Statistical Testing of Chargaff's Second Parity Rule in Bacterial Genomes

Andrew Hart Servet martínez

El Centro de Modelamiento Matemático, Universidad de Chile

7to Encuentro Regional de Probabilidad y Estadística Matemática
Santa Fe, Argentina, 1-3 December 2010

Hart, A.G. and Martínez, S. (2011) Statistical testing of Chargaff's second parity rule in bacterial genome sequences. Stoch. Models 27(2), to appear.

- DNA strand: A sequence of nucleotides.
- Nucleotide: Building blocks of the genome. There are four types: a, c, g, t.
- DNA comprises 2 strands: The primary (or principal) and the complementary. The two strands together are called a duplex.
- Corresponding nucleotides on each strand forma base pair.
- Within each base pair, a bonds with t while c bonds with g.
- The complementary strand is read in the opposite direction to the principal strand.

Principal strand			
5^{\prime}	\leftarrow GGGATCAAGTCCATCA	\rightarrow	3^{\prime}
$3^{\prime} \leftarrow$CCCTAGTTCAGGTAGT	$\leftarrow 5^{\prime}$		
	Complementary strand		

- Set of nucleotides: $\mathcal{A}=\{A, C, G, T\}$.
- Involution: $\gamma: \mathcal{A} \rightarrow \mathcal{A}$, where $\gamma(A)=T, \gamma(C)=G$, $\gamma(G)=C$ and $\gamma(T)=A$.
- DNA sequence: $X=\left(X_{m}: m=1, \ldots, L\right)$, where $x_{m} \in \mathcal{A}$.
- We treat sequences as circular so that $X_{L+m}=X_{m}$ for all $m=1, \ldots, L$.
- Oligonucleotide: $X_{m} X_{m+1} \ldots X_{l-1} X_{l}$.
- Frequency of r-oligonucleotide:

$$
\nu^{X}\left(a_{1}, \ldots, a_{r}\right):=\frac{1}{L} \sum_{m=1}^{L} \mathbf{1}_{\left\{\left(x_{m}, \ldots x_{m+r-1}\right)=\left(a_{1}, \ldots, a_{r}\right)\right\}},
$$

for all $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}, 1 \leq r \leq M . \mathbf{1}_{B}$ takes the value one if the condition B is satisfied and zero otherwise.
-

$$
\pi_{a}:=\nu^{X}(a) \text { and } P_{a, b}:=\frac{\nu^{X}(a, b)}{\nu^{X}(a)} .
$$

- Complementary strand: $Y=\left(Y_{m}: m=1, \ldots, L\right)$, where $Y_{m} \in \mathcal{A}$.
- For chemical reasons, X and Y are related by $Y_{m}=\gamma\left(X_{L-m+1}\right)$ for $m=1, \ldots, L$.
- Frequencies for Y are given by

$$
\nu^{Y}\left(a_{1}, \ldots, a_{r}\right):=\frac{1}{L} \sum_{m=1}^{L} \mathbf{1}_{\left\{\left(Y_{m}, \ldots, Y_{m+r-1}\right)=\left(a_{1}, \ldots, a_{r}\right)\right\}},
$$

for all $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}, 1 \leq r \leq M$.

- Hence, for all $\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}, 1 \leq r \leq M$, we have

$$
\nu^{Y}\left(a_{1}, \ldots, a_{r}\right)=\nu^{X}\left(\gamma\left(a_{r}\right), \ldots, \gamma\left(a_{1}\right)\right)
$$

- Mononucleotide and conditional dinucleotide distributions of Y :

$$
\rho_{a}:=\nu^{Y}(a) \text { and } Q_{a, b}:=\frac{\nu^{Y}(a, b)}{\nu^{Y}(a)}
$$

Chargaff's First Parity rule

- For all $a, b \in \mathcal{A}$,

$$
\rho_{a}=\pi_{\gamma(a)} \text { and } \rho_{a} Q_{a, b}=\pi_{\gamma(b)} P_{\gamma(b), \gamma(a)} .
$$

Chargaff's First Parity Rule.

In any DNA duplex, the number of A nucleotides is the same as the number of T nucleotides, while the number of C nucleotides is the same as the number of G nucleotides.

chargaff's Second Parity Rule

Chargaff's Second Parity Rule (CSPR).

On a DNA strand, the frequency of a short oligonucleotide is the same as the frequency of its reverse complement.

CSPR means that, for all $r \ll L,\left(a_{1}, \ldots, a_{r}\right) \in \mathcal{A}^{r}$,

$$
\begin{equation*}
\nu^{X}\left(a_{1}, \ldots, a_{r}\right)=\nu^{X}\left(\gamma\left(a_{r}\right), \ldots, \gamma\left(a_{1}\right)\right) \tag{1}
\end{equation*}
$$

CSPR for $r=r_{0}$.

We say that CSPR holds for $r=r_{0}$ if (1) holds for $r=r_{0}$.

