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ABSTRACT

We study the wave–particle interaction and the evolution of electromagnetic waves propagating through a solar-
wind-like plasma composed of cold electrons, isotropic protons, and a small portion of drifting anisotropic He+2

(T⊥α = 6 T‖α) and O+6 (T⊥O = 11 T‖O ) ions as suggested in Gomberoff & Valdivia and Gomberoff et al., using
two approaches. First, we use quasilinear kinetic theory to study the energy transfer between waves and particles,
with the subsequent acceleration and heating of ions. Second, 1.5 D (one spatial dimension and three dimensions
in velocity space) hybrid numerical simulations are performed to investigate the fully nonlinear evolution of this
wave–particle interaction. Numerical results of both approaches show that the temperatures of all species evolve
anisotropically, consistent with the time-dependent wave-spectrum energy. In a cascade effect, we observe the
emergence of modes at frequencies higher than those initially considered, peaking at values close to the resonance
frequencies of O+6 ions (ω ∼ ΩcO) and He+2 ions (ω ∼ Ωcα), being the peak due to O+6 ions about three times
bigger than the peak associated with He+2 ions. Both the heating of the plasma and the energy cascade were
more efficient in the nonlinear analysis than in the quasilinear one. These results suggest that this energy cascade
mechanism may participate in the acceleration and heating of the solar wind plasma close to the Sun during fast
streams associated with coronal holes.
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1. INTRODUCTION

The problem of the acceleration and heating of minor ions in
the solar wind has been an interesting topic that has received
special attention during the last few decades, especially related
to the so-called fast solar wind (Axford & McKenzie 1992,
1996). Recent observations and theoretical results seem to indi-
cate that most of the acceleration process occurs within a few
solar radii from the Sun and that the main mechanism is due to
Alfvén waves (Kohl et al. 1998; Cranmer et al. 1999a, 1999b;
Esser et al. 1999; Tu & Marsch 1999; Marsch 1998; Hu & Hab-
bal 1999; Cranmer 2002), probably through the resonant ab-
sorption of ion-cyclotron waves (Cranmer 2002; Isenberg 2001;
Hollweg & Isenberg 2002; Kasper et al. 2013; Moya et al. 2013).
However, the detailed processes for the energy transfer between
waves and different particle species are still an open question.

Gomberoff & Valdivia (2002, 2003) and Gomberoff et al.
(2004) have shown that the presence of heavy ions (for exam-
ple, He+2, O+5, and Mg+9; Esser et al. 1999; Kohl et al. 1999)
with thermal anisotropy and drift velocities, with respect to the
proton stream, are capable of generating ion-cyclotron waves
beyond their respective gyrofrequencies. In a cascade-type ef-
fect (Chandran 2008; Luo & Melrose 2007), these waves can
heat and accelerate less massive ions, which in turn may gen-
erate higher frequency instabilities and finally accelerate and
heat protons. More recently, Moya et al. (2012), using quasi-
linear theory (Davidson & Ogden 1975; Krall & Trivelpiece
1986; Alexandrov et al. 1984; Dusenbery & Hollweg 1981;
Yoon 1992; Marsch & Tu 2001; Yoon et al. 2003; Isenberg
& Vasquez 2007) and hybrid simulations (Gary et al. 1997,
2000, 2001, 2003; Daughton et al. 1999; Ofman et al. 2001,
2011; Araneda et al. 2002; Ofman & Viñas 2007), studied the

nonlinear wave–particle interaction between an electron–proton
plasma and circularly polarized electromagnetic waves, prop-
agating parallel along the magnetic field, through nonlinear,
quasilinear theoretical models and hybrid computational simu-
lations approaches. Numerical results show that both methods
qualitatively agree in the evolution of the macroscopic plasma
parameters.

Also, in Moya et al. (2011) it has been shown that the existence
of a minor fraction of He+2 ions, with thermal anisotropy and
drifting, with respect to a proton background in the direction
of an ambient magnetic field, triggers an energy cascade from
low to high modes, peaking at a particular frequency close to
the ion resonance. All of these results seem to suggest that this
energy cascade mechanism may participate in the acceleration
and heating of the solar wind plasma close to the Sun. In
this paper, we will study the relevance of this process for a
thermal plasma composed of three ions species, where the
predicted cascade should become more pronounced (Gomberoff
& Valdivia 2003). Thus, to improve our study of the energy
cascade process mentioned above, in this work we extend the
nonlinear analysis, done for protons (Moya et al. 2012) and
protons and alpha particles (Moya et al. 2011), to include O+6

ions as a third ion species.
First, we use the quasilinear theory for a thermal plasma

that requires numerically solving the exact dispersion relation
(Gomberoff et al. 2004), to have a better understanding of the
energy cascade in which there is a transfer of wave energy from
longer to shorter wave modes, with the subsequent acceleration
of ions with an increasing q/m (charge over mass) ratio. Second,
we perform one-dimensional hybrid simulations of the same
system, in order to investigate the long term evolution of the full
nonlinear wave–particle interaction in a three species cascade
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process. All of these effects (energy cascade and nonlinear
wave–particle interaction) are included in the study to show how
the shape of the ion velocity distribution functions is controlled
and regulated in the solar wind.

