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Abstract

The nutritional composition of the edible seaweeds Durvillaea antarctica (frond and stem) and dried Ulva lactuca was determined,
including the soluble (SDF), insoluble (IDF) and total (TDF) dietary fiber content, amino acid and fatty acid profiles along with
tocopherols and tocotrienols (pro-vitamin E). Results show that U. lactuca contained 60.5 ± 1.5%, and D. antarctica frond and stem
71.4 ± 1.5% and 56.4 ± 0.4% of TDF, respectively. Levels for the different amino acids ranged from 0.7 ± 0.1 to 1508.4 ± 9.5 (mg/
100 g protein) in U. lactuca, from 0.2 ± 0.0 to 2019.9 ± 5.2 (mg/100 g protein) in D. antarctica (stem), and from 0.3 ± 0.0 to
1052.6 ± 2.9 (mg/100 g protein) in D. antarctica (leaves). In the three seaweeds, the most abundant fatty acid was C18:1x9cis which
in U. lactuca accounted for 27.42 ± 2.60%; in D. antarctica it was 25.36 ± 3.10% and 25.83 ± 2.52% in leaves and stem, respectively.
In D. antarctica, c-tocotrienol (651.7 ± 5.1 mg/kg), d-tocopherol (245.9 ± 3.7 mg/kg) and a-tocopherol (179.4 ± 12.1 mg/kg) were
determined in fronds, a-tocopherol (258.0 ± 7.2 mg/kg) was determined in stem. U. lactuca, showed a high c-tocopherol level
(963.5 ± 3.8 mg/kg).

Keywords: Seaweeds; Dietary fiber; Amino acids; Fatty acids; Tocopherols
1. Introduction

Edible seaweeds are a renewable natural resource
existing in large quantities all along the Pacific Coast.
Nevertheless, there has been little exploitation and
exploration of seaweeds, despite potential industrial
and agricultural applications. At the present time, sea-
weeds are used worldwide for different purposes: to
obtain phycocolloids, as fodder, as a fertilizer and for
direct use in human nutrition (Chapman & Chapman,
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1980). Seaweeds are not a main source of energy
although they are reported to be of nutritional value
regarding vitamin, protein and mineral contents. (Chan,
Cheung, & Ang, 1997; Norziah & Ching, 2000). It is said
that 100 g of seaweed provides more than the daily
requirement of Vitamin A, B2 and B12 and two thirds
of the Vitamin C requirement (Chapman & Chapman,
1980), and it has been determined that seaweeds are an
important source of dietary fiber, mainly soluble fiber
(Lahaye, 1991), which is considered important in
preventing constipation, colon cancer, cardiovascular
disease and obesity, among others (Dreher, 1987;
Kritchevsky, 1988; Stephen & Cummings, 1980).
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Another distinctive property of sea plants, is that
they are considered natural sources of hydrosoluble
and liposoluble vitamins, such as thiamine and ribofla-
vin, b-carotene and tocopherols, e.g., as well as of
long-chain polyunsaturated essential fatty acids from
the omega-3 family (LC-PUFAs x3), such as eicosapen-
taenoic acid, C20:5x3 (Khotimchenko, Vaskovsky, &
Titlyanova, 2002), which may reduce the risk of heart
disease, thrombosis and atherosclerosis (Mishra, Tem-
elli, Ooraikul Shacklock, & Craigie, 1993). It has also
been reported that the fatty acids of certain seaweeds
have antiviral activity (Johns, Nichols, & Perry, 1979;
Kamat et al., 1992).

There is, therefore, interest in the use of edible sea-
weeds in the development of low-cost, highly nutritive
diets for human and animal nutrition, especially animal
nutrition since sea vegetables are able to accelerate the
growth of such species as big oysters, tilapia, salmon,
trout, etc., all of great commercial interest (Fleming,
Van Berneveld, & Hone, 1996; Hahn, 1989).

