Morphologic variability of nonsyndromic operated patients affected by cleft lip and palate: A geometric morphometric study

Viviana Toro-Ibacache, a Juan Cortés Araya, b Alejandro Díaz Muñoz, c and Germán Manriquez Soto d
York, United Kingdom, and Independencia, Santiago, and Ñuñoa, Región Metropolitana, Chile

Introduction: In this study, we compared patterns of morphologic variations of the craniofacial skeleton between patients affected by clefts who were operated on and unaffected subjects, aiming to discuss possible morpho-functional consequences of treatment in craniofacial development. Methods: The lateral cephalograms of 76 subjects, comprising patients with operated unilateral cleft lip and palate (OpC) and a group matched for sex and age without cleft, were used. Thirteen landmarks were used as variables in geometric morphometric tests quantifying and describing overall shape variation, differences between group means, allometry, and upper-lower face covariation. Results: The OpC group showed broader shape variations including noncleft group characteristics, but mainly a retrognathic maxilla, a vertically elongated face, a more open mandibular angle, and a more closed basicranial angle. Group means differed mainly in the maxillomandibular relationships. Allometry differed between groups, with the smallest OpC patients showing the most altered morphology. Upper and lower face covariation was stronger in the OpC group, showing mainly vertical changes in the anterior face. Conclusions: Operated patients affected by clefts achieve a broad range of morphologies; the most altered were found in those with skeletal Class III and small size. Furthermore, their strongest upper and lower face shape covariation suggests that a harmonic dental occlusion could be a key factor in achieving “normal” craniofacial morphology. (Am J Orthod Dentofacial Orthop 2014;146:346-54)
they are described as having a retrognathic maxilla.11,12,16 They also show asymmetric faces17 and altered growth of the transversal18,19 and vertical19-21 facial dimensions. Alterations of the cranial base have also been reported, although authors do not agree about these descriptions.19,20

Among the methods used to describe and compare skull morphology in individuals affected by orofacial clefts, the use of linear morphometrics and univariate statistics is common. These have some limitations related to the difficulty in assessing separately the changes in shape and size and the impossibility of capturing the geometry of all the areas of interest.22 The advances in multivariate statistics and computer technology over recent decades have led to the development of geometric morphometrics, a statistical tool widely used for the quantitative study of the shape (ie, form minus size) of organisms. Geometric morphometrics also allows visualizing the changes in morphology associated with the variables of interest.23-24 This statistical tool has been applied in studies of operated individuals affected by cleft to characterize their face surface17,25 and that of their parents.26 Geometric morphometrics has also been used to study cranial morphology in affected individuals in the frontal plane21 and the anteroposterior changes in shape during growth.27 It has been used in mice to assess developmental integration in the skull of cleft-susceptible mouse strains.28

We used geometric morphometrics analyses in this study to compare the craniofacial morphologies of a group of operated patients with UCLP with a control group of unaffected subjects with normal occlusion. We tested the general null hypothesis that patients with operated UCLP and unaffected subjects show the same patterns of craniofacial shape variations. Four parameters were studied: general shape variations, differences in mean shape between groups, allometry, and shape covariance between the upper and lower face.

MATERIAL AND METHODS

Ethical approval was granted from the Scientific Ethical Committee of the Faculty of Dentistry, University of Chile (number 2013/34) for the use of image data from the faculty’s clinical records.

The sample comprised the lateral radiographs of 76 persons: 38 (19 men, 19 women) patients with nonsyndromic, operated UCLP (OpC group); and 38 (19 men, 19 women) control subjects with Class I dental occlusion and with an overall harmonious skeletal and soft-tissue profile (NonC group). All the radiographs belonged to patients from the dental clinic of the University of Chile and were taken for medical reasons (diagnosis or treatment evaluation) before the beginning of this study. The radiographs had been taken according to the institutional protocol at the time, with pano/ceph equipment (Siemens Healthcare, Erlangen Germany) operated at 75 to 80 kV and 20 to 25 mA. The position of the head was determined by the cephalostat, fixing the position of the external acoustic meatus and nasion.

