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Finite size scaling in the local abundances of geographic populations
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ABSTRACT

We analyzed the statistical distribution of intra-specifi c local abundances for a set North American breeding bird species. We constructed 
frequency plots for every species and found that they showed long-tail power-law behavior, truncated at an upper abundance cut-off 
value. Based on fi nite size scaling arguments, we investigated whether frequency curves may be considered scaled copies of each other. 
Data collapse was possible after taking powers of the total abundance of each species, in order to correct deviations from the underlying 
universal fi nite size scaling function (UFSS). The UFSS power law exponent oscillated in time within the regime of unbounded variance, 
which is consistent with the wild fl uctuations that characterize ecological phenomena. We speculate that our results may eventually be 
linked to other law-like macroecological phenomena, such as energetic constraints reported in allometric scaling.
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INTRODUCTION

Animal density rarely occupies space uniformly. Rather, 
individuals are found forming groups, the size of which 
depends on many factors (Bonabeau et al., 1999). For instance, 
environmental gradients in habitat quality can generate 
variations in density due to differences in carrying capacity 
(Doebeli and Dieckmann, 2003; Kirkpatrick and Barton 1997). 
The benefi ts of aggregation include reduction of predation 
rates (Morgan, 1988), increased foraging effi ciency (Mogilner 
et al., 2003), and reproduction success (Warburton and Lazarus 
1991), to mention just a few. In any case, the tendency to crowd 
is a widespread pattern of nature, and has interested ecologists 
for a long time (e.g., Bonabeau et al., 1999; Flierl et al., 1999; 
Gueron and Levin, 1995; Higashi and Yamamura, 1993; Niwa, 
1994, 1996; Okubo, 1986; Okubo and Levins, 2001).

Any given species has an associated probability 
distribution that summarizes the spectrum of abundances 
attained at different locations (e.g. Bonabeau et al., 1999, 
McGill et al. 2007). A comprehensive description of the 
statistical pattern of local abundances is key for understanding 
the evolution of species crowdedness (Niwa, 1994; Okubo, 
1986). For instance, the existence of a typical density may 
suggest that such a density yields an optimal balance 
between the cost of living closer to conspecifics, and the 
benefit of assuring reproductive success (Bonabeau et al., 
1999; Higashi and Yamamura, 1993). This optimality notion, 
however, becomes useless when we attempt to describe the 
large array of populations that comprise the full geographic 
extent of a species (Niwa, 1996, 1998, 2004, Pascual et al., 
2002; Roy et al., 2003). This occurs because local densities 
may vary so widely from place to place that the very notion 
of a typical density becomes problematic. Furthermore, when 
the maximum density at a few locations is large, as compared 
to the background abundance, the resulting probability 
distribution may exhibit a long tail, a possibility that has been 
overlooked in most population studies (Bonabeau et al., 1999). 

In fact, it has been recently argued that several quantities of 
ecological interest may present a power-law form in frequency 
or probability distributions (e.g., Marquet et al., 2005; Niwa, 
2003).

In this report we are concerned with the patterns 
of variation in the local abundance observed across the 
geographical range of species. Questions about the distribution 
of ecological attributes across geographic space have usually 
been addressed in the context of macroecological theory 
(e.g.,Brown, 1995; Gaston and Blackburn, 2000; Marquet 2002; 
Maurer, 1999) by using average density, and thus implicitly 
assuming that the probability distributions describing them 
possess a characteristic scale (i.e., a typical density) and short-
tails. Nevertheless, a growing amount of evidence suggests 
that this may not always be the case, and that long-tailed 
abundance distributions could be more the rule than the 
exception in nature (Bonabeau et al., 1999; Gueron and Levin 
1995; Higashi and Yamamura 1993; Marquet 2000; Marquet 
et al., 2005; Sornette, 2000; Stauffer 2000). This postulate is 
far from trivial, because some long-tailed distributions may 
show divergence in one or more of its statistical moments. In 
particular, for the case of power-law distributions, unbounded 
variance can take place when the second and upper moments 
diverge. Sometimes even the fi rst moment diverges, and a 
typical size value and characteristic scale is absent (Sornette, 
2000; Stanley, 1987).