Further studies of the solar wind turbulence in the neighbor-
hood of the break of the inertial range spectra as a function of
wave vector k, with components parallel (k‖) and perpendicular
(k⊥) to the magnetic field, revealed that the fluctuation spec-
trum is anisotropic and that the index of the power law distribu-
tion sometimes is greater at quasi-perpendicular wave vectors
(k⊥ � k‖) (Matthaeus et al. 1990; Horbury et al. 2005; Dasso
et al. 2005) than at quasi-parallel propagation (k‖ � k⊥). How-
ever, at very long wavelengths (smaller |k|), there is still enough
energy available for the quasi-parallel propagating waves to
dominate the oblique wave modes (where k‖ � k⊥) (Matthaeus
et al. 1990, 1996a, 1996b; Leamon et al. 2000; Smith et al. 2001,
2006; Horbury et al. 2005, 2008; Bale et al. 2005, 2009), so that
we have focused our research on this part of the wave spectrum
range.

This article is organized as follows. In Section 2, we show
the basic equations of quasilinear theory for the evolution of
the macroscopic parameters of the distribution function, and we
present numerical results for the case of circularly polarized
electromagnetic waves propagating parallel to an ambient mag-
netic field, through a plasma composed of electrons, protons, and
a minor percentage of drifting He+2 and O+6 ions with thermal
anisotropy. In Section 3, we present the equations and results for
the same problem as in Section 2, but using one-dimensional
hybrid simulations. Finally, in Section 4, we compare the re-
sults of previous sections and summarize the conclusions of this
article.

2. QUASILINEAR APPROXIMATION

2.1. Dispersion Relation

We consider a plasma in an external magnetic field B0 =
B0ẑ, composed of electrons and several ions species drifting
with respect to a fixed frame (the “Lab” frame) along the
background magnetic field. Each species, labeled with index
μ, has a drift velocity Vμ, mass mμ, charge state zμ, and density
nμ. To keep neutrality (zero net charge) and quasineutrality
(current-free system), in our analysis we have subgroups of
electrons canceling each ion species. Therefore, density and
drift speed for each electron subgroup depends on the density
and drift speed of the corresponding ion species.

The normalized dispersion relation for ion-cyclotron waves
of frequency ωk and wavenumber k, propagating parallel to the
external magnetic field, assuming a bi-Maxwellian distribution
function for each ion species, is (Gomberoff & Elgueta 1991;
Astudillo 1996; Gomberoff & Valdivia 2002, 2003; Gomberoff
et al. 2004; Moya et al. 2011)

y2 =
∑

μ

zμMμημ

×
[
Aμ +

[(Aμ + 1)(xy ± Mμ − yUμ) ∓ Mμ]

yδμ‖
Z(ϕμ)

]
, (1)

where the sign + (−) corresponds to right-handed (left-handed)
polarization. In Equation (1), xy = ωk/Ωp and y = ck/ωpp

(where Ωp = eB0/mpc is the proton cyclotron frequency,
ωpp = (4πnpe2/mp)1/2 is the proton plasma frequency, e is
the proton charge, and c is the speed of light); Uμ = Vμ/VAp is

Table 1
Initial Normalized Plasma Parametersa

Species ημ Uμ δ2
‖μ Aμ

H+ 1 0 0.001 0
He+2 5 × 10−2 0.13 0.004 5
O+6 7 × 10−4 0.24 0.016 10

Note. Quasilinear and hybrid simulations.

the normalized drift speed, where VAp = B0/
√

4πnpmp is the
proton Alfvén velocity; Mμ = zμmp/mμ, and ημ = nμ/np. The
plasma dispersion function (Fried & Conte 1961) Z is defined as

Z(ζ ) = 1√
π

∫ ∞

−∞

e−t2

t − ζ
dt,

where ϕμ = (xy ± Mμ − yUμ)/yδμ‖, δμj = vth,μ,j /VAp, where
vth,μ,j = (2KBTμj/mμ)1/2 is the parallel (j =‖) and perpendic-
ular (j =⊥) thermal velocity of the μth species, and KB is the
Boltzmann constant. Finally, we define Aμ = Tμ⊥/Tμ‖ − 1 =
δ2
μ⊥/δ2

μ‖ − 1 as the thermal anisotropy for the μth species.
Due to their small mass, we shall assume electrons as cold.