All patients were Chileans living in Santiago de Chile or the surrounding areas, representing a dihybrid sample of Amerindian-Spanish admixture with varying levels of the Amerindian component. Those with a greater Amerindian component have been associated with a higher susceptibility to clefts compared with subpopulations of white origins.29 The mean ages were 13.1 ± 2.67 years in the OpC group and 12.68 ± 2.28 years in the NonC group. Patients in the OpC group had undergone cosmetic surgery of the soft tissues and orthodontic treatment without orthognathic surgery or orthopedic treatment with a maxillary-traction facial mask. The primary cleft closure of the patients in the OpC group was performed at a few clinical institutions by various surgeons in Chile. When these patients were operated on, most surgeons in Chile used an approach based on the Tennison-Randall, Skoog, and Millard techniques, with the primary lip closure performed at 3 months of age, the primary soft-palate closure at 12 months, and the hard-palate closure performed simultaneously at one of these times.30

The 2-dimensional geometry of the cranial base, upper face, and mandible was captured using 13 landmarks (Table I, Fig 1). They were selected according to the criteria of Bookstein31 and Dryden and Mardia32 for biologic landmark data. To improve the comparability with other studies in the field, most of the selected landmarks were based on those of Delaire et al.33 The number of landmarks used was considered sufficient to capture key anatomic features and appropriate to increase the statistical power of analyses (see the studies of Bookstein34 and Monteiro et al35 for recommendations about the optimal number of landmarks and sample size). The landmarks were marked by 1 observer (A.D.M.) on a transparent acetate sheet placed on each radiograph and revised by a second observer (J.C.A.). Raw data in the format of x and y coordinates representing each landmark were digitized by 1 observer (V.T.-I.) using a mechanical digitizing system (MicroScribe; Immersion, Palo Alto, Calif). Landmark coordinates were exported as text files to be used in subsequent analyses. To assess the effect of measurement error, 16 subjects (4 men and 4 women from each of the 2 groups) were redigitized on 6 different days.

Statistical analysis

The geometric morphometric analyses were performed on shape variables. These were obtained by Procstes fit, which consists of translation, rotation, and
These new rotated, translated, and scaled configurations lie in a manifold-like shape space from where they are orthogonally projected to a tangent Euclidian space to obtain shape variables (Procrustes coordinates) that are suitable for traditional multivariate statistics. As a result of this stage, a consensus configuration was obtained that is the reference for quantifying the shape changes of the subjects in the sample (see Fig 3 in the study of O’Higgins and Jones36).

An analysis of variance (Procrustes ANOVA) was performed on the redigitized sample to assess the general effect of sex, condition, and measurement error on shape variation.37,38 In this subsample, there was no significant effect of sex or repeated landmark placing (Table II). The nonsignificant effect of sex was corroborated by repeating the analysis in the groups in the entire sample (data not shown). Subsequently, the subjects were not pooled by sex in the rest of the analyses (except for allometry, as explained below).

General shape variations were studied using principal component analysis.24,36 The differences between average landmark configurations of each group were assessed using discriminant analysis and estimating the Mahalanobis distances between group means in the original shape space.38 The strength of the classification of the subjects in each group based solely on their morphology was estimated through leave-1-out cross-validation.38

The effect of size on shape variation or allometry27,39 within groups was evaluated by multivariate regression of Procrustes coordinates on centroid size36,39: ie, the square root of the sum of the squared distance of each landmark from the configuration geometric centroid.40 Since an ANOVA of centroid size yielded a significant effect of sex (Table III), the sexes were studied separately in the control and experimental groups. To improve the visualization of the dependence of shape on centroid size, the approach of Drake and Klingenberg41 was used. According to this approach, shape scores for each group are computed by projecting the shape variables onto a line in the direction of the regression vector. The directions of the allometric vectors representing the pattern of shape changes with the size of each group were compared to assess differences in shape-size relationships.42

The shape covariation between the upper and lower face within groups was assessed using 2-block partial

Table I. Selected landmarks (a subset of landmarks was assigned to upper face [UF] and lower face [LF] for covariation analysis)

