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Structure of DNA

DNA strand: A sequence of nucleotides.
Nucleotide: Building blocks of the genome. There are four
types: a, c, g, t .
DNA comprises 2 strands: The primary (or principal) and
the complementary. The two strands together are called a
duplex.
Corresponding nucleotides on each strand forma base pair.
Within each base pair, a bonds with t while c bonds with g.
The complementary strand is read in the opposite direction
to the principal strand.

Principal strand
5′ ← GGGATCAAGTCCATCA → 3′

3′ ← CCCTAGTTCAGGTAGT ← 5′

Complementary strand



Notation

Set of nucleotides: A = {A,C,G,T}.
Involution: γ : A → A, where γ(A) = T , γ(C) = G,
γ(G) = C and γ(T ) = A.
DNA sequence: X = (Xm : m = 1, . . . ,L), where xm ∈ A.
We treat sequences as circular so that XL+m = Xm for all
m = 1, . . . ,L.
Oligonucleotide: XmXm+1 . . .Xl−1Xl .
Frequency of r -oligonucleotide:

νX (a1, . . . ,ar ) :=
1
L

L∑
m=1

1{(Xm,...Xm+r−1)=(a1,...,ar )} ,

for all (a1, . . . ,ar ) ∈ Ar , 1 ≤ r ≤ M. 1B takes the value one
if the condition B is satisfied and zero otherwise.

πa := νX (a) and Pa,b :=
νX (a,b)

νX (a)
.



More Notation

Complementary strand: Y = (Ym : m = 1, . . . ,L), where
Ym ∈ A.
For chemical reasons, X and Y are related by
Ym = γ(XL−m+1) for m = 1, . . . ,L.
Frequencies for Y are given by

νY (a1, . . . ,ar ) :=
1
L

L∑
m=1

1{(Ym,...,Ym+r−1)=(a1,...,ar )} ,

for all (a1, . . . ,ar ) ∈ Ar , 1 ≤ r ≤ M.
Hence, for all (a1, . . . ,ar ) ∈ Ar , 1 ≤ r ≤ M, we have

νY (a1, . . . ,ar ) = νX (γ(ar ), . . . , γ(a1)) .

Mononucleotide and conditional dinucleotide distributions
of Y :

ρa := νY (a) and Qa,b :=
νY (a,b)

νY (a)
.



Chargaff’s First Parity rule

For all a,b ∈ A,

ρa = πγ(a) and ρaQa,b = πγ(b)Pγ(b),γ(a) .

Chargaff’s First Parity Rule.

In any DNA duplex, the number of A nucleotides is the same as
the number of T nucleotides, while the number of C nucleotides
is the same as the number of G nucleotides.



chargaff’s Second Parity Rule

Chargaff’s Second Parity Rule (CSPR).

On a DNA strand, the frequency of a short oligonucleotide is
the same as the frequency of its reverse complement.

CSPR means that, for all r � L, (a1, . . . ,ar ) ∈ Ar ,

νX (a1, . . . ,ar ) = νX (γ(ar ), . . . , γ(a1)). (1)

CSPR for r = r0.
We say that CSPR holds for r = r0 if (1) holds for r = r0.

if CSPR holds for r = r0, then it also holds for all r < r0.
For r = 1, CSPR means that π = ρ, or πA = πT and
πC = πG.
For r = 2, CSPR means that ρ = π and Q = P, or
equivalently,

πaPa,b = πγ(b)Pγ(b),γ(a), a,b ∈ A.



A Matrix characterisation of CSPR for Dinucleotides

Assume the order A < C < G < T .
Let θ be the set of 4× 4 positive stotchastic matrices,

P =


PA,A PA,C PA,G PA,T
PC,A PC,C PC,G PC,T
PG,A PG,C PG,G PG,T
PT ,A PT ,C PT ,G PT ,T

 .
Proposition

Chargaff’s second parity rule holds for r = 2 if and only if the
matrix P takes the form

β1 β2 β3 1−(β1 +β2 +β3)
ζβ6 β4 1−(ζβ6 +β4 +ζβ3) ζβ3
ζβ5 1−(ζβ5 +β4 +ζβ2) β4 ζβ2

1−(β5 +β6 +β1) β5 β6 β1


where ζ ∈ (0,∞) and β1, . . . , β6 represent values in (0,1) such

that P is a strictly positive stochastic matrix.