Therefore, for electrons, the argument of the Z function is much
larger than one and we approximate Z(ϕe) ∼= −1/ϕe. Thus, for
a solar-wind-like plasma composed of protons (Mp = zp = 1);
alpha particles (Mα ∼ 0.5, zα = 2); O+6 ions (MO ∼ 0.375,
zO = 6); and cold electrons, the warm dispersion relation can
be written as

y2 =
∑

i

ziMiηi

[
Ai ± xy − yUi

Mi

+
[(Ai + 1)(xy ± Mi − yUi) ∓ Mi]

yδi‖
Z(ϕi)

]
, (2)

where the sum in i is now over all ion species (i = p , α ,O).
In Equations (1) and (2) we have considered low frequencies,
such that we can neglect the displacement current, and have
accounted for each subgroup of electrons.

We consider typical solar wind parameters such as ηα ∼ 0.05
(Kamide & Chian 2007; Aschwanden 2006) for He+2 ions,
and ηO ∼ 7 × 10−4 (von Steiger et al. 2010) for O+6 ions.
Remote sensing observations of the solar corona have shown
that there is a preferential perpendicular heating of ion species,
with anisotropy Ap ∼ 4 for protons and AO ∼ 10 for O+5 ions,
and also a preferential acceleration of heavy ions with respect
to the protons (see, for example, Cranmer 2009 and references
therein). Typical ions speeds at about 3 solar radii from the Sun
are UO ∼ 500 km s−1 for O+5 ions, and Up ∼ 300 km s−1

for protons, so that the drift velocity between heavy ions and
protons are of the order of a fraction of the local Alfvén speed
VAp ∼ 700 km s−1 (Cranmer 2009). Thus, in order to set up a
situation similar as in collisionless coronal holes fast streams,
we select the plasma parameters shown in Table 1 as the initial
condition.

Instead of considering O+5 ions that have been measured by
remote sensing near the Sun (Kohl et al. 1998, 1999; Esser et al.
1999; Cranmer et al. 1999a, 1999b; Cranmer 2002), we use O+6

ions because they are about 100 times more abundant (Cranmer
2009). Also, since oxygen charge states freeze-in close to the
Sun, where the wind is collisionless, the abundance of O+6 ions
observed in situ between 1.3 and 5.4 AU (von Steiger et al.
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Figure 1. Numerical solutions of the linear dispersion relation (Equation (2)).
Solid, dashed, and dotted curves correspond to the three principal branches
for drift speeds, δ‖ and anisotropies given by Table 1. Top: normalized real
frequencies x as a function of normalized wavenumber y. Bottom: normalized
growth (damping) rates γ as a function of normalized wavenumber y for the
corresponding branches in top panel.

2010) should not be different to the one found closer to the
Sun in fast streams associated with coronal holes. Therefore,
in order to more clearly illustrate the cascading effect, we are
assuming that the O+6 ions, as the O+5 ions, also have a large
thermal anisotropy and differential streaming which, to the best
of our knowledge, have not yet been measured.

With regards to the alpha particles, in situ observations of
fast wind streams protons and He+2 at 0.29 AU show that He+2

ions exhibit thermal anisotropies, being the anisotropy larger for
measurements corresponding to the perihelion of the spacecraft
(Marsch et al. 1982a, 1982b; Marsch 2006; Cranmer et al.
2009). The same kind of measurements show a preferential
acceleration of the alpha particles in fast streams associated
with coronal holes. Thus, it is reasonable to consider that
the same ion populations may have similar (or even larger)
thermal anisotropies and bulk velocities. Thereby, we are also
assuming that He+2 ions also have a large thermal anisotropy and
differential streaming with respect to the proton background,
although, to the best of our knowledge, this has not yet been
measured. In the near future, missions like NASA’s Solar Probe+
and ESA’s Solar Orbiter will offer measurements inside this
region that will likely improve our understanding of solar wind
acceleration and will help us to further validate our model.

In this work, we intend to study the acceleration and heating
of ions through the time evolution of Uμ, δμ‖, and δμ⊥. In
order to solve the warm dispersion relation (Equation (2)), we
define xy = x + iγ , where x is the real frequency of the mode
and γ its growth rate, and solve for x and γ . The numerical
solutions for the parameters chosen in Table 1 are shown in
Figure 1. Let us note that none of the ion species satisfy the
semi-cold approximation, and we are required to solve the
problem for a thermal plasma using the Z function, which is
an improvement from previous analysis (Moya et al. 2011,
2012). In Figure 1 (top), the solid, dashed, and dotted lines
correspond to the three principal branches, namely, the O+6-
Alfvén branch, the He+2-Alfvén branch, and the H+-Alfvén
branch, respectively. In addition, Figure 1(bottom) shows the
corresponding growth rates γ (y). For y > 0, in the case of the
O+6-Alfvén branch, it is observed that γ (y) is positive only in a
narrow region near y = 0.7 which corresponds to the instability
region due to the combination between ions drifts and thermal

anisotropy. Also, for y ∼ 1.1 the growth rate becomes negative
due to the resonant absorption of protons near their Doppler-
shifted gyrofrequency. Depending on the magnetic field energy
spectrum, these two contrary effects will compete to change the
shape of the distribution function.