<table>
<thead>
<tr>
<th>Landmark</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basion</td>
<td>Ba</td>
<td>Most anterior point of the foramen magnum</td>
</tr>
<tr>
<td>2. Clinoild posterior</td>
<td>CIP</td>
<td>Apex of the posterior clinoid process</td>
</tr>
<tr>
<td>3. Pterygoid superior (UF)</td>
<td>PtS</td>
<td>Most superior point of the pterygopalatine fossa</td>
</tr>
<tr>
<td>4. Enlow (UF)</td>
<td>M</td>
<td>Intersection between the frontonasal and the nasomaxillary sutures</td>
</tr>
<tr>
<td>5. Posterior nasal spine (UF)</td>
<td>PNS</td>
<td>Most posterior point of the bony palate</td>
</tr>
<tr>
<td>6. Nasopalatine (UF)</td>
<td>Np</td>
<td>Most superior point of the anterior wall of the nasopalatine canal</td>
</tr>
<tr>
<td>7. Anterior nasal spine (UF)</td>
<td>ANS</td>
<td>Most anterior point of the anterior nasal spine</td>
</tr>
<tr>
<td>8. Upper incisor</td>
<td>Ul</td>
<td>Incisal edge of the central incisors</td>
</tr>
<tr>
<td>9. Occlusal posterior (LF)</td>
<td>OcP</td>
<td>Most posterior point of contact between both dental arches</td>
</tr>
<tr>
<td>10. Lower incisor (LF)</td>
<td>LI</td>
<td>Incisal edge of the central incisors</td>
</tr>
<tr>
<td>11. Menton (LF)</td>
<td>Me</td>
<td>Most inferior point of the menton</td>
</tr>
<tr>
<td>12. Gonion (LF)</td>
<td>Go</td>
<td>Point of maximum curvature at the gonial angle</td>
</tr>
<tr>
<td>13. Condyle posterior (LF)</td>
<td>CoP</td>
<td>Most posterior point of the head of the condyle</td>
</tr>
</tbody>
</table>

Fig 1. Selected landmarks. The wire frame used for visualization is represented as *white lines.*

scaling to unit size of the landmark configurations.32,36 These new rotated, translated, and scaled configurations lie in a manifold-like shape space from where they are orthogonally projected to a tangent Euclidian space to obtain shape variables (Procrustes coordinates) that are suitable for traditional multivariate statistics. As a result of this stage, a consensus configuration was obtained that is the reference for quantifying the shape changes of the subjects in the sample (see Fig 3 in the study of O’Higgins and Jones36).
least square (PLS) analysis. This analysis estimates the extent of covariation between 2 sets of data. To evaluate the strength of the association between the main axes of covariation, the RV coefficient (Escoufier’s multivariate analog of the squared correlation) was calculated. Since the graphic output of the PLS analysis shows shape changes in separate and independent blocks (1 for each upper and lower face), interpretations of relative sizes and positions between blocks were not possible.

The statistical significance of differences between mean shapes, the allometric effect, and upper and lower face covariation were calculated using permutation tests with a significance level of 0.05. All geometric morphometric analyses were performed with the software MorphoJ version 1.05.

RESULTS

In terms of general shape variation, the principal component analysis results show some overlap between groups (Fig 2). About a third of the patients in the OpC group showed a craniofacial variation similar to that of the NonC subjects. However, because of the much larger variability in the OpC group compared with the NonC group, 2 main clusters of subjects can be distinguished. The main axes of shape variation depict changes in the anteroposterior facial projection in relation to the cranial base, the anteroposterior relationship between the maxilla and the mandible, and the vertical dimensions of the anterior portion (Na, ANS, UI; see Table I for abbreviations) relative to the posterior portion of the upper face (PtS, PNS, and OcP).

The discriminant analysis resulted in significant differences between the mean shape configurations of each group (Mahalanobis distance, 2.95; \(P < 0.0001 \)). The cross-validation of the linear discriminant classification showed that 7 patients in the OpC and 5 in the NonC groups had a craniofacial shape that could have been found in the opposite group (corresponding to 18.42% and 13.15% of mismatching, respectively). The OpC group mean had a slightly more closed cranial base, an anterior crossbite, a more open mandibular angle, and a more elongated anterior face compared with the control group (Fig 3).

