CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis

Mauricio Latorre a, Felipe Olivares a, Angélica Reyes-Jara b, Guadalupe López c, Mauricio González a,d,e,*

a INTA, Laboratorio de Bioinformática y Expresión Génica, Universidad de Chile, El Libano 5524, Macul, Santiago, Chile
b BioSigna S.A., Avda. General San Martin, Colina, Santiago, Chile
c Laboratory of Molecular Nutrition, Academic Area of Nutrition, Autonomous University of Hidalgo State, Sahagún, Pachuca, Mexico
d Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling, Santiago, Chile
e Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile

Article history:
Received 2 February 2011

Keywords: CutC Enterococcus faecalis Copper homeostasis Gene expression qPCR Copper content

A B S T R A C T

Copper is a micronutrient that is required for proper metabolic functioning of most prokaryotic and eukaryotic organisms. To sustain an adequate supply of copper, a cell requires molecular mechanisms that control the metal content to avoid copper toxicity. This toxicity comes primarily from the reactivity of copper, which can lead to the generation of free radicals. In bacteria, two independent systems are responsible for maintaining the balance of copper within the cells (Cop and Cut family proteins). Previous studies describe CutC as a member of the Cut family that is probably involved in copper homeostasis. However, the role of CutC in copper homeostasis is still unclear. In this work, a homolog of CutC was studied in Enterococcus faecalis, a bacterial model for copper homeostasis. The molecular 3D model of efCutC shows the presence of triose phosphate isomerase (TIM) barrel motifs, previously described in CutC crystals from other organisms, which illustrates the conservation of amino acids with the potential ability to coordinate copper. Through quantitative real-time PCR (qPCR), it was demonstrated that efCutC expression is induced late by copper stimulus, Interestingly this transcriptional response directly correlates with a significant increase in the intracellular copper concentration when the protein is absent in the bacteria, suggesting its participation in mechanisms related to efflux of the metal. Our results describe efCutC as a protein able to respond transcriptionally to copper and to participate in the control of copper homeostasis in E. faecalis. This bacterium is the first reported organism containing a cop operon and an active member of the Cut protein family.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Copper is a trace element required by prokaryotic and eukaryotic organisms [1]. In nature, copper can be found in an oxidized (Cu²⁺) or reduced (Cu⁺) state. Thus, it can act as an electron donor or acceptor in the reduction or oxidation of different substrates. Within biological systems, copper is used as a cofactor in metallo-enzymes involved in cellular respiration processes, iron transport and protection from free radicals [2,3]. Such properties make this transition element essential to carry out a series of biochemical processes in a normal fashion. On the other hand, excess copper can induce the generation of free radicals through the Haber–Weiss and Fenton reactions [4], which are capable of damaging cell membranes, proteins, and DNA [5]. This duality of copper’s behavior explains the need for specific regulatory systems that maintain a cellular homeostasis of the metal. Uptake, internal traffic, storage and efflux are the four main steps required to handle this metal in the cell’s environment [6]. In bacteria, one of the most studied systems that control copper content is codified by the cop operon [7]. This operon codes for proteins able to control intracellular copper traffic, mediate the uptake and efflux of the metal, and regulate the operon’s own expression.

A second group of proteins that also has a crucial role in maintaining copper levels within the cell is the cut family [8]. One of the most studied members of this family is the CutC protein. Although its role in copper homeostasis is not well understood, there is increasing evidence suggesting that this gene might be differentially expressed in response to copper, as it could be directly or indirectly involved in protection from excess amounts of this metal. Transcriptional analysis in the plant pathogen Xylella fastidiosa shows an induction of cutC under increasing copper concentrations [9]. The opposite behavior has been observed in the nematode Caenorhabditis elegans, where the gene is repressed in response
to elevated copper concentrations [10]. The crystal structure of human CuCt assumes a typical TIM barrel fold present in cytoplasmic proteins (previously described in Shigella flexneri) [11,12], with two conserved cysteine residues for potential participation in copper coordination. All these antecedents suggest that CuCt probably participates in regulation of copper homeostasis; however, it is still unclear how the capacity of cutC to respond to copper levels may affect the intracellular concentration of the metal.

In this context, using Enterococcus faecalis as a model for copper homeostasis, the goal of this work is to show a temporal correlation between the expression of cutC and the effect of its absence on the metal content over time, thus strengthening the link between the behavior of the cutC gene and copper homeostasis in this bacterium.