The purpose of the present investigation was to study
the nutritional value of the Ulva lactuca and Durvillaea
antarctica species which represent natural resources with
potential economic value for use in human and animal
nutrition.
2. Materials and methods

2.1. Sample collection

The U. lactuca seaweed was collected on November,
2003 raw and fresh from the coastal area of Northern
Chile, and supplied dried and milled (flour) by Cultivos

Marinos Caldera (Caldera, Chile). D. antarctica was col-
lected raw and fresh from the central Chilean coastal
area, and analyses were made separately in frond and
stem (commonly known as ‘‘cochayuyo’’ and ‘‘ulte’’,
respectively), since these are the two seaweed portions
traditionally consumed by the population.

2.2. Proximal analysis

Following AOAC�s methods (1996), water content
(AOAC, 934.01), Ash (AOAC, 930.05), and proteins
(N · 6.25; AOAC, 954.01) were determined. Total car-
bohydrates were estimated by rounding up.

2.3. Lipid extraction

Lipids were extracted using a modification of Folch
method according to Christie (1992). Each homogenized
seaweed was extracted with 15 ml of chloroform/metha-
nol/water (1:2:0.8), overnight in the absence of light.
Three extractions were performed with ultrasonication
and centrifugation. The extracts from each sample
were partitioned against chloroform/ water (1:1 vol/
vol) taking sample water content into account to give
a final solvent ratio of chloroform/methanol/water of
1:1:0.9 by volume. NaCl (5%) was added to the aqueous
phase to aid phase separation. For each sample,
chloroform phases were combined and concentrated in
vacuum to recover the lipids. Total lipids were gravimet-
rically determined on duplicate aliquots of each lipid
extract.

2.4. Dietary fiber

Total dietary fiber and the soluble and insoluble frac-
tions, were determined following the AOAC method,
and slightly modified by Pak and Araya (1996b).

2.5. Amino acid analysis

Amino acids were determined by high-performance
liquid chromatography (HPLC) by the method of
Alaiz, Navarro, Vioque, and Vioque (1992). Algae
were ground with a mortar and pestle. A 2 mg sample
equivalent to 2 mg of protein was weighted in a hydro-
lysis tube and then 4 ml of 6.0 M hydrochloric acid was
added. D, L-a-aminobutyric acid was used as internal
standard. The solution was gassed with nitrogen and
sealed, and then it was incubated in an oven at
110 �C for 24 h. The amino acid hydrolizate was dried
in a Büchi Rotavapor (Büchi Labortechnik, meiers-
eggstrasse, Switzerland) and the amino acids were dis-
solved in 25 ml of borate buffer (1 M, pH 9.0). Five
milliliter of this solution were derivatized with 4 ll of
diethyl ethoxymethylene-malonate at 50 �C for 50 min
with vigorous shaking. 20 ll of this derivatized were
injected directly into the HPLC. The HPLC system
consisted of a Merck–Hitachi L-6200A pump (Merck,
Darmstadt, Germany), a Rheodyne 7725i injector with
a 20 ll sample loop, a Merck–Hitachi D-2500 chro-
mato-integrator. The separation of derivatives was
attained using a 300 · 3.9 mm i.d. reversed-phase col-
umn Nova–Pack C18; particle size, 4 lm, Waters
(Waters, Milford, MA, USA). Detection was accom-
plished using a Model L-4250 UV–vis detector
(Merck–Hitachi) with variable-wavelength monitor set
at 280 nm. Resolution of amino acid derivatives was
routinely accomplished using a binary gradient system.
The solvents used were: (A) 25 mM sodium acetate
containing 0.02% of sodium azide (pH 6.0) and (B)
acetonitrile. Solvent was delivered to the column at a
flow-rate of 0.9 ml/min as follows: Time, 0.0–3.0 min,
linear gradient from A-B (92:8) to A-B (88:12); 3.0–
6.0 min, linear gradient from A-B (88:12) to A-B
(86:14); 6.0–13.0 min, elution with A-B (86:14); 13.0–
22.0 min, linear gradient from A-B (86:14) to (79:21);
22.0–35.0 min, linear gradient A-B (79:21) to A-B
(69:31).
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2.6. Fatty acid composition

Fatty acid composition was determined by GLC
using a HP 5890 FID detector (Hewlett–Packard, Palo
Alto, CA, USA), and a 50 m fused silica BPX70 capil-
lary column 0.25 lm film, temperature programmed
between 160 and 230 �C, rate 2 �C/min, with hydrogen
as carrier and using reference fatty acids methyl esters
(FAME) from Merck (Merck, Darmstadt, Germany)
for identification. FAME were prepared according to
AENOR (1991).