None of the groups showed a significant allometric effect (Table IV). The vector directions representing the shape-size relationship pattern did not differ significantly between groups either, but among the male subjects the relationship was close to the threshold value for statistical significance. Despite the \(P \) values we obtained, the plots of the regression scores against centroid size depict a different size-shape relationship between the OpC group and the controls (Fig 4), irrespective of sex. The largest subjects in both groups showed a similar maxillomandibular relationship and anterior dental occlusion, but the OpC group had

Table II. Procrustes ANOVA for sources of general variation in a subsample of 16 subjects

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>MS</th>
<th>df</th>
<th>(F)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>0.019974</td>
<td>0.000908</td>
<td>22</td>
<td>0.64</td>
<td>0.8946</td>
</tr>
<tr>
<td>Condition</td>
<td>0.180671</td>
<td>0.008212</td>
<td>22</td>
<td>5.78</td>
<td>(<0.0001)</td>
</tr>
<tr>
<td>Individual</td>
<td>0.406597</td>
<td>0.001422</td>
<td>286</td>
<td>18</td>
<td>(<0.0001)</td>
</tr>
<tr>
<td>Measurement error</td>
<td>0.139006</td>
<td>0.000079</td>
<td>1760</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SS, Sum of squares; MS, mean square; df, degrees of freedom; \(F \), value of the \(F \) statistic.

Table III. Two-way ANOVA of centroid size and the effects of condition and sex

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>MS</th>
<th>df</th>
<th>(F)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>173.2</td>
<td>173.2</td>
<td>1</td>
<td>2.178</td>
<td>0.144</td>
</tr>
<tr>
<td>Sex</td>
<td>2992</td>
<td>2992</td>
<td>1</td>
<td>37.620</td>
<td>(<0.0001)</td>
</tr>
<tr>
<td>Condition and sex</td>
<td>3.459</td>
<td>3.459</td>
<td>1</td>
<td>0.0435</td>
<td>0.835</td>
</tr>
<tr>
<td>Interaction</td>
<td>5726</td>
<td>79.53</td>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SS, Sum of squares; MS, mean square; df, degrees of freedom; \(F \), value of the \(F \) statistic.

Fig 2. Principal component analysis of shape variables. The wire frames show the associated shape features at the extreme of each axis. Proportions of variance are explained in parentheses.
relatively less anteroposteriorly developed cranial base and upper face. The palate segment between Np and PNS was less developed in relation to the ANS-Np portion, and the angle LI-Me-Go was more acute. The smallest subjects, on the other hand, showed different maxillomandibular relationships, with an anterior crossbite in the OpC group. This group also had a less vertically developed posterior portion of the upper face compared with the NonC group (Fig 4).

The PLS analysis of both groups showed that the first 2 axes (ie, PLS1 and PLS2) explain more than 80% of the total covariation between the upper and lower face. Although it was not significantly strong in any group, upper and lower face shape covariation was higher in the OpC group than in the control group (Fig 5). In comparison, the control group showed less extreme combinations of features, several of which were shared with the OpC group. Although an overlap between groups was found, the mean shapes were significantly different between the groups. This is likely to occur because of the effect of the most distinctive feature between groups: the anterior occlusion—ie, an anterior crossbite in the OpC group. As was previously mentioned, this is the most common finding in studies. In terms of shape variation, our results agree with those obtained by Cortés Araya and Granic Marinov. These authors, in a detailed cephalometric study of operated individuals with UCLP from the same geographic region as in our study, found them to have a retrusive maxilla, an anterior crossbite, and a reduced height of the posterior region of the upper face as well as posteroanteriorly more inclined palates.

DISCUSSION

In this study, we compared patterns of morphologic variation between operated patients with UCLP and a control group. Geometric morphometric tools were used to quantify, characterize, and compare craniofacial morphology in terms of general shape variation, difference between mean shapes, allometric effect, and shape covariation between the upper and lower face. The general hypothesis that operated patients with UCLP and unaffected subjects show the same pattern of shape variation was not supported by our findings. However, our results show both similarities and differences between the control and experimental groups; the causes are discussed further below.