From a methodological point of view, it is always convenient 
to explore the statistical distribution of abundances and check 
whether or not they present signatures of power-law. Besides 
pure methodological interest, power-law distributions are also 
important from a more theoretical perspective. There is growing 
evidence that some ecological scaling may be the outcome 
of an underlying critical organization, either in the form of 
self-organized criticality or as found in second order phase 
transitions (Bonabeau at al., 1999; Keitt and Marquet, 1996; Keitt 
and Stanley, 1998; Milne et al., 1996; Niwa, 2003; Pascual et al., 
2002; Rhodes et al., 1997; Roy et al., 2003). This is an interesting 
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conjecture, because critical scaling behavior is connected to 
the notion of universality classes, a powerful concept used in 
statistical physics to systematically compare and recognize as 
similar (based on the value of their critical exponents), systems 
that would otherwise be considered as different, if the attention 
were put in the nature of their components or microscopic 
details (Bonabeau and Dagorn 1995; Mantegna & Stanley, 2000; 
Stanley, 1995; Stanley et al., 2000; Vicsek, 2001; Yeomans 1992). 
More specifi cally, the term universality is used by physicists to 
highlight the idea that near a critical point of organization (i.e., 
a continuous phase transition), systems composed of multiple 
elements show spontaneous order that is not attributable to the 
details of the individual particles that constitute the system, 
or the specifi c details of the rules that govern the relationships 
among them. Rather, other macroscopic features of the system 
become relevant, such as its dimensionality (Gisiger, 2001). 
Thus, universality complies with the very defi nition of a complex 
systems.

Our study system will be a set of species taken from the 
North American breeding bird survey. This system is ideally 
suited for this type of analyses as it represents one of the 
few continental-scale censuses available for a large ensemble 
of species. We hypothesize that conspecific breeding bird 
individuals self-organize in space by forming aggregates in 
demand of suitable habitats for reproduction (Gueron and 
Levin, 1995; Higashi and Yamamura, 1993; Maurer, 2005; Niwa, 
1994, 1996). In addition, we propose testing for the existence 
of a specifi c type of statistical distribution, the Bose-Einstein 
distribution. This is a suitable null statistical distribution 
as it assumes that the elements that are being arranged into 
distinctive classes are identical. Thus, Bose-Einstein statistics 
(hereafter B-E) postulate that each distinguishable combination 
of r elements (e.g., individuals) in n groups (e.g., abundance 
classes) has equal probability of occurrence. The resulting 
probability distribution shows a truncated power-law behavior, 
which is in contrast to the expected exponential distribution 
(i.e. Gibbs-Boltzmann) that arises under the distinguishable 
assumption of microstates (Ijiri & Simon, 1975). It turns out 
to be an appropriate null model under a neutral scenario as 
has been postulated by Hubbell (2001), where individuals of 
different species are assumed to be equivalent on a per capita 
basis. Accordingly, if breeding places across the geographical 
range are considered a limited resource for individuals seeking 
to breed, an intraspecifi c B-E distribution should be verifi ed. 
Interestingly, and in analogy with animal behavior, particles 
obeying B-E distribution are believed to exert attraction on other 
particles, by exciting a particular energy state, producing a 
quantum effect named Bose-Einstein condensation (hereafter, 
BEC). In an ecological context, this biosocial contagion 
mechanism is ethologically justifi ed, and, in analogy to BEC 
phenomena, is expected to be responsible for producing an 
exponentially truncated power-law frequency distribution of 
local abundances, similar to those observed in other ecological 
aggregates (Majumdar and Sire, 1993; Mogilner et al., 2003; 
Rajesh and Majumdar, 2001; Takayasu et al., 1988, 1989; 
Takayasu, 1989, Taylor and Taylor, 1977; Vicsek et al., 1985). 
Borrowing some thermal physics jargon (Gould et al., 2006; 
Stanley, 1987; Yeomans, 1992), we may say that abundance 
undergoes a type of phase transition from a high temperature 
regime (where abundance classes are occupied according to 
the Gibbs law, see Okubo, 1986), to a more cooled phase (where 
spatial coalescence tends to favor a scale invariant occupation 

of abundance classes). We leave the problem of characterizing 
ecological phase transitions to a forthcoming report and point 
the interested reader to Pascual et al. (2002), Pascual and 
Guichard (2005)and Roy et al. (2003). Instead, in this report 
we will address the question of characterizing the frequency 
distribution of local abundances within the geographic range 
of species, and test whether universality underlies abundance 
scaling.