2.7. Tocopherols and tocotrienols analysis

Tocopherols and tocotrienols were determined in the
lipid extracts by high-performance liquid chromatogra-
phy (HPLC) with fluorescence detection, following the
AOCS standard method (AOCS Ce 8-89, 1993). A
LichroCART Superspher Si 60 column (25 cm · 4 mm
i.d., particle size 5 lm; Merck, Darmstadt, Germany)
was used. The mobile phase was propan-2-ol in hexane
(0.5:99.5 v/v) at a flow-rate of 1 ml/min. The HPLC sys-
tem consisted of a Merck–Hitachi L-6200A pump
(Merck, Darmstadt, Germany), a Rheodyne 7725i injec-
tor with 20 ll sample loop, a Merck–Hitachi F-1050
fluorescence detector and a Merck–Hitachi D-2500
chromato-integrator. Peaks were detected at 290 and
330 nm, excitation and emission wavelengths, respec-
tively. Tocols were identified using external standards
(Merck, Darmstadt, Germany).

2.8. Expression of data and statistical analysis

All data presented are means ± SDs (n = 4).
3. Results and discussion

3.1. Protein and ash

The nutritional composition of the seaweeds under
study is shown in Table 1. The mean protein content
found in the present study is in agreement with values
reported for various macroalgae (El-Tawil & Khalil,
1983; Murthy & Radia, 1978; Zavodnik, 1987), with
Table 1
Nutritional compositiona of macroalgae Durvillaea antarctica and Ulva lactu

Specie Moisture Ash
(% dry weight)

Protein
(% dry we

U. lactuca (flour) 12.6 ± 0.2 11.0 ± 0.1 27.2 ± 1.1
D. antarctica(leaves) 72.3 ± 1.5 17.9 ± 1.2 10.4 ± 0.3
D. antarctica(stem) 82.2 ± 0.7 25.7 ± 2.5 11.6 ± 0.9

a Average of four analysis ± SD.
b Obtained by difference, includes dietary fiber.
such relatively high protein values (13.6–24.5 dry
weight). The protein contribution of U. lactuca and
D. antarctica ranged from 10.4 to 27.2 g/100 g dry
weight, equivalent to the range reported by Fleurence
(1999). U. lactuca showed a high protein content, sim-
ilar to traditional high protein plant sources such as
legumes and grains, especially soy and amaranth
(Martı́nez & Añon, 1996; Norziah & Ching, 2000),
thus justifying its direct use in human nutrition or
for the development of balanced diets for animal nutri-
tion. The latter has been corroborated in pisciculture
and aquaculture studies. Ulva australis has been shown
to increase the growth and development of different
sea-cultivated species such as abalone (Dunstan, Bar-
rett, Leroi, & Jeffrey, 1994; Murai, Akiyama, & Nose,
1984). Likewise, it has been demonstrated that certain
sea plant protein sources meet tilapia�s requirements
(Jackson, Capper, & Matty, 1982). Furthermore, U.

australis stands out for its high mineral and fiber con-
tent. In the case of D. antarctica, a lower protein level
compared with ulva was determined, both in leaves
and stem, but it may still be valuable as a protein
source. The mineral content ranged from 11.0 to
15.7 g/100 g dry weight (Table 1), which is higher than
the amount reported by other authors (Pak & Araya,
1992; Pak & Araya, 1996a; Pak & Araya, 1996b).
The ash contents of the seaweeds were much higher
than those of earth plants other than spinach and
other vegetables (Rupérez, Ahrazem, & Leal, 2002)
and both the stem and leaves of the plant supply high
mineral contents.