General shape variations in the OpC group were widely spread, incorporating several combinations of features such as normal occlusion or anterior crossbite, anteroposteriorly vertically elongated or shortened face, convex or concave profile, and open or closed mandibular angle (Fig 3). In comparison, the control group showed less extreme combinations of features, several of which were shared with the OpC group. Although an overlap between groups was found, the mean shapes were significantly different between the groups. This is likely to occur because of the effect of the most distinctive feature between groups: the anterior occlusion—ie, an anterior crossbite in the OpC group. As was previously mentioned, this is the most common finding in studies. In terms of shape variation, our results agree with those obtained by Cortés Araya and Granic Marinov. These authors, in a detailed cephalometric study of operated individuals with UCLP from the same geographic region as in our study, found them to have a retrusive maxilla, an anterior crossbite, and a reduced height of the posterior region of the upper face as well as posteroanteriorly more inclined palates.
relative to the anterior portion of the cranial base. However, we found different combinations of cranial base morphology, with the UCLP patients showing a relatively more closed basicranial angle compared with the more open one found by the mentioned authors. This difference between studies and the broader range of basicranial morphology that we found can be related to the different methods used. Geometric morphometrics analyzes differences in the complete geometry of a structure, whereas traditional cephalometric approaches use linear measurements and angles as separate variables describing the form of the structure.

Allometry, or shape changes with size, was not significantly different between groups. However, differences were found in the shape of the smallest subjects, who were not necessarily the youngest ones. The patients in the OpC group showed the shape features characteristic of the mean group shape. Overall size did not vary significantly between groups; this differs from the results of Horswell and Levant, who in a cephalometric study found a retarded growth pattern in operated individuals with UCLP. We found that the largest patients in the OpC group had a “normal” morphology, thus supporting the idea that the altered shape in operated individuals with UCLP is due to altered growth. The altered growth of the upper face has been proposed to be caused mainly by an inappropriate reconstruction of facial and palatal musculature, depriving the maxilla of a key developmental factor. The altered growth of the upper face has also been related to an individual, genetically based tendency of individuals with cleft to a relatively less developed upper face. Whether the altered shape in small cleft patients is due to an individual tendency cannot be fully elucidated in our study. However, it is likely that the broad shape variations and hence allometric patterns in the OpC

Table V. PLS values of upper and lower face shape covariations

<table>
<thead>
<tr>
<th>Group</th>
<th>PLS</th>
<th>Singular value</th>
<th>P value</th>
<th>Total covariation (%)</th>
<th>Correlation</th>
<th>P value</th>
<th>RV</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpC</td>
<td>PLS1</td>
<td>0.000847</td>
<td>0.180</td>
<td>51.619</td>
<td>0.537</td>
<td>0.252</td>
<td>0.172</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>PLS2</td>
<td>0.000677</td>
<td>0.016</td>
<td>32.947</td>
<td>0.519</td>
<td>0.087</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS3</td>
<td>0.000390</td>
<td>0.142</td>
<td>10.949</td>
<td>0.372</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS4</td>
<td>0.000241</td>
<td>0.209</td>
<td>4.191</td>
<td>0.398</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS5</td>
<td>0.000056</td>
<td>0.915</td>
<td>0.223</td>
<td>0.081</td>
<td>0.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS6</td>
<td>0.000032</td>
<td>0.429</td>
<td>0.072</td>
<td>0.057</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NonC</td>
<td>PLS1</td>
<td>0.000549</td>
<td>0.617</td>
<td>54.644</td>
<td>0.536</td>
<td>0.248</td>
<td>0.103</td>
<td>0.593</td>
</tr>
<tr>
<td></td>
<td>PLS2</td>
<td>0.000437</td>
<td>0.241</td>
<td>34.545</td>
<td>0.489</td>
<td>0.098</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS3</td>
<td>0.000182</td>
<td>0.903</td>
<td>6.020</td>
<td>0.282</td>
<td>0.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS4</td>
<td>0.000153</td>
<td>0.458</td>
<td>4.258</td>
<td>0.226</td>
<td>0.589</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS5</td>
<td>0.000054</td>
<td>0.800</td>
<td>0.526</td>
<td>0.058</td>
<td>0.965</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLS6</td>
<td>0.000006</td>
<td>0.849</td>
<td>0.006</td>
<td>0.014</td>
<td>0.822</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RV, Escoufier’s coefficient.