2.2. Temporal Evolution of Macroscopic Parameters

Assuming that the zeroth order distribution function varies
slowly compared to the wave timescale, the temporal evolution
equation of the μth species distribution function fμ0, in the
quasilinear approximation is given by (Krall & Trivelpiece 1986;
Alexandrov et al. 1984)

∂fμ0

∂t
= −Mμ

e

mp

∫ ∞

−∞
dk

(
E−k +

1

c
v × B−k

)
· ∂fμk

∂v
, (3)

where fμk is the Fourier first order perturbation of the distri-
bution function, with Ek and Bk as the Fourier electric and
magnetic field spectra, respectively.

Using this expression, and taking moments of fμ0, we
can write a set of ordinary differential equations for all of
the macroscopic parameters of the equilibrium distribution
function, given by (Moya et al. 2011, 2012)

dUμ

dτ
= K

μ

1 (τ ), (4)

dδμ‖
dτ

= 1

δμ‖(τ )
K

μ

2‖(τ ) − 2
Uμ(τ )

δμ‖(τ )
K

μ

1 (τ ), (5)

dδμ⊥
dτ

= 1

2δμ⊥(τ )
K

μ

2⊥(τ ), (6)

where τ = Ωpt , and K
μ

1 ,K
μ

2‖ and K
μ

2⊥ are nonlinear functions
of time that must be solved simultaneously with the dispersion
relation and the evolution of the magnetic field spectral energy
|Bk|2 (see the Appendix). In this approximation, the time
evolution of |Bk|2 is given by

∂εy

∂τ
= 2 γ εy, (7)

where

εy = ωpp

c

1

2πL

|Bk|2
B2

0

, (8)

and L is the reference length of the plasma, which is of the
order of several proton inertial lengths. In the case of hybrid
simulations (explained in Section 3), L corresponds to the length
of the simulation box. It is important to mention that in all the
equations, we have both the real and imaginary part of the
complex frequency (see the Appendix). To solve the systems
(Equations (4)–(7)) we need to explicitly solve the dispersion
relation (Equation (2)).

2.3. Numerical Results

To solve the system of quasilinear equations, we use a discrete
grid in the normalized wavenumber y space with 600 points
between −3 < y < 3. Hence, the separation between points
is dy = 0.01. The time step is chosen to be dτ = 0.025.
Knowing the magnetic field spectrum and the value of the
parameters at an instant in time τ , we can solve the dispersion
relation to find the complex frequency xy, as a function of y, at
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Figure 2. Quasilinear time evolution of the differential streamings Uμ,p between
protons and He+2 (μ = α, solid) ions, and protons and O+6 (μ = O, dashed).
It can be seen that as time evolves, the decrease in the O+6 ions drift velocity
produces a reduction in UO,p while the differential streaming between He+2

ions and protons Uα,p remains constant.

this particular time. Then, we calculate the integrals defined
in the system of equations (Equations (4)–(7)), to evaluate
the time derivative of each parameter for each species μ. We
then use a fourth order Runge–Kutta method (Garcı́a 2000)
to evolve the whole system to the next time step τ + dτ .
Numerical integration is performed until τ = 1800. In the
semi-cold approximation, for each wavenumber there are in
general three values of xy, corresponding to the three main
left-handed branches of the dispersion relation (Gomberoff &
Valdivia 2003; Gomberoff et al. 2004). In the case of a thermal
plasma, considered in this manuscript, for each wavenumber
there are, in general, many solutions for xy, and all of them
should be considered in Equations (4)–(7). However, it turns out
that the cascading effect we are investigating is more evident
for the O+6-Alfvén branch, so in this manuscript we use this
branch only. As we mentioned in Section 1, the emergence of
ion-cyclotron instabilities in the dispersion relation is due to the
combination of different ion species with thermal anisotropy and
drift velocities between each other. For example, in the case of
the particular chosen parameters (see Table 1), the existence of
a drift between anisotropic O+6 and anisotropic He+2 triggers an
instability associated with O+6-Alfvén branch, with a maximum
growth rate that depends strongly on the thermal anisotropies
of both species, as well as the differential streaming between
ions and the proton background (Gomberoff & Valdivia 2002,
2003; Gomberoff et al. 2004; Moya et al. 2011). If we had
considered a different drift between O+6 and H+, but we had
chosen the same anisotropies and drift with respect to protons,
we would have obtained a similar maximum growth rate for the
instability associated with O+6-Alfvén branch, but at a different
wavenumber. For example, using the same parameters as in
Table 1 and normalized drift speeds UO = 0, UO = 0.12, and
UO = 0.24 as in the manuscript, the maximum growth rate is
γmax ∼ 0.002 but occurs at y ∼ 0.35, y ∼ 0.6 and y ∼ 0.75,
respectively.

