let us build a graph of graphs, in which
each node represents each of the connected subgraphs (see
Fig. 3 for an example). Each edge has a weight, represent-
ing the number of married couples with one member from
each of the corresponding vertices. The problem now is to
choose orientations for each subgraph, so that the maxi-
mum number of couples is happy. As before, if all loops
have even length, then the graph of graphs is bipartite,
and we can choose the orientations to get a happy CAS.
If not, the problem reduces to one which is well-known
in physics: to find the ground state of a spin glass sys-
tem. This problem, in turn, is equivalent to the so-called
weighted max-cut problem in graph theory [17], which we
will discuss in the next section.

Let us numerate the subgraphs i = 1, 2, . . . , N . We
want to find the happiest of the 2N−1 different convenient
CAS solutions. Call si the orientation of the ith subgraph,
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which can only have two values, say +1 or −1. The couples
in a weighted edge are happy if the orientations of their
vertices are opposite, and unhappy if they are the same.
Call Jij the number of couples between node i and j. We
may then find a happiness function

H = −
N∑

i>j

Jijsisj . (1)

Since couples are given, weights Jij are fixed, whereas each
CAS corresponds to a certain configuration for {si}. Then,
the optimal solution can be found by optimizing H with
respect to the set of configurations {si}.

Note that we have removed from the computation the
case where both couples are in the same node, because
there is nothing we can do with them. They are going to
subtract a constant value of happiness to every CAS in the
family we are considering. Also note what this function is
doing: it adds up the weights of all the edges between
two oppositely oriented vertices, and subtracts the rest.
One may argue that this is not quite the right function
to maximize, for one should simply count “happy” edges.
Actually both ways are equivalent: if F is the modified
happiness function, where only “happy” edges are taken
into account in the sum, then it is straightforward to show
that [17]

F = −
N∑

i>j opposite

Jijsisj

=
1
2

⎧
⎨

⎩−
N∑

i>j

Jijsisj +
N∑

i>j

Jij

⎫
⎬

⎭ =
1
2
H + C, (2)

where C is a constant, having the same value for all CAS
consistent with the weighted graph. Therefore, maximiza-
tion of F or H inside this family of CAS is equivalent.

It is now clear that we need only change the sign of H
to see that maximizing the happiness function is exactly
equivalent to minimizing the energy of a spin glass with N
Ising 1/2-spins, si, and long range interactions Jij between
them.

5 Weighted max-cut problem and custody
arrangements

As discussed in the previous section, the equivalence be-
tween the custody arrangement problem and the spin glass
ground state problem shows that it is in turn equiva-
lent to the max-cut problem, [17] which is well-known to
mathematicians in graph theory.

The max-cut problem consists in finding a cut of a
given graph, that is, a continuous line that cuts it through
it edges, so that the sum of its weights is maximal. Thus,
the cut divides the vertices in two sets, which in our case
correspond to the two orientations a disconnected sub-
graph may have. Therefore, the maximal cut maximizes
happiness, because the cut lines correspond to the ones
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Fig. 4. A simple example of a graph depicting our problem.
In (a) the problem is presented without orientations. In (b)
we display the CAS that maximizes happiness. This solution
is computed in the text using the methods described in the
preceding sections. There is only one couple, namely 11, that
cannot enjoy the presence of all children every other weekend.

connecting vertices of opposite orientation, and therefore,
to happy arrangements for couples.

The problem is well-known to be NP-complete [18],
and there are many algorithms and approximate methods
to find either local or global solutions, such as GC(max),
Breakout Local Search (BLS), MCFM [19–23]. However,
it is interesting to notice that, in spite of the computa-
tional complexity of the general problem, for some graphs
the max-cut problem can be polynomially solvable. It is
the case of planar graphs, that is, graphs where no edges
intersect. Figure 3 shows a planar graph in fact, and
thus this particular problem should be solvable in poly-
nomial time, and several algorithms are available in that
situation [24–26].

6 An example

To better understand the procedure, we now give a simple
example. The graph in Figure 4a is a possible network of
ex-partners and couples. There are 19 nodes. Four of them
represent single males (10, 12, 18, 19), three single females
(8, 9, 17) while the rest represents married couples.

There are several loops of odd lengths (for instance,
11-14-17-16-1-2-4), and therefore there cannot be a happy
CAS solution. We therefore proceed by disentangling the
couples in the search of a convenient CAS. For doing so,
we need information not present in the graph of Figure 4,
that is, the precise parents of children between connected
gray nodes. An example of a disentangled graph giving
rise to it is depicted in Figure 5. The dotted lines connect
couples, and the gray clouds group the connected pieces,
which are precisely the nodes of the graph of graphs in
Figure 3.

The problem then now reduces to find a max-cut so-
lution of that weighted graph. In other words, we must
find orientations of each node so that the happiness func-
tion (1) is maximal. The 6 nodes of the graph imply
25 = 32 different possibilities. In this simple case we may
look at them all and find the solution by inspection. Two
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Fig. 5. The couples (grey nodes) of Figure 4a are broken in
this graph. Both individuals are numbered with the same num-
ber and connected by a dotted line. The connected subgraphs
are grouped in grey clouds. In this way, the graphs of graphs
described in Section 4 emerges. It corresponds precisely to the
one depicted in Figure 3.