- if CSPR holds for $r=r_{0}$, then it also holds for all $r<r_{0}$.
- For $r=1$, CSPR means that $\pi=\rho$, or $\pi_{A}=\pi_{T}$ and $\pi_{C}=\pi_{G}$.
- For $r=2$, CSPR means that $\rho=\pi$ and $Q=P$, or equivalently,

$$
\pi_{a} P_{a, b}=\pi_{\gamma(b)} P_{\gamma(b), \gamma(a)}, a, b \in \mathcal{A}
$$

A Matrix characterisation of CSPR for Dinucleotides

- Assume the order $A<C<G<T$.
- Let θ be the set of 4×4 positive stotchastic matrices,

$$
P=\left[\begin{array}{llll}
P_{A, A} & P_{A, C} & P_{A, G} & P_{A, T} \\
P_{C, A} & P_{C, C} & P_{C, G} & P_{C, T} \\
P_{G, A} & P_{G, C} & P_{G, G} & P_{G, T} \\
P_{T, A} & P_{T, C} & P_{T, G} & P_{T, T}
\end{array}\right] .
$$

Proposition

Chargaff's second parity rule holds for $r=2$ if and only if the matrix P takes the form
$\left(\begin{array}{cccc}\beta_{1} & \beta_{2} & \beta_{3} & 1-\left(\beta_{1}+\beta_{2}+\beta_{3}\right) \\ \zeta \beta_{6} & \beta_{4} & 1-\left(\zeta \beta_{6}+\beta_{4}+\zeta \beta_{3}\right) & \zeta \beta_{3} \\ \zeta \beta_{5} & 1-\left(\zeta \beta_{5}+\beta_{4}+\zeta \beta_{2}\right) & \beta_{4} & \zeta \beta_{2} \\ 1-\left(\beta_{5}+\beta_{6}+\beta_{1}\right) & \beta_{5} & \beta_{6} & \beta_{1}\end{array}\right)$
where $\zeta \in(0, \infty)$ and $\beta_{1}, \ldots, \beta_{6}$ represent values in $(0,1)$ such that P is a strictly positive stochastic matrix.

Uniformly distributed Stochastic Matrices

- set $\mathcal{A}_{3}=\{A, C, G\}$ and $\mathcal{A}_{2}=\{A, C\}$.
- The n-simplex is

$$
\mathcal{S}_{n}=\left\{\left(s_{1}, \ldots, s_{n+1}\right) \in \mathbb{R}_{+}^{n+1}: \sum_{i=1}^{n+1} s_{i}=1\right\} .
$$

- The interior of the n dimensional ℓ^{1} unit ball intersected with the positive orthant is

$$
\mathcal{C}_{n}=\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} s_{i}<1\right\} .
$$

- $\bar{P}:=\left(P_{a, b}:(a, b) \in \mathcal{A} \times \mathcal{A}_{3}\right) \in \mathcal{C}_{3}^{A}$.
- $\vec{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ taking values in \mathcal{S}_{3} is Dirichlet($(1,1,1,1)$ distributed if $\bar{X}=\left(X_{1}, X_{2}, X_{3}\right)$, which takes values in \mathcal{C}_{3}, has probability density function f given by $f_{\bar{x}}\left(x_{1}, x_{2}, x_{3}\right)=6$ for $\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{C}_{3}$.
- The volume of \mathcal{C}_{3} relative to Lebesgue measure is $\operatorname{Vol}\left(\mathcal{C}_{3}\right)=1 / 6$.
- Taking the distribution of $P \in \Theta$ to be uniform is equivalent to taking $P \sim(\operatorname{Dirichlet}(1,1,1,1))^{\otimes 4}$.
- Let \mathbb{P}_{θ} denote this probability measure.

CSPR for Dinucleotides

Let Θ_{2} be the set of $P \in \Theta$ having the form prescribed by the Proposition.
Let $J_{7}=\mathcal{A}_{2} \times \mathcal{A}_{3} \cup\{(G, A)\}$ and define $\widetilde{P}=\left(P_{a, b}:(a, b) \in J_{7}\right)$. Then, Θ_{2} is the set of $P \in \Theta$ satisfying the set of constraints $P_{G, G}=f_{1}(\widetilde{P}), P_{G, C}=f_{2}(\widetilde{P}), P_{T, G}=f_{3}(\widetilde{P}), P_{T, C}=f_{4}(\widetilde{P}), P_{T, A}=$ $f_{5}(\widetilde{P})$, where

$$
\begin{aligned}
f_{1}(\widetilde{P}) & =P_{C, C} \\
f_{2}(\widetilde{P}) & =1-P_{G, A}-f_{1}(\widetilde{P})-\frac{P_{A, C} P_{C, T}}{P_{A, G}} \\
f_{3}(\widetilde{P}) & =\frac{P_{C, A} P_{A, G}}{1-P_{C, A}-P_{C, C}-P_{C, G}} \\
f_{4}(\widetilde{P}) & =\frac{P_{G, A} P_{A, G}}{1-P_{C, A}-P_{C, C}-P_{C, G}} \\
f_{5}(\widetilde{P}) & =1-P_{A, A}-f_{3}(P)-f_{4}(P)
\end{aligned}
$$

$$
\begin{align*}
& P_{a, b} \geq 0 \text { for }(a, b) \in J_{7}, \quad f_{i}(\widetilde{P}) \geq 0, \text { For } i=1,2,3,4,5,(2) \\
& \sum_{b \in \mathcal{A}_{3}} P_{a, b}<1 \text { for } a \in \mathcal{A}_{2}, P_{G, A}+f_{1}(\widetilde{P})+f_{2}(\widetilde{P})<1, \tag{3}\\
& \sum_{j=3}^{5} f_{j}(\widetilde{P})<1 . \tag{4}
\end{align*}
$$