2. Materials and Methods

2.1. Bioinformatics analysis

The efCutC molecular 3D model was obtained by automatic sequence comparison from the human CuCt crystallographic information (PDB id. 3IWP) using the SWISS-MODEL program. It was displayed with VMD v1.8.6 software [13,14]. Homologous CuCt sequences from Lactobacillale order organisms were obtained from the National Center for Biotechnology Information (NCBI) website by BlastP using the efCutC sequence as a template (EF2667) [15]. Global protein alignments were performed using Clustal W (BioEdit software) [16]. A secondary structure prediction of efCutC was generated using the PROTEUS website [17].

2.2. Strains, growth conditions and copper/iron/hydrogen peroxide treatments

E. faecalis strains were grown on N medium (Peptone 1%, yeast extract 0.5%, Na2HPO4 1% and glucose 1%) [18]. For all the treatments, the strains were precultured overnight in N medium broth at 37 °C. The next day, the cells were diluted in two parallel cultures (control and treatment) to a final OD600 of 0.05 and then grown at 37 °C and 160 rpm. The treatment culture was supplemented with a nonlethal concentration of 0.5 mM of CuSO4 [18], 2.4 μM of H2O2 or 0.5 mM of FeCl3:NTA (1:1). After 15, 45, 90 and 135 min of incubation with CuSO4, 45 min with H2O2 and 6 h with FeCl3:NTA, 6 ml of each culture were collected by centrifugation and washed with phosphate buffered saline (PBS: 0.15 M NaCl, 50 mM glycine (pH 3.5) and 1.0 mM EDTA) at a pH of 6.8. Finally, the washed cells were resuspended in 1 ml of PBS. Aliquots were taken for RNA extraction and copper content quantification.

2.3. RNA extraction, cDNA synthesis and quantitative real-time PCR (qPCR)

The total RNA from the control and the treatment aliquots was extracted using a Qiagen RNeasy mini kit (Qiagen). The residual DNA was removed with RNase-free DNase (Promega), according to the manufacturer’s recommendations [18]. The RNA integrity was assessed by gel electrophoresis. For cDNA synthesis, 2 μg of total RNA were reverse-transcribed using Moloney Murine Leukemia Virus Reverse (Promega, USA) with random primers (Invitrogen). All of the PCR primers used were designed with Primer3 plus software [19], employing the E. faecalis V583 genome sequence [20] as a template (Table 1). The qPCR reactions and the data analysis were performed as described previously [21], using the gdh gene (EF1004) for normalization [18,22]. In all of the cases, qPCR reactions were carried out in triplicate using two independent RNA samples. The results were expressed as the fold change between copper-treated and control cultures. The statistical analyses were assessed by the REST 2008 algorithm [23].

2.4. Mutant cutC generation

Mutant cutC strains of E. faecalis OG1RF were constructed using the pTEX4577 vector system, as previously described [24]. Briefly, a fragment of 400 bps corresponding to a central portion of the gene was amplified by PCR. The amplicon was first cloned in pGEM-T Easy (Promega) and then assembled in pTEX4577. The resulting construct was transferred to E. faecalis OG1RF by electroporation, and the transformants were selected in N medium agar plates supplemented with 2 mg/mL of Kanamycin. The selected mutants were verified by PCR and Southern Blot. Finally, different restriction patterns between wild-type and mutant cutC were confirmed by a pulsed-field gel electrophoresis.

2.5. Quantification of copper

After the copper treatments, an intracellular copper quantification for each aliquot was performed by atomic absorption spectrometry (AAS), as described previously [18]. The results were expressed as copper atoms normalized per μg of protein and represent the average value of three measurements for two independent biological replicates. The statistical analysis was done by an ANOVA test (p < 0.05).

3. Results and discussion

The proteins involved in copper homeostasis are structurally and functionally conserved from eukaryotic to prokaryotic organisms. Such is the case for copper efflux ATPases, chaperons, and proteins related to the control of oxidative stress generated by an excess of the metal [6]. In this context, our first approach was to identify whether CuCt exhibits the structural characteristics described in other organisms for this metalloprotein. Previous bioinformatics searches indicated the presence of a putative CuCt protein in E. faecalis (efCutC) [25]. It has been reported that homologs of this protein exhibit the classical folding of the TIM barrel family of proteins, highly conserved among prokaryotes and eukaryotes [10,11]. The 3D projection generated in this work was consistent with data previously reported in other species; eight beta sheets form a central core surrounded by seven alpha-helices, which is typical in several cytoplasmic proteins (Fig. 1A). In particular, the residues Cys6, Glu25, Cys27, Met57, His123 and Glu204 stand out because they are arranged in a form similar to the copper coordination motif described in the human crystal CuCt protein [10,11]. In addition to this information, it has been documented that TIM family proteins are able to coordinate divalent metals, as is the case for phosphotriesterase (linked to the detoxification of organophosphates) and aminoacylase (linked to amino acid synthesis), which use zinc as a cofactor and can even be inhibited by copper and cadmium [26,27].
Global alignment shows that the homologs of efCutC found in species of the Lactobacillale order retained a high degree of conservation of their primary structures (identity values > 45%). The elevated identity of the copper binding motif (Fig. 1B) suggests the existence of a common structure for the coordination of the metal. A similar configuration has been previously described in the copper binding motifs C-x(2)-C-x(21)-C and C-x(18)-C present in Saccharomyces cerevisiae [28]. Furthermore, the genomic organization of efcutC as a monocistronic operon is conserved within the Lactobacillale order (data not shown) as is also the case for the cop genes, which are highly conserved in their genome in different species of the Lactobacillale order [25].