3.2. Lipids

The literature has established that in seaweeds in gen-
eral the content of lipids is less than 4% (Herbetreau,
Coiffard, Derrien, & De Roeck-Holzhauer, 1997). The
lipid content of the seaweeds studied in this work (Table
1) ranged from 0.3 g/100 g dry weight in U. lactuca to
4.3 g/100 g dry weight in D. antarctica (stem). In U. lact-

uca these values are significantly smaller than those
determined by Wahbeh (1997) and similar to those of
Pak and Araya (1996a), the differences could have been
due to factors such as climate and geography of develop-
ment of the seaweed.
ca

ight)
Lipid
(% dry weight)

Carbohydrateb

(% dry weight)
Dietary fiber
(% dry weight)

0.3 ± 0.0 61.5 ± 2.3 60.5 ± 0.6
0.8 ± 0.1 70.9 ± 2.7 71.4 ± 0.5
4.3 ± 0.6 58.4 ± 1.2 56.4 ± 0.4



Table 2
Compositiona of dietary fiber in macroalgae Durvillaea antarctica and
Ulva lactuca

Specie IDF
(% dry weight)

SDF
(% dry weight)

TDF
(% dry weight)

U. lactuca 33.3 ± 0.3 27.2 ± 1.2 60.5 ± 1.5
D. antarctica

(leaves)
43.7 ± 0.3 27.7 ± 1.2 71.4 ± 1.5

D. antarctica

(stem)
32.2 ± 0.7 24.2 ± 2.5 56.4 ± 0.4

IDF, insoluble dietary fiber; SDF, soluble dietary fiber; TDF, total
dietary fiber.

a Average of four analyses ± SD.

Table 3
Compositiona amino acid of macroalgae Durvillaea antarctica and
Ulva lactuca

Amino acids
(mg/100 g prot.)

D. antarctica

(leaves)
D. antarctica

(stem)
U. lactuca

(flour)

Asp 745.3 ± 1.5 2019.9 ± 5.2 1487.0 ± 8.5
Glu 1052.6 ± 2.9 972.2 ± 2.5 1508.4 ± 9.5
Ser 434.4 ± 1.1 256.2 ± 1.5 833.2 ± 5.9
His 750.6 ± 2.3 1178.5 ± 5.5 133.9 ± 1.5
Gly 220.8 ± 1.7 293.2 ± 1.1 815.6 ± 5.7
Thr 255.1 ± 1.1 280.9 ± 1.0 797.8 ± 7.5
Arg 332.1 ± 1.0 150.4 ± 1.2 486.6 ± 3.5
Ala 446.4 ± 1.1 826.5 ± 5.5 1096.4 ± 10.5
Pro 0.3 ± 0.0 0.2 ± 0.0 0.7 ± 0.1
Tyr 178.2 ± 1.2 80.5 ± 1.1 435.2 ± 1.5
Val 462.9 ± 1.5 185.0 ± 1.5 339.2 ± 4.5
Met 914.7 ± 1.9 415.3 ± 0.9 671.7 ± 8.5
Cys 4.3 ± 0.1 97.3 ± 1.4 55.0 ± 6.5
Ile 350 ± 1.5 161.5 ± 1.1 550.0 ± 7.1
Leu 603.6 ± 1.9 274.6 ± 1.3 1034.5 ± 8.9
Phe 374.5 ± 1.3 192.6 ± 1.1 1245.4 ± 12.5
Lys 507.2 ± 1.1 193.0 ± 1.5 723.3 ± 8.5

a Average of four analyses ± SD.
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3.3. Dietary fiber

Seaweeds are known as an excellent source of vita-
mins and minerals, especially sodium and iodine, due
to their high polysaccharide content which could also
imply a high level of soluble and insoluble dietary fiber
(Lahaye, 1991). In this study it was determined that
both seaweeds under investigation, U. lactuca and D.

antarctica, had soluble and insoluble dietary fiber con-
tents (Table 2) that were higher than values determined
in fruits and vegetables (Pak & Araya, 1992). This high
soluble fiber content suggests a favorable nutritional
effect for people requiring it for any medical reason with
the possible benefits of consuming either type of sea-
weed. It also suggests the necessity to develop sea-
weed-based products more attractive to consumers.