As an initial condition we use the same plasma parameters
as in Figure 1 (see Table 1) and we choose a power law initial
magnetic field spectrum given by

εy(t = 0) = 10−4|y|−5/3 . (9)

This profile for the initial magnetic energy spectrum was chosen
to simulate a situation similar to those discussed in Horbury et al.
(2005, 2008) and Bale et al. (2005, 2009) where most of the
wave frequencies are below the proton gyrofrequency (x = 1).
Figure 1(bottom) shows a region of unstable wavelengths
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Figure 3. Top: parallel temperatures as a function of time for the quasilinear
model with respect to their initial values. Solid, dashed, and dotted lines
correspond to protons, He+2, and O+6, respectively. Bottom: the same as in
the top panel but for perpendicular temperatures.

(between 0.5 < y < 1) in which waves will effectively interact
with the heavy ions, triggering the cascade and the subsequent
new high-frequency modes. Beyond this range (y > 1), the
imaginary part of the frequencies becomes negative, suggesting
proton heating due to resonant absorption as expected. It is
important to emphasize that in the quasilinear approximation,
the full temporal dependence of the macroscopic parameters
of the distribution function depends strongly on the imaginary
part of the frequency. This has been demonstrated in the semi-
cold approximation (Moya et al. 2011, 2012), and shows the
same behavior in the warm case (the present work). The plasma
parameters used in Figure 1(bottom) yields a maximum growth
rate of γmax ∼ 2 × 10−3 which corresponds to a timescale of
500 Ωp. Thus, evolving the system until τ = 1800 (1800 proton
gyroperiods) should be long enough to observe significant
quasilinear effects.

In Figure 2 we show the normalized differential streaming
Uμ,p between minor ions and protons as a function of time.
Due to the profile of K

μ

1 (τ ) (Equation (A8)), in every time step,
the total time derivative of Uα and Up is essentially null (Moya
et al. 2011, 2012) and the differential streaming Uα,p between
these species does not change considerably so that it can be
taken as a constant (see Figure 2). In contrast, for O+6 ions
the situation is different. This species undergoes a decrease of
its drift velocity, and also of UO,p, before τ = 600. Although
there are no major changes in the differential streaming between
species, the existence of an initial Uμ,p 
= 0 is very important for
the growth and damping rates. The unstable frequency region
and the subsequent growth of the corresponding Alfvén waves
are due to the combined effect of the thermal anisotropies and
differential streaming of the heavy ions (Gomberoff & Elgueta
1991; Gomberoff & Valdivia 2002, 2003; Gomberoff et al.
2004), as mentioned in Section 1.

The temporal evolution of the temperatures for each species
is shown in Figure 3. The parallel temperatures (top panel)
show preferential heating of O+6 ions reaching values of T‖O ∼
2.5 T‖O (0) by the end of the time interval. The He+2 ions exhibit
first a small cooling and then a small heating, while protons
show no noticeable change since their parallel temperature
remains almost constant. In contrast, Figure 3 (bottom) shows a
perpendicular heating of protons (solid curve) reaching values of
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Figure 4. Temporal evolution of quasilinear thermal anisotropies for protons
(solid), He+2 (dashed), and O+6 (dotted) ions.

T⊥p ∼ 1.1 T⊥p(0) by the end of the time interval. Similarly, O+6

ions (dotted curve) exhibit a small perpendicular cooling of no
more than 11% while the He+2 ions perpendicular temperature
remains almost constant (dashed curve). Even though, based on
observations, one would naively expect that the heating would be
more intense for heavy ions, this behavior depends on the initial
values of the thermal anisotropy of protons and ions. While
protons contribute only with absorption (see Figure 1(bottom)),
the initial thermal anisotropies of both ion species generate
instabilities near y ∼ 0.75 and trigger the energy cascade
already mentioned (see Figure 5). All of these heating and
cooling processes are anisotropic, thus there is a change in
the thermal anisotropies. In Figure 4, the temporal evolution
of the thermal anisotropies for each species is shown. In the
case of O+6 ions (dotted lines), the large, initial anisotropy
rapidly relaxes from AO(0) = 10 to AO ∼ 4 before τ = 600
(the same time interval in which its drift speed evolves), and
then slowly continues to decrease until it reaches a value of
AO ∼ 2.9 at the end of the simulation. He+2 ions, due to
the initial parallel cooling, reach Aα ∼ 5.9 at τ ∼ 200,
but then the anisotropy starts to relax, and by the end of
the interval Aα reaches Aα ∼ 4.6. For protons, due to the
anisotropic heating, the initial isotropic distribution function
becomes slightly anisotropic with Ap ∼ 0.1 at τ = 1800. As
time progresses, the quasilinear evolution saturates and it seems
that the system is slowly approaching equilibrium. However,
by τ = 1800 it is not possible to draw definite conclusions
about the complete behavior for longer times. We will see
from the hybrid simulations described in the next section that
at τ ∼ 250 some nonlinear processes, not described in the
quasilinear approximation, start to become relevant.

