High Levels of CXC Ligand 12/Stromal Cell–derived Factor 1 in Apical Lesions of Endodontic Origin Associated with Mast Cell Infiltration

Franco Cavalla, DDS, MS,* Montserrat Reyes, MT,† Rolando Vernal, DDS, PhD,* Carla Alvarez, * Rodolfo Paredes, DVM, PhD,‡ Jocelyn García-Sesnich, Licenciado en Bioquímica,* Magdalena Infante, DDS,* Valeska Faríña,* Ignacio Barrón, * and Marcela Hernández, MSc, DDS, PhD*‡

Abstract

Introduction: CXC ligand 12/stromal-derived factor 1 (CXCL12/SDF-1) is a pleiotropic chemokine that regulates the influx of a wide range of leukocytes. The aim of this study was to characterize CXCL12/SDF-1 in apical lesions (ALS) of endodontic origin, with special emphasis in associated immune cell populations. Methods: In this case-control study, 29 individuals with chronic apical periodontitis and 21 healthy volunteers were enrolled. ALS and healthy periodontal ligament samples were obtained for tissue homogenization, immune Western blotting, and enzyme-linked immunosorbent assay to determine CXCL12/SDF-1 forms and levels. Anatomopathologic diagnosis, immunostaining for CXCL12/SDF-1, CD117-CXCL12/SDF-1, and toluidine blue were also performed to identify tissue and cell localization. Finally, a set of tissue samples were digested and analyzed by flow cytometry to identify CXCL12/SDF-1 in different immune cell populations. Data were analyzed with Stata v11 and WinDi 2.9 software, and significance was considered if P < .05. Results: CXCL12/SDF-1 was predominantly identified as monomers; levels of CXCL12/SDF-1 were significantly higher in ALS compared with controls, and it was primarily localized to inflammatory infiltrates. Expression of CXCL12/SDF-1 was colocalized to mast cells in tissue sections. Furthermore, CD117+ mast cells were the second most frequent infiltrating cells and the main CXCL12/SDF-1 expressing cells, followed by CD4+ lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells. Conclusions: ALS of endodontic origin demonstrated higher levels of CXCL12/SDF-1 compared with controls. CXCL12/SDF-1 was identified in immune cell populations, whereas mast cells represented the major CXCL12/SDF-1 expressing cells, suggesting that this chemokine might play a central role in apical tissue destruction, most probably inducing persistent recruitment of immune cells, particularly of mast cells. (J Endod 2013;39:1234–1239)

Key Words

Apical periodontitis, CXCL12/SDF-1, mast cells

Untreated dental caries can lead to bacterial infection of the dental pulp and the root canal system. Chronic apical periodontitis (CAP) or asymptomatic apical periodontitis (1) is the most common consequence of this infection, and its hallmark is the formation of an apical lesion (AL) that results from infection-induced inflammation and destruction of the hard and soft apical tissues (1). Histologically, healthy periodontal ligament evolves into an apical granuloma, which in turn might progress to a radicular cyst (2).

CAP-associated tissue destruction is characterized by the persistent migration of leukocytes into the lesional tissues. The process of selective recruitment and activation of these cell types by cytokine and chemokine messages decoded by specific surface receptors is ultimately responsible for the destructive events occurring in the apical periodontium (3).

CXCL12/SDF-1 is the most common consequence of this infection, and its hallmark is the formation of an apical lesion (AL) that results from infection-induced inflammation and destruction of the hard and soft apical tissues (1). Histologically, healthy periodontal ligament evolves into an apical granuloma, which in turn might progress to a radicular cyst (2).

CXCL12/SDF-1 and CXCR4 gene expression has been identified in human ALS (4), whereas increased CXCL12/SDF-1 gene expression has also been reported in an experimental model of bacterial-induced apical periodontitis (4, 6). The major immune cell populations reported in ALS correspond to lymphocytes, monocytes/macrophages, and neutrophils, whereas mast cells have been reported to a much lesser extent (7–11). Nevertheless, involvement of CXCL12/SDF-1 in the progression of human ALSs and its potential interactions with effector cells are yet to be known.