METHODS

Database

We analyzed the statistical distribution of local abundance 
across the geographical range of bird species using the North 
American Breeding Bird Survey database. This survey has been 
conducted by the United States Geological Survey since 1966 
to the present, and consists of the permanent census of about 
2,500 routes visited yearly by volunteer ornithologists during 
the breeding season (Peterjohn and Sauer, 1999). The sampling 
grid has a spatial coverage extending over all the continental 
territory of the United States and southern Canada. In every 
route, ornithologists have identified resident species and 
obtained an estimate of their local abundance, based on visual 
or sound recordings. From this database, we selected a random 
set of 67 species whose geographical ranges were totally or 
mostly contained inside the boundaries of the sampling region. 
We used data from years 1980 to 2002, and performed our 
analysis on a yearly basis. Except for size effects (see below), 
we treated these selected species as being fundamentally 
equivalent, hence, we did not keep track of their specifi c 
taxonomic identity in the remainder of this report. However, 
chosen species differ in many respects, encompassing at 
least three orders of magnitude in body mass, overlapping in 
geographic extent in various degrees, differing in habitat use 
and diet, not to mention the many differences in abundance 
levels and degrees of spatial occurrence. The only similitude 
criteria used to select the current set of species from the whole 
BBS database was that they were permanent resident species, 
so as to avoid effects of inter-year long-distance migration on 
the patterns of abundance observed across space.

Power law distributions and data collapse

Power-law distributions take the form N(s)~ S–β, where  
N(s) is the frequency of sites having S individuals, and β 
is the power-law exponent that governs slow frequency 
decay (Marquet et al., 2005, Niwa, 2003, 2005; Stanley, 1995). 
For |β|> 2 the distribution has infinite variance (Sornette, 
2000). In practical terms, infi nite variance refers to the idea 
that, no matter how much we increase the sampling effort, 
variance will always increase. For |β|> 1 the mean diverges to 
infi nity (Sornette, 2000). However, empirical power-laws are 
necessarily truncated at a maximum cut-off value (Bonabeau et 
al., 1999; Chave and Levin, 2003; Niwa, 2005), because the total 
number of individuals of one species is fi nite. We incorporated 
fi nite size effects into our analysis by assuming the ansatz

N(s)= Lα f (s × L–γ)              (1)

where L is a term representing the size of the system under 
study, considered here as the total abundance of each species, 
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while α and γ are suitable powers used to correct system size 
effects. According to eq. 1, size effects are introduced by a 
truncation point modulated by L–γ, and a normalizing effect 
through Lα (Sornette, 2000; Stauffer and Aharony, 1992). A 
strong fi nite size effect can create bending in the probability 
curve, reinforcing the B-E exponential truncation. Thus the 
powers coeffi cients α and γ contain information about the 
intrinsic truncation present in B-E distributions and deviations 
generated by fi nite size effects. The latter bending effect also 
interferes with the expression of the power-law behavior 
present in B-E below the exponential cut-off. In order to 
remove these effects, and recover the asymptotic distributional 
form, we performed a fi nite size scaling (FSS) analysis (Fisher 
and Barber, 1972; Niwa, 2005). First, we defi ned the scaled 
variables

y = N(s) × L–α             (2)

x =    s                         (3)
        L

γ

Then, estimates of α and γ were obtained by data collapse 
(Niwa, 2003, 2004, 2005). We iteratively searched the values 
for both parameters that placed all species frequency plots on 
a single curve (if it existed). Our best collapse was achieved 
by minimizing the mean of the two-dimensional variance 
(Cont and Bouchard, 2000). To do this, we defi ned the two-
dimensional variance as

                 

(4)

where x and y are the mean of eq. (2) and eq. (3) respectively, 
while σ is their standard deviation. These values were 
calculated on every εi block defi ned after suitably binning 
the x-axis with boxes of regular size (Niwa, 2004). The mean 
value of εi was used as the quantity to be minimized, and as 
a measure for the goodness of fi t for data collapse (Cont and 
Bouchard, 2000).

The analysis outlined above was done on every species, 
using bird counts at the level of routes to describe the statistical 
behavior local abundances. We constructed histograms of 
abundance by the method of exponential binning, as suggested 
in Marquet et al. (2005) and Pueyo (2006). Afterwards, 
we made the FSS analysis on a yearly basis, and acquired 
estimates of β for the power-law range of the collapsed curves. 
The resulting time series of β was used to investigate whether 
FSS was consistent over time.