Finally, the total free energy available due to the thermal
anisotropy of the ions distribution functions is absorbed by
the electromagnetic field to preserve the total energy of the
system (Krall & Trivelpiece 1986; Moya et al. 2011). In
Figure 5 we show the magnetic field energy spectrum near
y = 0.75 (top panel) and x = 0.4 (bottom panel) for several
time steps. The initial power law spectrum changes due to
absorption and instability (emission) regions, as shown in
Figure 1(bottom). Furthermore, Figure 5 shows the appearance
of modes with frequencies larger than those existing in the
initial spectrum at the expense of the initial thermal anisotropy
of the minority species. Moreover, there are two significant
peaks with frequencies near the ions gyrofrequencies ω = Ωα

(x = 0.5) and ω = ΩO (x = 0.375). The first frequency peak is
less pronounced, which is due to the wave–particle interaction
between the O+6-Alfvén waves and He+2 population, and turned
out to be absorbed at the end of the simulation. The second
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Figure 5. Normalized magnetic field energy spectrum for several times as
a function of wavenumber (top panel) and frequency (bottom panel). We
observe that as time advances there is an emergence of waves at higher modes
(frequencies) compared to the initial ones, i.e., a wave cascade.

frequency peak near x = 0.375 is bigger and continues to
grow until it reaches the end of the simulation. This is the
main manifestation of the energy cascade from lower to higher
electromagnetic wave modes. In summary, and for the initial
set of parameters selected in this quasilinear approximation, the
system evolves by transferring energy from the heavy ions to
the waves and to the protons. This behavior slowly approaches
an asymptotic state.

3. HYBRID MODEL

Due to the large difference in mass between electrons and
protons, we use a hybrid model to describe the plasma system
(i.e., which describes the ions kinetically while treating electrons
as a fluid). These models have been widely used in the study
of the self-consistent evolution of particles and fields, and
the nonlinear wave–particle interaction in solar wind plasma
(Gary et al. 1997, 2000, 2001, 2003; Daughton et al. 1999;
Ofman et al. 2001, 2011; Araneda et al. 2002; Winske et al.
2003; Ofman & Viñas 2007). To compare with the quasilinear
results shown in the previous section, we have performed
numerical hybrid simulations in 1.5D (one spatial dimension,
the x coordinate, and three dimensions in velocity space) for
a plasma composed of electrons, protons, He+2, and O+6 ions
in the presence of a background magnetic field B0 = B0x̂.
Electrons are considered to be massless and isothermal (Moore
et al. 1991; Gary et al. 2001; Ofman et al. 2001, 2011; Ofman
& Viñas 2007). To solve for the electromagnetic fields, we
impose periodic boundary conditions in x, with a box containing
Nx = 512 cells of size dx = 0.25 with 800 particles per
species per cell. We have chosen the same normalization as
in the quasilinear case, and we have normalized the position in
terms of the ion inertial length c/ωpp. The particle and field
equations were integrated in time using a rational Runge–Kutta
method (Wambecq 1978), whereas the spatial derivatives are
calculated by the pseudospectral fast Fourier transform method
(Press et al. 1992), imposing periodic boundary conditions. To
keep the same numerical accuracy of the quasilinear simulation,
we choose a dτ smaller (dτ = 0.0125) and we ran the simulation
until τ = 500. As in the quasilinear case, during the integration
the total energy of the system remained constant to better
than 5%.
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Figure 6. Hybrid differential streamings between protons and He+2 (solid) and
O+6 (dashed) ions as a function of time. It can be seen that the time evolution is
qualitatively similar to the quasilinear case (see Figure 2).

Our hybrid simulation is carried out in the electron reference
frame. We impose quasineutrality and zero parallel current, with
parallel drifts Up = −zαnαUα,p −zOnOUO,p for protons; Uα =
npUα,p − zOnOUO,α for He+2; and UO = npUO,p + zαnαUO,p

for O+6 ions. The variables Ui,j are the normalized differential
streaming between the ith and jth species (i, j = p , α ,O).
In order to compare with the quasilinear case, we select the
same parameters as in Table 1. Thus, we have Uα,p = 0.13,
UO,p = 0.24, and UO,α = 0.11, all expressed in terms of
local Alfvén speed. We use a bi-Maxwellian as the initial
condition where the particle velocities were randomized and
electrons were considered as cold. For these parameters, we
have performed simulations using an initial electromagnetic
fluctuation spectrum with 5% of maximum amplitude, with
respect to B0 and a power law spectral profile of k−5/3, as
in Equation (9). The hybrid and quasilinear simulations are
performed in different frames, thus a Doppler shift in the
frequencies is expected. However, our results show that the
differential streaming between electrons and protons is small
and therefore the Doppler shift is irrelevant.