Θ_{2} can be identified with

$$
V_{7}:=\left\{\widetilde{P} \in \mathcal{C}_{3}^{\mathcal{A}_{2}} \times(0,1): \widetilde{P} \text { satisfies (2) and (3) }\right\} .
$$

- Since $P_{\tilde{P}}$ is positive and stochastic, it can be seen that

$$
V_{7}=\left\{\widetilde{P} \in \mathcal{C}_{3}^{A_{2}} \times(0,1): f_{2}(\widetilde{P})>0, f_{5}(\widetilde{P})>0\right\} .
$$

- For $\epsilon>0$, define $\Delta(h, \epsilon):=\left(h-\frac{\epsilon}{2}, h+-\frac{\epsilon}{2}\right)$ for h real.
- Define

$$
\begin{aligned}
C_{7}(\epsilon)= & \left\{\bar{P} \in \mathcal{C}_{3}^{A}: \widetilde{P} \in V_{7}, P_{G, G} \in\left(f_{1}(\widetilde{P})-\epsilon / 2, f_{1}(\widetilde{P})+\epsilon / 2\right),\right. \\
& P_{G, C} \in\left(f_{2}(\widetilde{P})-\epsilon / 2, f_{2}(\widetilde{P})+\epsilon / 2\right), \\
& P_{T, G} \in\left(f_{3}(\widetilde{P})-\epsilon / 2, f_{3}(\widetilde{P})+\epsilon / 2\right), \\
& P_{T, C} \in\left(f_{4}(\widetilde{P})-\epsilon / 2, f_{4}(\widetilde{P})+\epsilon / 2\right), \\
& \left.P_{T, A} \in\left(f_{5}(\widetilde{P})-\epsilon / 2, f_{5}(\widetilde{P})+\epsilon / 2\right)\right\} .
\end{aligned}
$$

Define the statistic $\eta_{2}=\eta_{2}(P)$ as

$$
\begin{aligned}
\eta_{2}= & \max \left\{\left|P_{G, G}-f_{1}(\widetilde{P})\right|,\left|P_{G, C}-f_{2}(\widetilde{P})\right|,\right. \\
& \left.\left|P_{T, G}-f_{3}(\widetilde{P})\right|,\left|P_{T, C}-f_{4}(\widetilde{P})\right|,\left|P_{T, A}-f_{5}(\widetilde{P})\right|\right\},
\end{aligned}
$$

if $P \in V_{7}$. Otherwise, $\eta_{2}=1$.

$$
\begin{array}{ll}
H_{0}: & P \in \Theta \backslash \Theta_{2} \Longleftrightarrow \bar{P} \notin C_{7}\left(\epsilon_{\alpha}\right) \Longleftrightarrow \eta_{2}>\epsilon_{\alpha} / 2, \\
H_{1}: & P \in \Theta_{2} \Longleftrightarrow \bar{P} \in C_{7}\left(\epsilon_{\alpha}\right) \Longleftrightarrow \eta_{2} \leq \epsilon_{\alpha} / 2 .
\end{array}
$$

the probability of a type I error is

$$
\begin{aligned}
\mathbb{P}\left(H_{0} \text { is rejected } \mid H_{0} \text { is true }\right) & =\mathbb{P}_{\Theta \backslash \Theta_{2}}\left(C_{7}\left(\epsilon_{\alpha}\right)\right) \\
& =\frac{\mathbb{P}_{\Theta}\left(C_{7}\left(\epsilon_{\alpha}\right) \cap\left(\Theta \backslash \Theta_{2}\right)\right)}{\mathbb{P}_{\Theta}\left(\Theta \backslash \Theta_{2}\right)} \\
& =\mathbb{P}_{\Theta}\left(C_{7}\left(\epsilon_{\alpha}\right)\right)
\end{aligned}
$$

The significance level α of the test is fixed by choosing ϵ_{α} so as to guarantee $\mathbb{P}_{\Theta}\left(\eta_{2} \leq \epsilon / 2\right)=\mathbb{P}_{\Theta}\left(\bar{P} \in C_{7}\left(\epsilon_{\alpha}\right)\right) \leq \alpha$.
Let ϵ^{*} be such that $\mathbb{P}_{\Theta}\left(P \in C_{7}\left(\epsilon_{\alpha}^{*}\right)\right)=\alpha$.
$\epsilon_{\alpha}:=\sqrt[5]{\alpha / 27} \leq \epsilon_{\alpha}^{*}$.

Choices of ϵ_{α}