Fig 4. Allometric effect: A, regression of shape components against centroid size, showing the different relationships between shape and size of each group; B, shape changes per 30 mm of decrease (small subjects) or increase (large subjects) in centroid size. W, Women; M, men.
The upper and lower face covariation pattern was stronger in the OpC group than in the control group, although in both cases the relationship was not significant. The almost, but not statistically, significant covariation in the OpC group was not surprising given the observed pattern of shape variation, where an important part of the sample (about a third) showed "normal" morphology. The strongest upper and lower face covariations in the OpC group were in relation to their altered shape features—antero-crossbite, retruded position of the upper face, increased anterior facial height, posteroanteriorly inclined palate, and increased mandibular angle. This suggests that the altered facial profile is the product of the integrated development of facial features in which a less developed and small upper face and possibly the cranial base are leading mandibular development. The importance of the functional loading in bone morphology, by bone remodeling processes reacting to external loads, is widely acknowledged. In the cranium, mastication is perhaps the main source of high, repetitive loads that act on the cranium, which develops over a long time (at least until the end of skeletal growth). In subjects without a cleft, it has been shown that the shape of the mandible correlates with diet and at the same time with the shape of the maxilla. However, the mandible does not covary with the rest of the upper face, whose morphology correlates more to nonfunctional factors such as population history, showing that these 3 structures have a modular behavior. Therefore, we propose that dental occlusion plays a key role in the correlated changes between the upper and lower face. An altered occlusion could lead to limited ranges of maxillomandibular relationships in space during mastication, altered dental load distributions, and thus an enhanced effect of mastication on craniofacial development, either by increasing or by decreasing the magnitude of loads being transmitted to the cranium during mastication. On the other hand, a normal occlusion and normal mandibular dynamics allow for somewhat independent development of the different parts, which would achieve a harmonic relationship with each other under normal ranges of masticatory loading. Furthermore, a diminished masticatory muscle force is seen in long-faced, nonleft subjects, thus reducing the masticatory force input in bone development and perhaps enhancing the effect of parafunctions during feeding and speech. For esthetic as well as developmental reasons, the effect of an early, functional reconstruction of the labial and palatal musculature is irreplaceable. In addition, it would be worthwhile to investigate further how dental occlusion and perhaps masticatory muscle forces constrain facial development and growth, and how they can be used to improve treatment with orthopedics or physiotherapy.

CONCLUSIONS

The results of our study show that differences and also similarities can be found in the patterns of shape variations of operated patients affected by UCLP and unaffected subjects. The affected group showed a broader range of craniofacial features and a different relationship with size compared with the control group. With the control group as a reference, the main differences in the anatomy of the mandible, cranial base, and, most markedly, the upper face were found in the patients affected by clefts with a Class III maxillomandibular relationship and the smallest size. In addition to this, the strengths of covariation (greater in the study group) between the upper and lower face are the mean factors explaining the differences between the groups. These results might reflect the importance of a normal dental occlusion, in addition to a correct reconstruction of the soft tissues, in the resulting craniofacial development.
ACKNOWLEDGMENTS

We thank Professor Doris Cauvi (Facultad de Odontología, Universidad de Chile), Dr Kornelius Kupetzik (Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany), Sebastián Krapivka (Facultad de Ciencias Sociales, Universidad de Chile), Professor Paul O’Higgins (Hull York Medical School, York, United Kingdom), and Drs Rafael Blanco and Carlos Valenzuela (Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile) for help during data collection, analysis, discussion, or comments on the manuscript.

REFERENCES