Considering the complex reciprocal functional interactions that the pleiotropic chemokine CXCL12/SDF-1 can establish with the apical microenvironment and...
particularly with immune cells, the aim of this study was to characterize CXCL12/SDF-1 in ALs of endodontic origin, with special emphasis in associated immune cell populations.

Methods

Patients consulting at the clinics of diagnosis and endodontics, School of Dentistry, University of Chile were enrolled if they had clinical diagnosis of CAP as previously described (1), including the presence of an AL (compatible with an apical granuloma or cyst) detected by apical radiograph (>3-mm diameter) caused by dental caries in teeth with clinical diagnosis of nonvital pulp. Healthy periodontal ligaments from teeth extracted for orthodontic reasons were used as controls. Exclusion criteria included systemic illness or previous antibiotics or nonsteroid anti-inflammatory treatment during the 6-month period before the study. All the protocols and procedures were approved by the Ethics Committee of the School of Dentistry of the University of Chile and were in accordance with the ethical standards of the Declaration of Helsinki. An informed consent was obtained from all participating individuals or corresponding forms for their legal guardians in case of underage patients. The AL group was composed of 29 individuals, and the H group was composed of 21 individuals.

After tooth extraction, the AL and healthy periodontal ligaments (H) were frozen for subsequent homogenization, fixed in buffered formaldehyde at 4% for histologic procedures, or processed for tissue enzymatic digestion and flow cytometry.

Tissue Homogenates

After thawing, AL (n = 19) and H tissues (n = 18) were weighed, and protein extracts were obtained by automated homogenization in 50 mMol/L Tris-HCl pH 7.5, 0.2 mol/L NaCl, 5 mMol/L CaCl₂, and 0.01% Triton X-100 buffer adding EDTA-free protease inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany) in a constant ratio of 10 μL buffer per mg weighed tissue, centrifuged at 13,000g for 6 minutes at 4°C, and stored at −80°C until further analysis by immunoblotting and enzyme-linked immunosorbent assay.

CXCL12/SDF-1 Western Blot

A sodium dodecylsulfate–polyacrylamide gel electrophoresis in a 15% gel was performed in aliquots containing 20 μg tissue homogenates and transferred onto a nitrocellulose membrane (Pierce Biotechnology, Rockford, IL). For Western hybridization, the membrane was blocked with 3% bovine serum albumin in Tris buffered saline–Tween 0.1% (TBS-T) for 1 hour at room temperature, and then the membrane was incubated for 1 hour with a primary monoclonal antibody against CXCL12/SDF-1 (R&D Systems, Minneapolis, MN) in a 1:125 dilution on blocking solution. The membrane was washed 3 times with TBS-T and subsequently incubated for 1 hour with a 1:6000 dilution of a goat anti-mouse horseradish peroxidase–conjugated secondary antibody (Pierce Biotechnology) and then washed 3 times with TBS-T. Images of the hybridized bands were acquired with an enhanced chemiluminescence detection kit ECL (Pierce Biotechnology) in a Gel Logic 212 Pro imaging system (Carestream, Rochester, NY).

CXCL12/SDF-1 Levels

CXCL12/SDF-1 levels were measured in tissue homogenate samples by using a Quantikine ELISA human CXCL12/SDF-1c immunoassay (R&D Systems), following the manufacturer’s instructions.

Histologic Procedures

Tissue samples were included in paraffin and routine processing for diagnosis of apical granuloma (n = 3), radicular cyst (n = 3), or healthy periodontal ligament (n = 3). CXCL12/SDF-1 was immunolocalized in tissue sections by immunohistochemistry, and positive cells were first identified on the basis of morphologic criteria. To confirm the identity of CXCL12/SDF-1–immunopositive cells, toluidine blue dye and CXCL12/SDF-1 and CD 117/KIT (mast cells) double immunofluorescence procedures were performed.