3.4. Amino acid composition

The amino acid composition (mg/100 g of total pro-
tein) is illustrated in Table 3. Tryptophan could not be
detected after acid hydrolysis of the protein samples.
All essential amino acids were present in the two species.
Levels of the different amino acids ranged from 0.7 ± 0.1
to 1508.4 ± 9.5 (mg/100 g protein) in U. lactuca, from
0.2 ± 0.0 to 2019.9 ± 5.2 (mg/100 g protein) in D. antarc-

tica (stem), and from 0.3 ± 0.0 to 1052.6 ± 2.9 in D. ant-

arctica (leaves). Proteins in both types of seaweed
contained a high level of amino acids, especially U. lact-

uca regarding essential amino acids; lysine, phenylala-
nine, methionine, leucine and valine. On the other
hand, D. antarctica (stem) stands out as having a high
level of the essential amino acids histidine and valine.
In the case of D. antarctica, it was determined that the
main limiting amino acids were isoleucine and leucine
at stem level (according to OMS/ FAO standards), and
mainly lysine in fronds. In U. lactuca, the main limiting
amino acid is isoleucine, followed by leucine. The two
species of algae examined may be considered a potential
dietary protein for fish. It has been pointed out (Jackson
et al., 1982; Ng & Wee, 1989) that certain plants could be
used to provide significant proportions of the protein
requirements of marine species. Given that the dietary
protein requirements for optimal growth of fish range
from 28% to 50% of dry diet (De Silva & Perrara,
1985; Jouncey, 1982; Kesamura, Okumura, Takeda, &
Kuroki, 1982; Tacon & Cowey, 1985), and that many
of the reported values are overestimates (Bowen, 1987;
Millikin, 1982), we may conclude that the investigated
algae could be used as partial sources of dietary protein,
especially for herbivorous fish such as siganids.

3.5. Fatty acid profiles

Seaweeds have a low lipid content compared with
earth vegetables such as soy, sunflower, e.g. (Darcy-
Vrillon, 1993), thus being a low source of nutritional
energy. Nevertheless, it is worth mentioning that the lipid
fraction might contain higher levels of essential polyun-
saturated fatty acids compared with traditional vegeta-
bles, which might be of interest if we consider the large
amount and variety of seaweeds along the Chilean coast.
The fatty acid composition of the seaweeds under study
is shown in Table 4. In the tree samples studied the most
abundant fatty acid was C18:1x9cis, which in U. lactuca

accounted for 27.42 ± 1.91%; in leaves of D. antarctica it
was 25.36 ± 1.81%, and 25.83 ± 2.52% in stem of D. ant-
arctica. Although our investigation showed that both
seaweeds have higher total levels of PUFAs than
MUFAs, the two seaweeds also contained the essential
fatty acids C18:2x6 (linoleic acid) and C18:3x3 (linolenic
acid) and the eicosanoid precursors C20:4x6 (arachi-
donic acid) and C20:5x (eicosapentaenoic acid), which
have also been reported in U. lactuca (Wahbeh, 1997).
The occurrence of the C18PUFAs is important in human
nutrition and for fish which are not able to synthesize
them (Pohl & Zuheidi, 1979; Sánchez-Machado,



Table 4
Fatty acids compositiona of macroalgae Durvillaea antarctica and Ulva lactuca

Fatty acids Methyl ester (%)

Ulva lactuca (flour) Durvillaea antarctica (leaves) Durvillaea antarctica (stem)