3.1. Numerical Results

Figure 6 shows the normalized differential streaming Uμ,p

between minor ions and protons. These results are different
to those obtained in the quasilinear method. For He+2 ions
(solid curve) there is a decrease (of about the 20%), of the
initial differential streaming, being Uα,p = 0.1 by τ = 500.
In contrast with the quasilinear case, O+6 ions (dashed curve)
undergo a rapid increase of their drift speed and consequently
UO,p increases from UO,p = 0.23 at τ = 180, to UO,p ∼ 0.3
at τ ∼ 250. Later, for τ > 250, UO,p starts to decrease
until UO,p ∼ 0.2 by the end of the simulation. This complex
behavior may be due to nonlinear effects beyond the quasilinear
approximation, such as wave–wave interaction, that produces
momentum transfer between different species.

The evolution of the temperatures of each species is shown
in Figure 7. For parallel temperatures (top panel) a preferential
heating of O+6 ions is observed (dotted curve), while He+2 ions
are slightly heated (dashed line). Furthermore, the heating of O+6

ions is similar to the quasilinear case, reaching T‖O ∼ 4 T‖O(0)
by the end of the simulation. Unlike the quasilinear case,
the evolution of the proton parallel temperature (solid curve
in Figure 7) shows a more significant heating than that of
O+6 ions, with T‖p ∼ 7 T‖p(0) by the end of the simulation
(τ = 500). It is important to note that although both protons
and O+6 ions are heated in the parallel direction, the proton
heating began 70 proton gyroperiods (τ ∼ 250) after the onset
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Figure 7. Top: parallel temperatures as a function of time in the hybrid
simulations with respect to their initial values. Solid, dashed, and dotted lines
correspond to protons, He+2, and O+6, respectively. Bottom: the same as in top
panel but for perpendicular temperatures.
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Figure 8. Thermal anisotropies for protons (solid), He+2 ions (dashed), and O+6

ions (dotted) from hybrid simulations.

of O+6 ions heating (τ ∼ 180). This is a nonlinear behavior
that is absent in the quasilinear theory (Yoon et al. 2003), which
produces the excitation of modes in other branches through
wave–wave interaction. This result clearly shows an energy
cascading effect in which the heavy ions interact with waves
at longer wavelengths, driving instabilities and then transferring
the energy to protons at shorter wavelengths.

The evolution of the perpendicular temperatures is shown at
the bottom panel of Figure 7. The figure shows a perpendicular
heating of protons (solid curve), reaching a value of T⊥p ∼
1.2 T⊥p(0) by the end of the simulation, whereas O+6 ions (dotted
curve) exhibit a perpendicular cooling of the same order (about
20%), while for He+2 ions the temperature remains constant
(dashed curve). These results appear to be similar with the
quasilinear case as shown in the bottom panel of Figure 3.
The evolution of thermal anisotropies (Aμ = −1 + T⊥,μ/T‖,μ)
of each species is shown in Figure 8. The initially large O+6

anisotropy AO (0) = 10 (dotted lines), rapidly relaxes to AO ∼ 2
by τ = 250, and saturates with a value of AO ∼ 1.2 by τ = 500.
For He+2 ions (dashed curve), the anisotropy relaxes reaching
a value of Aα ∼ 2.6 by the end of the simulation, whereas
the proton anisotropy (solid line), which was initially isotropic,
became anisotropic with Ap ∼ −0.8 at τ = 500.

In comparison with the quasilinear approximation (shown
in Figure 4), the final negative proton thermal anisotropy
in the hybrid model is related to nonlinear effects not in-
cluded in the quasilinear approximation. Our results indicate no
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Figure 9. Magnetic field fast Fourier transform energy spectrum for several
times as a function of wavenumber (top panel) and frequency (bottom panel) in
the hybrid simulations, in arbitrary units. We observe the same energy cascade
as in the quasilinear solution (see Figure 5), but the change is more pronounced.

significant differences in the evolution of He+2 and O+6 thermal
anisotropies when we compare both the quasilinear model and
the hybrid simulations. In summary, our results show a qualita-
tive agreement between quasilinear and hybrid simulations.

The time evolution of the macroscopic parameters of the
plasma influences the excitation and absorption of electromag-
netic waves. In Figure 9 we show the magnetic field energy
spectrum near y = 0.75 (top panel) or x = 0.4 (bottom panel) at
different times in the simulation. As in the quasilinear solutions,
the initial power law spectrum evolves due to wave–particle in-
teraction. The figure shows the emergence of modes with fre-
quencies larger than those existing in the initial spectrum, as
in the quasilinear case (see Figure 5). There are two significant
peaks at frequencies near the ions gyrofrequencies ω = Ωα

(x = 0.5) and ω = ΩO (x = 0.35). The less pronounced peak
is due to the wave–particle interaction with the He+2 population,
while the second peak, which is about three times bigger near
x = 0.35, is due to wave–particle interaction with O+6 ions.
Compared with the quasilinear case, both peaks become larger
and more relevant, but start to dampen by the second half of the
simulation, particularly the one associated with He+2 ions reso-
nance. Finally, differences between both methods are related to
nonlinear effects such as mode coupling (Yoon et al. 2003), Lan-
dau damping (Vasquez & Hollweg 1999; Buti et al. 2000), and
parametric decays (Viñas & Goldstein 1991; Agim et al. 1995;
Araneda et al. 2008; Verscharen et al. 2012). Nevertheless, the
resulting energy cascade effect, from lower to higher electro-
magnetic modes, is present in the hybrid simulations, being
more evident and efficient than in the quasilinear description.