Immunohistochemistry

Tissue sections of 4 micrometers were cut and deparaffinized, and endogenous peroxidase activity was quenched by incubation in 10% hydrogen peroxide. Antigen retrieval was performed with Proteinase K, following manufacturer’s recommendations (Novocastra; Lab. Novo, Newcastle, UK), and unspecific blocking was performed with 2.5% horse serum for 10 minutes (Kit ABC Universal Vectastatin; Vector Laboratories, Burlingame, CA). Monoclonal primary antibody against human CXCL12/SDF-1 (R&D Systems) was incubated overnight in 1:60 dilution and rinsed. The immunostaining was performed with Vectastatin Elite ABC kit (Vector Laboratories) by using anti-mouse biotinylated secondary antibody, developed with DAB (Zymed Labs Inc, San Francisco, CA), and counterstained with Mayer’s hematoxylin (Merck KGaA, Darmstadt, Germany), and mounted. Slides were examined by using an optical microscope (Zeiss Axiosvert Star Plus, Poughkeepsie, NY), and representative images were acquired by using a microscope-mounted digital camera (Axiocam ERc5s; Zeiss, Göttingen, Germany). Positive and negative controls were processed within each series.

Toluidine Blue Staining

Mast cells were identified in tissue sections by toluidine blue dye. Toluidine blue working solution was prepared by mixing 5 mL toluidine blue dye (Sigma-Aldrich, St Louis, MO) with 45 mL 1% sodium chloride and adjusted to pH 2.3 with glacial acetic acid (Merck KGaA). Deparaffinized sections of 5-μm thickness were stained in toluidine blue working solution for 2–3 minutes at room temperature, washed in distilled water 3 times; dehydrated in 95% and 100% alcohol, cleared in xylene for 3 minutes, and covered with coverslips and resinous mounting medium. Mast cells were identified by their characteristic violet metachromasia in an optical microscope (Zeiss Axiosvert Star Plus), and representative images were acquired by using a microscope-mounted digital camera (Axio- cam ERc5s).

Double Immunofluorescence

Tissue sections of 4 micrometers were cut and deparaffinized. Antigen retrieval was performed with citrate buffer pH 6 in a microwave oven for 20 minutes. The autofluorescence was blocked with glycine 0.1 mol/L for 10 minutes, and unspecific protein blocking was performed with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions. A polyclonal primary anti-human CD117/KIT antibody (Thermoscientific, Asheville, NC) was incubated for 1 hour with Pro-Block (ScyTek Laboratories, Logan, UT), following the manufacturer’s instructions.

Histologic Procedures

Tissue samples were included in paraffin and routine processing for diagnosis of apical granuloma (n = 3), radicular cyst (n = 3), or healthy periodontal ligament (n = 3). CXCL12/SDF-1 was immunolocalized in tissue sections by immunohistochemistry, and positive cells were first identified on the basis of morphologic criteria. To confirm the identity of CXCL12/SDF-1–immunopositive cells, toluidine blue dye and CXCL12/SDF-1 and CD 117/KIT (mast cells) double immunofluorescence procedures were performed.

Immunohistochemistry

Tissue sections of 4 micrometers were cut and deparaffinized, and endogenous peroxidase activity was quenched by incubation in 10% hydrogen peroxide. Antigen retrieval was performed with Proteinase K, following manufacturer’s recommendations (Novocastra; Lab. Novo, Newcastle, UK), and unspecific blocking was performed with 2.5% horse serum for 10 minutes (Kit ABC Universal Vectastatin; Vector Laboratories, Burlingame, CA). Monoclonal primary antibody against human CXCL12/SDF-1 (R&D Systems) was incubated overnight in 1:60 dilution and rinsed. The immunostaining was performed with Vectastatin Elite ABC kit (Vector Laboratories) by using anti-mouse biotinylated secondary antibody, developed with DAB (Zymed Labs Inc, San Francisco, CA), and counterstained with Mayer’s hematoxylin (Merck KGaA, Darmstadt, Germany), and mounted. Slides were examined by using an optical microscope (Zeiss Axiosvert Star Plus, Poughkeepsie, NY), and representative images were acquired by using a microscope-mounted digital camera (Axio- cam ERc5s; Zeiss, Göttingen, Germany). Positive and negative controls were processed within each series.
digital camera (MicroPublisher 3.3 RTV QImaging, Surrey, BC, Canada). Digital images were then processed with an image editing software (QCapture Pro v6.0, Surrey, BC, Canada).