RESULTS AND DISCUSSION

Figure 1 shows the local abundance frequency plots for 
all the species under analysis. We only plotted data for 2002 
in order to illustrate differences among curves. It is clear that 
species differ in the relative frequency of different abundant 
classes, and degree of curvature. Besides those apparent 
discrepancies, it is possible to discern a power-law regime in 
the middle range of the plot (note the double logarithmic scale).

For FSS we found that minimization of the two-dimensional 
variance was attained at α= 0.28 and γ= 0.46. Figure 2 shows 

the plane of numerical solutions for different combinations of 
both parameters. The cross mark indicates the global minimum 
for which data collapse was attained. Note that there are two 
other local minima, corresponding to values that result in a 
good collapse either around the cut-off region or around N(1). 
Using eqns. 3 and 4, we calculated the scaled variables x and y, 
resulting in the data collapse shown in Figure 3.

Figure 2: Solution space for the mean two-dimensional variance 
as a function of system size power exponents. Isoclines represent 
values of ε across different trials of α and γ. The cross shows the 
position for the global minimum.

Figure 1: Frequency distribution for local abundance across the 
geographic range of breeding birds. Each combination of intensity 
and symbol represents one species. Data correspond to 2002 only.
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All curves collapsed well into a unique universal fi nite-size 
scaling curve (UFSS). These results are in qualitative agreement 
with similar analysis conducted on fi sh school sizes (Bonabeau 
and Dagorn, 1995; Bonabeau et al., 1999; Niwa 1998, 2004; 
Rinaldo et al., 2002), although exponent values were different 
in all cases. This similarity is worth noting, because our data 
resulted from processes occurring at much larger spatial 
and temporal scales than in those studies, and yet, results 
qualitatively agreed.

Figure 4 shows the temporal evolution of β values for the 
period 1980-2002. This sequence did not show any temporal 
trends, but does present oscillations with a 5-6 year periodicity, 
suggesting that UFSS is robust over time, and that robustness 
may be achieved by compensating deviations around a 
long-term asymptotic value. Note that despite the observed 
fl uctuations, β never reached values outside the region where 
the fi rst statistical moment is well-defi ned, suggesting that 
the UFSS curve has a well located theoretical mean, but its 
estimation will always be obscured by fl uctuations associated 
with the divergence of the variance.

So far we have provided a pure phenomenological 
approach that accounted for the existence of universal 
behavior in the system under study. It has been shown that 
there is an underlying truncated power-law with exponent 
|β|= 1.19, which is in agreement with exponents reported for 
avalanche-like statistics (Turcotte, 1999). This UFSS curve 
can be regarded as the master curve from which every 
species is a particular realization that has been distorted 
by fi nite size effects. Thus, it is natural to ask: What are the 
factors responsible for such deviations? We cannot provide 
a comprehensive response to this question at this point. 
However, we can sketch out an explanation resorting to the 
implications of being governed by a B-E distribution, briefl y 
reviewed in the following paragraph.

In B-E formalism, the leading process is competition for 
empty energy states. Imagine an energy state as the amount 
of energy required to sustain a given number of individuals 
(note that in this transformation we are changing from a 
continuous version of energy to a discrete version, where 
energy is shaped into the boundaries of a single individual, 
therefore the analogy with quantum mechanics becomes 
useful). This notion assumes two things: i) an energy state is 
proportional to the number of organisms it can sustain and, ii) 
competition for energy takes place before competition among 
individuals. In addition, assume competition is taking place 
over a fi nite energy landscape, so resources are limited. Given 
that energy is limited, its depletion by one species not only 
reduces the number of new individuals that can be allowed 
in a given energy state, but most importantly, the number of 
possible energy states is also reduced. This occurs because 
a lesser amount of energy can be partitioned in fewer ways 
than a larger amount. Thus, whereas energy is exhausted, 
larger energy states progressively disappear, and the potential 
remaining energy states will only allow for a lesser number, 
and size, of incoming individuals. This scenario resembles the 
macroecological stage, where resources are known to be fi nite 
and species, although different in size, tend to be equivalent in 
the amount of energy they use within ecosystems (Brown et al., 
1993; Brown, 1995), at the cost of achieving different densities. 
Accordingly, it is likely that species will interfere among them 
by affecting the size of energy states related to the universal 
B-E abundance distribution, and, as a consequence, distortions 
are accrued on it. Figure 5 graphically explains our argument. 
Whether this phenomenology holds true, and concurs with 
observed macroecological size scaling patterns, remains to be 
tested.