4. DISCUSSION AND CONCLUSIONS

We have studied the nonlinear wave–particle interaction
in a solar-wind-like plasma from two complementary kinetic
approaches, based on quasilinear theory and hybrid models. The
results obtained here allow us to compare the basic properties
of the resonant wave–particle interaction using these different
self-consistent nonlinear models.

Our results indicate that both the quasilinear and the hybrid
simulations show that heating occurs in the perpendicular

temperature of protons and parallel temperature of O+6 ions.
However, the hybrid simulations show stronger parallel heating
of the protons than in the quasilinear one. Both methods agree
in that for He+2 ions, the evolution of the temperatures was
small with a slight perpendicular cooling in the quasilinear,
but a small heating in the hybrid case. All of these differences
are related to the absence of higher order nonlinear effects in
the quasilinear theory, which are present in the hybrid, fully
nonlinear simulations. In summary, both models agree on the
evolution of the differential streaming between protons and
minor ions, and they further agree on the evolution of the thermal
anisotropy of minor ions.

With regards to the evolution of magnetic field spectrum, both
models yield similar results, showing the cascading effect from
lower to higher frequencies in agreement with previous work
(Moya et al. 2011, 2012). The cascade effect appears as the
emergence of higher frequencies modes, peaking at frequencies
near the ions resonances, being stronger in the hybrid case than
in quasilinear one (see Figures 5 and 9). Through this effect,
it is clear that the heavier ions interact with waves, generating
instabilities and transferring the energy to protons.

In conclusion, we have shown that the presence of minor
populations of heavy ions, with thermal anisotropy and differ-
ential streaming with respect to the background protons, triggers
an energy cascade from low to high frequencies close to each
ion species gyroresonance, with the subsequent heating of ions
with increasing q/m ratio. All of these results suggest that reso-
nant absorption of ion-cyclotron waves, and this energy cascade
mechanism, may be relevant in the acceleration and heating
of the solar wind plasma close to the Sun during fast streams
associated with coronal holes.
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APPENDIX

DETAILED QUASILINEAR THEORY

In quasilinear theory, the temporal evolution equation of
the μth species distribution function fμ0 is given by (Krall &
Trivelpiece 1986; Alexandrov et al. 1984)

∂fμ0

∂t
= −Mμ

e

mp

∫ ∞

−∞
dk

(
E−k +

1

c
v × B−k

)
· ∂fμk

∂v
, (A1)

where fμk is the Fourier first order perturbation of the distri-
bution function, with Ek and Bk as the Fourier electric and
magnetic field spectra, respectively.

Taking moments of the distribution functions, we define

K
μ

1 (t) =
∫

vz(∂fμ0/∂t) dv, (A2)

K
μ

2‖(t) =
∫

v2
z (∂fμ0/∂t) dv, (A3)

K
μ

2⊥(t) =
∫

v2
⊥(∂fμ0/∂t) dv, (A4)
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and writing a set ordinary of differential equations for all the
parameters of the equilibrium distribution function, in terms of
the normalized variables, we obtain (Moya et al. 2011, 2012)

dUμ

dτ
= K

μ

1 (τ ), (A5)

dδμ‖
dτ

= 1

δμ‖(τ )
K

μ

2‖(τ ) − 2
Uμ(τ )

δμ‖(τ )
K

μ

1 (τ ), (A6)

dδμ⊥
dτ

= 1

2δμ⊥(τ )
K

μ

2⊥(τ ) . (A7)

In the case of bi-Maxwellian zeroth order distribution functions,

K
μ

1‖(τ ) = − M2
μ

∫ ∞

−∞
dy

εy

y
Im[χμ], (A8)

K
μ

2‖(τ ) = M2
μ

∫ ∞

−∞
dy

εy

y2
Im[xy − yUμ

+ (xy ± Mμ)χμ], (A9)

K
μ

2⊥(τ ) = − M2
μ

∫ ∞

−∞
dy

εy

y2
Im[xy − yUμ

+ (xy + x−y ± Mμ)χμ], (A10)

where

χμ = Aμ+
[Aμ(xy ± Mμ − yUμ) + xy − yUμ]

yδμ‖
Z(φμ), (A11)

and εy is the normalized magnetic field spectral energy per unit
of length.
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