Tissue Enzymatic Digestion

ALS (n = 4) were processed by enzymatic digestion to obtain a total cell suspension as previously described (12). Briefly, samples were minced into approximately 1-mm³ pieces and incubated in tissue digestion medium at 37°C for 90 minutes. The tissue digestion medium consisted of RPMI1640 supplemented with 50 IU/mL penicillin, 50 µg/mL streptomycin, and 200 mmol/L L-glutamine, plus 200 U/mL type IV collagenase (Gibco Invitrogen Corp, Grand Island, NY). Cells were then washed twice with PBS; cell counting was performed in a Neubauer chamber by using a phase-contrast microscope (Axiovert 100; Zeiss Co), and cell viability (≥90%) was calculated by trypan blue dye exclusion.

Flow Cytometry Analysis of CXCL12 Expression

Fifty microliters PBS containing 2 × 10⁵ total cells of each sample were incubated separately with 10 µL fluorescein isothiocyanate (FITC)–conjugated anti-CXCL12/SDF-1 monoclonal antibody and 10 µL of the following phycoerythrin (PE)–conjugated monoclonal antibodies: anti-CD1a (matured dendritic cells), anti-CD4 (helper T lymphocytes), anti-CD8 (cytotoxic T lymphocytes), anti-CD14

Figure 1. CXCL12/SDF-1 immunoreactive forms (A) and levels (B) in apical lesions (ALS) and healthy periodontal ligament. H, healthy periodontal ligament; SMW, standard of molecular weight. Bars represent medians.

Figure 2. Tissue localization of CXCL12/SDF-1 (A–F) and mast cell identification (G–I) in apical lesions and healthy periodontal ligament. AG, apical granuloma; H, healthy periodontal ligament; RC, radicular cyst. Arrows represent immunopositive CXCL12/SDF-1 cells (A–F) and metachromatic mast cells (G–I).
(monocytes/macrophages), anti-16b (neutrophils), anti-CD19 (B lymphocytes), anti-CD56 (natural killer cells), anti-CD84 (activated dendritic cells), and CD117 (mast cells) for 30 minutes at 4°C in the dark (BD Biosciences Pharmingen, San Jose, CA). Cells were washed once in PBS and resuspended in 300 μL PBS to be analyzed by flow cytometry (Becton Dickinson, Franklin Lakes, NJ). Cells were gated according to their forward- and side-scatter characteristics, and FITC-conjugated and PE-conjugated isotype-matched control monoclonal antibodies were used to determine the negative population.

Data Analysis

CXCL12/SDF-1 levels in tissue homogenates were analyzed by Shapiro-Wilk normality test and Mann-Whitney test using STATA v11 software (StataCorp, College Station, TX). Flow cytometry data were analyzed by using the WinMDi 2.9 software (Scripps Research Institute, La Jolla, CA) and represented as dot plots. CXCL12-positive cells were expressed in percentages. Statistical significance was considered if \(P < .05 \).

Results

The AL group (n = 29) was composed of 10 female patients with a mean age of 49.8 ± 11.7 years, whereas the H group (n = 21) was composed of 9 female subjects with a mean age of 12.9 ± 3.4 years. Significant differences were found for age \((P < .05) \).