C12:0 0.14 ± 0.01 0.22 ± 0.01 1.08 ± 0.02
C14:0 1.14 ± 0.22 5.60 ± 0.23 4.23 ± 0.04
C14:1 – 0.45 ± 0.01 –
C15:0 0.20 ± 0.00 0.90 ± 0.01 –
C15:1 1.12 ± 0.11 2.00 ± 0.08 –
C16:0 14.00 ± 1.12 12.12 ± 1.11 18.33 ± 1.15
C16:1 0.69 ± 0.11 2.19 ± 0.06 –
C16:1x7 1.87 ± 0.21 2.22 ± 0.02 –
C16:2 1.03 ± 0.21 0.14 ± 0.00 –
C17:0 – 0.16 ± 0.01 –
C17:1 0.18 ± 0.11 0.25 ± 0.01 –
C18:0 8.39 ± 0.12 3.18 ± 0.01 8.78 ± 1.02
C18:1x9trans 0.37 ± 0.11 0.32 ± 0.01 0.32 ± 0.02
C18:1x9cis 27.43 ± 1.91 25.36 ± 1.81 25.83 ± 2.52
C18:1x7cis – 0.85 ± 0.04 1.43 ± 0.02
C18:2 1.72 ± 0.91 1.34 ± 0.12 8.78 ± 2.13
C18:2x6 8.31 ± 1.21 10.77 ± 0.08 15.65 ± 1.09
C18:3x3 4.38 ± 0.31 3.93 ± 1.12 1.10 ± 0.03
C20:0 0.19 ± 0.01 0.67 ± 0.01 1.78 ± 0.02
C20:1 4.21 ± 0.50 3.92 ± 0.21 1.63 ± 0.22
C18:4x3 0.41 ± 0.01 0.23 ± 0.11 –
C20:2 0.24 ± 0.01 0.17 ± 0.00 –
C20:4x6 0.34 ± 0.01 11.23 ± 1.81 –
C22:0 0.27 ± 0.01 0.40 ± 0.01 2.08 ± 0.02
C22:1 0.79 ± 0.01 0.39 ± 0.01 –
C20:5x3 1.01 ± 0.01 4.95 ± 0.11 2.69 ± 0.02
C24:0 9.45 ± 0.01 2.75 ± 0.06 –
C22:6x3 0.8 ± 0.01 1.66 ± 0.02 –
ni 11.32 ± 1.19 1.62 ± 0.02 5.28 ± 2.23
Saturated FAs 33.78 ± 0.12 25.84 ± 1.92 36.28 ± 2.90
MUFAs 36.66 ± 1.33 38.11 ± 0.12 29.21 ± 1.13
PUFAs 18.24 ± 1.10 34.42 ± 1.90 29.23 ± 2.20
PUFAs x6 8.65 ± 1.11 22.00 ± 0.22 15.65 ± 1.09
PUFAs x3 6.6 ± 0.91 10.77 ± 0.01 3.79 ± 0.12
Ratio x6/x3 1.31 2.0 4.1

FAs, fatty acids; MUFAS, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; ni, not identified.
a Average of four analyses ± SD.
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López-Cervantes, López-Hernández, & Paseiro-Losada,
2004a). Fish can, however, elongate and desaturate die-
tary 18:2x6 and 18:3x3 fatty acids (Cowey, 1976), which
occur in the investigated algae (Table 4) in relatively high
levels (8.31 ± 1.21–15.65 ± 1.09% for 18:2x6 and
1.10 ± 0.03–4.38 ± 0.31% for 18:3x3). Studies of the
fatty acid composition of 10 species of algae collected
from Australia (Johns et al., 1979) reported the main sat-
urated acid as 16:0 in green (23.9%), brown (27.9%) and
red algae (33.8%). In the present study 16:0 was also the
predominant saturated fatty acid (14.01–12.12%). Fur-
thermore, the x6/x3 ratio, which the WHO currently
recommends should be no higher than 10 in the diet as
a whole, was at most 4.1, so that the seaweeds studied
here may be of use for the reduction of x6/x3 ratio
(Mahan & Escott-Stump, 2000). Variations in fatty acid
contents are attributable both to environmental and
genetic differences (Nelson, Phleger, & Nichols, 2002).
In this study the leaves of D. antarctica show a greater
content of MUFAS and PUFAS than the stem of D. ant-

arctica (38.11 ± 0.12% v/s 29.21 ± 1.13%). The leaves D.

antarctica are similar to ulva in MUFAS (36.66 ± 1.33–
38%, 11 ± 0.12%). Ulva gave smaller values for PUFAS
than the stem and leaves of D. antartica (18.24 ± 1.10%
v/s 34.42 ± 1.90% and 29.23 ± 2.20%). Whereas in the
red seaweeds, C20 PUFA has been determined as 8–12
times more abundant than C18 PUFAs, in brown sea-
weeds both fatty acids were more or less equally abun-
dant (Chan et al., 1997; Herbetreau et al., 1997;
Khotimchenko et al., 2002).