The relationship between FSS and allometric scaling 
remains to be explored. If FSS in abundance could be linked 
to energetic constraints through body mass, it would pose 
an interesting scenario, in which one set of scaling rules may 
deviate or even suppress the validity of another.

Figure 3: Data collapse for the abundance distribution curves 
shown in Figure 1. The line indicates the predicted curve using the 
FSS estimate of β.

Figure 4: Temporal fl uctuations of the absolute value of scaling 
exponent β. The blue line shows the limit below which variances 
diverge. Green line shows the limit of mean and variance 
divergence.
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ANNEX

List of species analyzed:
American Coot (Fulica americana)
American Crow (Corvus brachyrhynchos)
American Goldfi nch (Carduelis tristis)
American Kestrel (Falco sparverius)
American Robin (Turdus migratorius)
Baltimore Oriole (Icterus galbula)
Bank Swallow (Riparia riparia)
Blue-winged Teal (Anas discors)

Brewer’s Blackbird (Euphagus cyanocephalus)
Canada Goose (Branta canadensis)
Chipping Sparrow (Spizell)
Common Grackle (Quiscalus quiscula)
Common Nighthawk (Chordeiles minor)
Common Raven (Corvus corax)
Common Snipe (Gallinago gallinago)
Common Yellowthroat (Geothlypis trichas)
Cliff Swallow (Petrochelidon pyrrhonota)
Double-crested Cormorant (Phalacrocorax auritus)
Downy Woodpecker (Picoides pubescens)
Eared Grebe (Podiceps nigricollis)
Eastern Bluebird (Sialia sialis)
Eastern Kingbird (Tyrannus tyrannus)
Eastern Phoebe (Sayornis phoebe)
Eastern Wood-Pewee (Contopus virens)
European Starling (Sturnus vulgaris)
Field Sparrow (Spizella pusilla)
Gadwall (Anas strepera)
Grasshopper Sparrow (Ammodramus savannarum)
Gray Catbird (Dumetella carolinensis)
Great Blue Heron (Ardea herodias)
House Finch (Carpodacus mexicanus)
House Sparrow (Passer domesticus)
House Wren (Troglodytes aedon)
Indigo Bunting (Passerina cyanea)
Killdeer (Charadrius vociferus)
Lark Bunting (Calamospiza melanocorys)
Lark Sparrow (Chondestes grammacus)
Loggerhead Shrike (Lanius ludovicianus)
Mallard (Anas platyrhynchos)
Mountain Bluebird (Sialia currucoides)
Mourning Dove (Zenaida macroura)
Northern Bobwhite (Colinus virginianus)
Northern Cardinal (Cardinalis cardinalis)
Northern Harrier (Circus cyaneus)
Northern Pintail (Anas acuta)
Pied-billed Grebe (Podilymbus podiceps)
Red-eyed Vireo (Vireo olivaceus)
Red-headed Woodpecker (Melanerpes erythrocephalus)
Red-tailed Hawk (Buteo jamaicensis)
Red-winged Blackbird (Agelaius phoeniceus)
Ring-billed Gull (Larus delawarensis)
Ring-necked Pheasant (Phasianus colchicus)
Rock Dove (Columba livia)
Rock Wren (Salpinctes obsoletus)
Song Sparrow (Melospiza melodia)
Swainson’s Hawk (Buteo swainsoni)
Tufted Titmouse (Baeolophus bicolor)
Turkey Vulture (Cathartes aura)
Upland Sandpiper (Bartramia longicauda)
Vesper Sparrow (Pooecetes gramineus)
Warbling Vireo (Vireo gilvus)
Western Kingbird (Tyrannus verticalis)
Western Meadowlark (Sturnella neglecta)
Western Tanager (Piranga ludoviciana)
Western Wood-Pewee (Contopus sordidulus)
Yellow-billed Cuckoo (Coccyzus americanus)
Yellow-breasted Chat (Icteria virens)
a passerina)