CXCL12/SDF-1 was identified through immune Western blotting in tissue homogenates from both healthy periodontal ligament and ALs, but it was more prominent in the latter. Immunoreactive bands consisted of ~9 kDa and faint ~18 kDa forms (Fig. 1A). Accordingly, CXCL12/SDF-1 levels were significantly higher in ALs when compared with healthy periodontal ligament \((P < .05) \) (Fig. 1B).

Analysis of the immunostaining pattern of CXCL12/SDF-1 in ALs and healthy periodontal ligament revealed that the chemokine was mainly localized to inflammatory infiltrate in apical granulomas and radicular cysts (Fig. 2B, C, E, and F), whereas no detection was observed in healthy periodontal ligament (Fig. 2A and D). Strongly immunopositive leukocytes were identified on the basis of cell morphology as mast cells (Fig. 2E and F). Because mast cells can be clearly visualized by metachromasia of their granules, toluidine blue staining was performed to confirm the presence of mast cells in tissue sections (Fig. 2G–I).

Discussion

ALs of endodontic origin are characterized by persistent inflammation that results in the destruction of the apical periodontium and its replacement by granulation tissue in affected teeth. CXCL12/SDF-1 is a pleiotropic chemokine that functionally interacts with a wide variety of leukocytes, mainly via activation of CXCR4 receptor, regulating hematopoiesis, cell trafficking, and osteoclastogenesis (13,14).

The present study demonstrated higher levels of CXCL12/SDF-1 in ALs in comparison to its physiological counterpart the healthy periodontal ligament (Fig. 1A and D). CXCL12/SDF-1 is a pleiotropic chemokine that functionally interacts with a wide variety of leukocytes, mainly via activation of CXCR4 receptor, regulating hematopoiesis, cell trafficking, and osteoclastogenesis (13,14).

The present study demonstrated higher levels of CXCL12/SDF-1 in ALs in comparison to its physiological counterpart the healthy periodontal ligament.
periodontal ligament, supporting a role of CXCL12/SDF-1 in progression of human CAP. Furthermore, the chemokine was identified in most of the infiltrating immune cell populations, including lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells, whereas mast cells represented the major CXCL12/SDF-1 expressing cells.

CXCL12/SDF-1 was identified in ALs and healthy periodontal ligaments as 8.8 kDa monomeric forms and faint 19 kDa dimers. These forms are similar to those previously identified in gingival crevicular fluid and serum (5). It has been proposed that binding of monomeric CXCL12/SDF-1 to CXCR4 receptor in the target cell fully activates chemotactic signaling pathways, whereas the dimeric form prevents CXCL-12/SDF-1 to CXCR4 receptor in the target cell fully activates chemotactic signaling pathways, whereas the dimeric form prevents CXCL12/SDF-1 from interacting with CXCR4 (15). On the basis of these findings, CXCL12/SDF-1 in apical tissues should be seen predominantly as a functional chemotactic agonist.

ALs exhibited higher protein levels of CXCL12/SDF-1 compared with healthy periodontal ligament. A drawback of periodontal ligament as a control is the age difference between diseased and healthy groups, because the latter are obtained for orthodontic purposes mostly in young patients; nevertheless, periodontal ligament corresponds to the closest histophysiological counterpart in humans. In line with these results, a basal production of CXCL12/SDF-1 has been described in periodontal ligament fibroblasts, suggesting a role in periodontal ligament homeostasis (16). Similarly, expression of both CXCL12/SDF-1 and its receptor CXCR4 has been identified in human dental pulp cells and stem cells, where they have been proposed to participate in their recruitment to the sites of injury (17, 18). Despite the few studies addressing CXCL12/SDF-1 in apical periodontitis, the current results are supported by Fukada et al (4), who identified CXCL12/SDF-1 and CXCR4 gene expression in human radicular cysts and apical granulomas and higher CXCL12/SDF-1 expression in both types of human ALs compared with healthy gingival tissue. Similarly, higher CXCL12/SDF-1 along with receptor activator of nuclear factor kappa B ligand, tartrate resistant acid phosphatase (TRAP)-positive osteoclasts, and bone resorption were identified in an experimentally induced apical periodontitis model in inducible macrophage-type nitric oxide synthase–deficient mice compared with their wild-type counterparts and healthy periodontal tissues (6), pointing to a pivotal role of CXCL12/SDF-1 over osteoclast recruitment/differentiation and bone resorption (13). Similar chemokine increased levels have been reported in marginal periodontitis in humans and animal models (19–21). Altogether, these results support a role for CXCL12/SDF-1 in apical periodontitis progression.