3.6. Tocopherols and tocotrienols contents

Seaweeds are an important unconventional source of
vitamins (liposoluble and hydrosoluble), commonly
consumed fresh or dried in many coastal areas, espe-



Table 5
Compositiona of tocols of macroalgae Durvillaea antarctica and Ulva

lactuca

Tocols
(mg/kg lipid)

D. antarctica

(leaves)
D. antarctica

(stem)
U. lactuca

(flour)

a-Tocopherol 179.4 ± 12.1 258.0 ± 7.2 9.3 ± 1.2
a-Tocotrienol nd 2.1 ± 0.2 33.2 ± 5.2
b-Tocopherol 16.5 ± 1.1 4.5 ± 0.3 14.3 ± 2.2
c-Tocopherol 19.4 ± 0.8 2.3 ± 0.2 25.8 ± 1.2
c-Tocotrienol 651.7 ± 5.1 nd 963.5 ± 3.8
d-Tocopherol 245.9 ± 3.7 nd 25.3 ± 2.8
Total 1112.9 ± 8.2 266.9 ± 10.2 1071.4 ± 9.2

nd, not detected.
a Average of four analyses ± SD.
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cially on the Pacific coast of South America (Honya,
Kinoshita, Ishikawa, Mori, & Nisizawa, 1994; Li,
1989; McHug, 1991; Osse, 1990; Sánchez-Machado,
López-Cervantes, López-Hernández, & Paseiro-Losada,
2004b). Tocols comprising by a-, b-, c-, and d-tocoph-
erol and its isomers a-, b-, c- and d-tocotrienol, are
important liposoluble metabolites synthesized by plant
cells, and in humans they act as Vitamin E precursors.
Table 5 shows the results obtained from the determina-
tion of tocopherols and tocotrienols present in the free
fat of the seaweeds U. lactuca y D. antarctica. In D. ant-

arctica fronds, both types of tocols were determined, c-
tocotrienol being the predominant tocol (651.7 ±
5.1 mg/kg), followed by d -tocopherol (245.9 ± 3.7 mg/
kg) and a-tocopherol (179.4 ± 12.1 mg/kg), and b- and
c-tocopherol in lower quantity, thus giving a total tocol
content of 1112.9 ± 8.2 mg/kg lipid. In D. antarctica

stem, only the mean content of a-tocopherol (258.0 ±
7.2 mg/kg) was determined. On the other hand, U.

lactuca showed a high level of c-tocopherol (963.5 ±
3.8 mg/kg) and a limited level of tocopherols and
tocotrienols, from which a total tocol content of
1071.4 ± 9.2 mg/kg was determined for U. lactucafat.
Both D. antarctica (leaves) fat and U. lactuca fat showed
a high level of tocols compared with tocopherol and
tocotrienol contents in traditional plant oils (Barrera-
Arellano, Ruı́z-Méndez, Velasco, Marquez-Ruiz, &
Dobarganes, 2002; Masson & Mella, 1985). The deter-
mined levels of pro-vitamin E as well as the PUFAs con-
tent show a good nutritional complement that confirms
the importance of using both types of seaweeds in nor-
mal diets for consumers.
4. Conclusions

The seaweeds U. lactuca and D. antarctica examined
in this study have high ash contents, appreciable protein
contents and dietary fiber, low total lipid contents, and
relatively high levels of essential amino acids, polyunsat-
urated fatty acids, and tocols pro-vitamin E, which
makes them a healthy food for human and animal
nutrition.
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