Uniformly distributed Stochastic Matrices

set A3 = {A,C,G} and A2 = {A,C}.
The n−simplex is
Sn = {(s1, . . . , sn+1) ∈ Rn+1

+ :
∑n+1

i=1 si = 1}.
The interior of the n dimensional `1 unit ball intersected
with the positive orthant is
Cn = {(s1, . . . , sn) ∈ Rn

+ :
∑n

i=1 si < 1}.
P := (Pa,b : (a,b) ∈ A×A3) ∈ CA3 .
~X = (X1,X2,X3,X4) taking values in S3 is
Dirichlet(1,1,1,1) distributed if X = (X1,X2,X3), which
takes values in C3, has probability density function f given
by fX (x1, x2, x3) = 6 for (x1, x2, x3) ∈ C3.
The volume of C3 relative to Lebesgue measure is
Vol(C3) = 1/6.
Taking the distribution of P ∈ Θ to be uniform is equivalent
to taking P ∼ (Dirichlet(1,1,1,1))⊗4.
Let Pθ denote this probability measure.



CSPR for Dinucleotides

Let Θ2 be the set of P ∈ Θ having the form prescribed by the
Proposition.
Let J7 = A2 ×A3 ∪ {(G,A)} and define P̃ = (Pa,b : (a,b) ∈ J7).
Then, Θ2 is the set of P ∈ Θ satisfying the set of constraints
PG,G = f1(P̃), PG,C = f2(P̃), PT ,G = f3(P̃), PT ,C = f4(P̃), PT ,A =

f5(P̃), where

f1(P̃) = PC,C

f2(P̃) = 1− PG,A − f1(P̃)−
PA,CPC,T

PA,G

f3(P̃) =
PC,APA,G

1− PC,A − PC,C − PC,G

f4(P̃) =
PG,APA,G

1− PC,A − PC,C − PC,G

f5(P̃) = 1− PA,A − f3(P)− f4(P)



Identification of Θ2

Pa,b ≥ 0 for (a,b) ∈ J7, fi(P̃) ≥ 0, For i = 1,2,3,4,5,(2)∑
b∈A3

Pa,b < 1 for a ∈ A2 , PG,A + f1(P̃) + f2(P̃) < 1 , (3)

5∑
j=3

fj(P̃) < 1 . (4)

Θ2 can be identified with
V7 := {P̃ ∈ CA2

3 × (0,1) : P̃ satisfies (2) and (3)}.



The Test of CSPR for dinucleotides
Since P is positive and stochastic, it can be seen that
V7 = {P̃ ∈ CA2

3 × (0,1) : f2(P̃) > 0, f5(P̃) > 0}.
For ε > 0, define ∆(h, ε) := (h − ε

2 ,h +− ε
2) for h real.

Define

C7(ε) = {P ∈ CA3 : P̃ ∈ V7,PG,G ∈ (f1(P̃)− ε/2, f1(P̃) + ε/2),

PG,C ∈ (f2(P̃)−ε/2, f2(P̃)+ε/2),

PT ,G∈(f3(P̃)−ε/2, f3(P̃)+ε/2),

PT ,C ∈(f4(P̃)−ε/2, f4(P̃)+ε/2),

PT ,A∈(f5(P̃)−ε/2, f5(P̃)+ε/2)}.
Define the statistic η2 = η2(P) as

η2 = m«ax
{∣∣∣PG,G−f1(P̃)

∣∣∣ , ∣∣∣PG,C−f2(P̃)
∣∣∣ ,∣∣∣PT ,G−f3(P̃)

∣∣∣ , ∣∣∣PT ,C−f4(P̃)
∣∣∣ , ∣∣∣PT ,A−f5(P̃)

∣∣∣},
if P ∈ V7. Otherwise, η2 = 1.



Formulation of the Test

H0: P ∈ Θ \Θ2 ⇐⇒ P /∈ C7(εα)⇐⇒ η2 > εα/2,
H1: P ∈ Θ2 ⇐⇒ P ∈ C7(εα)⇐⇒ η2 ≤ εα/2.

the probability of a type I error is

P(H0 is rejected | H0 is true) = PΘ\Θ2
(C7(εα))

=
PΘ (C7(εα) ∩ (Θ \Θ2))

PΘ(Θ \Θ2)

= PΘ(C7(εα))

The significance level α of the test is fixed by choosing εα so as
to guarantee PΘ(η2 ≤ ε/2) = PΘ(P ∈ C7(εα)) ≤ α.
Let ε∗ be such that PΘ(P ∈ C7(ε∗α)) = α.
εα := 5

√
α/27 ≤ ε∗α.



Choices of εα



Histogram of GC-content for 805 Bacteria



Histogram of Lengths of 805 Bacterial Genomes
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