CXCL12/SDF-1 was identified in 67.80% of the total cells isolated from ALs, and all the immune cell populations analyzed were positive for the chemokine, including TCD4+, TCD8+, B and natural killer lymphocytes, monocytes/macrophages, neutrophils, activated dendritic cells, and mast cells. Inflammatory cells are essentially protective, but they can also cause severe damage to periodontal tissues on persistent and unregulated activation (22). It has been well established that CXCL12/SDF-1 exerts proinflammatory properties attracting monocytes/macrophages, T cells, early B-cell precursors, and neutrophils to peripheral tissues and acting as a costimulator of T-cell activation (23). Recently, it has been proposed that CXCL12/SDF-1 can skew the polarization of antigen-specific Tregs and interleukin-10 producing dendritic and monocytic cells under severe inflammatory conditions (23). Accordingly, the imbalance of immune and osteoclastic activities in ALs seems to be critically regulated by Tregs (4). Whether CXCL12/SDF-1 participates in interleukin-10 release and Tregs commitment in ALs needs to be further explored.

Mast cell identification was restricted to ALs in a similar manner to CXCL12/SDF-1, in association with inflammatory infiltrates and connective tissue. Strikingly, mast cells represented the second major cell population from the total isolated cells after lymphocytes, as well as the main CXCL12/SDF-1 expressing cells, followed by specific CD4+ lymphocyte subpopulation and monocytes/macrophages. Mast cells are mobile, bone-marrow–derived, granule-containing immune cells that are found in all connective tissues. Previous studies that were based on immunohistochemistry have reported that mast cells were a far less abundant cell type in these kinds of lesions (24). It has been reported that most ALs had null to mild mast cell infiltration (10). Differences might be explained by the different methods employed; nevertheless, it cannot be excluded that the presence and role of mast cells in ALs might be underestimated. The cytoplasmic granules of mast cells contain a vast diversity of inflammatory mediators and catalytic enzymes that can play important roles in both direct tissue damage and inflammatory and immune regulation (7), including the selective recruitment of differential leukocyte subpopulations to the AL, bone metabolism, vascular phenomena, infection control, and hard and soft tissue repair (10, 25, 26).

In the present study we were able to colocalize CXCL12/SDF-1 and CD117 in AL. Although the nature of this association in apical periodontitits is unknown, mature mast cells as well as their blood precursors express CXCR4 (27). Recent evidence suggests that mast cells could be selectively chemoattracted through the CXCL12/SDF-1 CXCR4 axis in diverse inflammatory and tumourous diseases, such as allergic airway disease and glioblastoma multiforme (15, 28). Furthermore, on the basis of the finding that CXCL12/SDF-1 was identified in nearly all CD117+ cells, this might represent a major axis targeting mast cell migration to ALs. In addition, a synergistic effect over mast cell chemotaxis has been reported between CXCL12/SDF-1 and mast cell–derived histamine that was not observed for the other mast cell chemokines (16).
Conclusions

The present study demonstrated higher levels of CXCL12/SDF-1 in ALs of endodontic origin in comparison to healthy periodontal ligament, supporting a role of CXCL12/SDF-1 in progression of human ALs of endodontic origin. CXCL12/SDF-1 was identified in most infiltrating immune cell populations. Among them, mast cells represented the major CXCL12/SDF-1 expressing cells, suggesting that this chemokine might provide a central axis for sustained immune cell infiltration in ALs, particularly of mast cells.

Acknowledgments

The authors deny any conflicts of interest related to this study.

References