Fig. 6. Two possible cuts (or orientation assignements) of the
graph of graphs of Figure 3 are shown. The happiness function
F is maximal for the second one, (b). Black nodes represent
positively oriented subgraphs, while white nodes represent neg-
atively oriented subgraphs.

of these cuts are shown in Figure 6. Positively oriented
subgraphs are filled black, while negatively oriented are
filled white. The second one of these graphs, with F = 11
corresponds to the maximal solution. This solution is the
one displayed in Figure 4b. One sees that only one cou-
ple is going to be unhappy with the arrangement. It is
the one connecting two black subgraphs in Figure 6b, and
labeled 11 in Figure 4b. We may corroborate however,
by looking at Figure 5, that in this solution siblings will
always be together, as they should.

7 Summary

In this note we considered the problem of custody arrange-
ments between divorced couples, which very often state
that children spend every other weekend with each parent.
A graph model for the configurations of custody arrange-
ments for divorced couples with children is presented. In
the graph, nodes represent married couples and individu-
als, and a link between two individuals shows that there

are kids in common. Links are oriented in the direction
of the parent enjoying the company of his kids on a given
weekend. The resulting oriented graph is called a CAS
(Custody Arrangement State). If an individual enjoys the
presence of all of her/his kids together every other week-
end we call her/him a happy individual. The same for
couples having all of their kids together. Hence, in the
graphical representation, a happy node (males, females or
married couples) is one in which its edges either all flow
in or all flow out of it. A happy CAS is one in which
all nodes are happy. One may choose orientations of the
edges such that the CAS gets happy if every loop in the
graph has an even number of links. This is not always
the case. However, we have shown that even for unhappy
CAS, a “convenient” state may be found, where all in-
dividuals have their respective children with them every
other weekend, but some couples may not have all their
children together.

When happy CAS exists it is unique up to reversal
of overall orientation. Convenient CAS, however, are not
unique. One should choose between all of them for the one
where the number of happy couples is maximized. We have
shown that this is equivalent to the problem of finding the
ground state of an Ising model for a spin-glass. In turn, it
is known that this amounts to solve a weighted max-cut
problem in graph theory.

It would be interesting to estimate the “unhappiness”,
of an actual society, as defined in our paper, and apply
the algorithm to it. To get an estimation of the size of the
problem we take some statistics from the literature and
feed a simple simulation using them. The details of the
simulation will be given elsewhere. According to [27], the
prevalence of multiple partner fertility in women in the
United States is 22% among mothers aged 41–49 (data
from 2006). In that same paper it is found that 16% of
women in this age range have no children. Now, according
to [28], the prevalence of multiple partner fertility in fa-
thers in the United States is 17% (data from 2002). At this
stage we are only interested in a coarse estimation, there-
fore we run a random graph simulation with a group of
10,000 individuals, assuming that 16% of the women have
no kids and that 20% of both men and women have kids
with more than one partner. We further assume that mul-
tiple partner fertility in women is always with two partners
(most of them are, so this is a reasonable simplification;
an artifact in the algorithm makes it possible for men to
have kids with more than two partners with a small prob-
ability). We assume that 90% of people are in a relation
and that there is 85% of chance that this relation is with
one of the partners the individual has children with. We
note that in these circumstances, most of the connected
pieces of the graph have a small number of nodes (and
all of them less than 10). The corresponding graph of
graphs is disconnected and the probability of ending up
having loops is quite small. This would mean that, for a
typical group of people inside the U.S., a happy solution
should be possible. However, if one considers some specific
groups, this is not necessarily true. When the chance of
multiple partner fertility gets bigger than 30%, loops begin
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to become a common property of the graph of graphs. Ac-
tually, these numbers are not uncommon in some ethnic or
socio-economic populations, as one may see, for instance,
in reference [28]. Of course, we have done many simplifying
assumptions, but our preliminary numerical experiments
suggest that unhappiness, as defined here, may be a rele-
vant problem if population is small (closed communities,
small towns, etc.) or if the prevalence of multiple partner
fertility gets bigger. Also, for big populations, we would
expect that deviations will cause a considerable number of
big networks. We plan to investigate in detail these issues
in the future.

Of course, in real life, many obstructions not consid-
ered in this note, may emerge. Let us see some examples.
When gay and lesbian couples are included, even the con-
nected subgraphs may have closed loops with odd length.
In this case, we must start by maximizing happiness on
each subgraph. This may be done, again, by mapping it
into a spin glass model. Now, all the edges will be of the
same weight, and therefore the interaction between spins
is either zero or one. Another real life problem emerges
when there are obstructions for some individuals on the
weekend they may be with the kids (someone that, for
instance, must work every other weekend). In the mag-
netic analog this represents a spin whose orientation is
fixed. In that case, again, we will be forced to maximize
happiness at each subgraph, with given constraints. This
process may end up fixing the orientation of the entire
subgraph.

Other difficulties include cases where, for instance, an
individual would not prioritize, as we do here, to have
siblings together, and would choose to have one of her/his
kids with the kids of her/his spouse instead. Also we may
face the fact that these graphs are not static. New couples
are constantly forming, while others disappear and new
kids are born. Finally, one may wonder that, even if a
happy solution exists for our own custody arrangement
network, it would be impossible in practice to organize all
the people involved.

We think that these problems are an important source
of stress in modern life, and it is important and interesting
to address them in the future.

We would like to thank José Aliste, Natalia Mackenzie, Iván
Rapaport, Cristóbal Rojas and José Zamora for valuable dis-
cussions. VM thanks the financial support of Fondecyt under
Grant No. 1121144.
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