Several studies indicate that genes encoding components involved in copper homeostasis or that are related to a secondary response to the generation of oxidative stress alter their expression levels in response to metal exposure [29–31]. qPCR experiments show that a prolonged exposure (135 min) to a nonlethal concentration of copper generated a significant increase, nearly threefold, of the efcutC transcript levels (Fig. 2A). This result is consistent with observations reported for cells of the plant pathogen X. fastidiosa that were exposed for 24 h to 3, 4, 5, 6 and 7 mM CuSO4 [9]. The abundance of all E. faecalis transcripts for cop genes was augmented approximately 30-fold after 15 min of copper exposure and remained around the same levels during the 135 min of treatment (Fig. 2B). It has been reported that the transcription factor CopY recognizes the motif (TACA-x(2)-TGTA), a palindromic sequence in the promoter region of cop genes that is highly conserved in species of the Lactobacillale order [25]. This binding site is absent in the promoter of efcutC (Supplementary S1). This information, in addition to the differences in expression of the cop genes and efcutC suggests the presence of independent regulatory transcriptional mechanisms for these genes that are activated by copper exposure.

Our data allow us to propose that E. faecalis produces an early transcriptional response (cop genes) followed by a second late response (efcutC) when confronted with an increase in the availability of extracellular copper. The first, early response is probably linked directly to management of the copper inside the cell, and the second one might be associated with the consequences of increasing intracellular metal levels, such as changes in the redox status of the cell. To verify the possible effects of oxidative stress generation during copper exposure, three general transcription markers for oxidative stress were quantified: thioredoxin (trx), superoxide dismutase (sod) and catalase (cat) (Fig. 2C) [32]. The results show that after 90 min of copper exposure, the transcript levels for the trx gene were augmented approximately 2-fold. Thioredoxins, given their capacity to reduce thiol groups, are generally linked to a wide response against different reactive oxygen species (ROS) generated by the presence of several metals, including copper [32]. On the other hand, several studies in bacteria have reported an overexpression of cat when cells are exposed to hydrogen peroxide [33,34]. In the same way, Helicobacter pylori cultures treated with iron have shown an induction of sod [35], and this response is directly related with the presence of superoxide generated by the metal exposure [32]. In this line of evidence, our qPCR experiments showed that the exposition of E. faecalis to non-lethal concentrations of hydrogen peroxide and iron increased the transcript levels of cat and sod, respectively, in absence of changes
in the expression of efcutC (Supplementary Table 1). These results indicate that the effects of prolonged copper exposure could activate the expression of efcutC. This activation was not observed when _E. faecalis_ was exposed to other oxidative stress inducers, suggesting that the induction of efcutC is linked specifically to the stimulus of copper. This particular behavior has been previously described for several genes involved in copper homeostasis [36]. Several hypotheses have been proposed to explain copper induced cellular toxicity. Most often, the basis for these theories is the propensity of copper ions to participate in the generation of ROS [37,38]. Our results suggest that the transcriptional changes of efcutC and trx are induced by copper, sharing the same direction and time occurrence. In general, the induction of trx is an indicator of the activation of a wide array of mechanisms that respond to different types of damage generated by ROS [39]. In addition, the presence of thioredoxins is essential in the biogenesis of iron-sulfur clusters [40], and recent experiments describe that copper could directly damage iron-sulfur clusters in _Escherichia coli_ [41]. In this context, further investigations are necessary to identify the specific mechanisms through which copper might induce the expression of efcutC.

The absence of different components involved in copper trafficking has been proven to influence copper homeostasis, substantially affecting the cellular copper content [6,18]. To understand the effects of efcutC in the regulation of copper homeostasis and the possible relationship of copper homeostasis with efcutC expression changes, we compared the intracellular copper content between _E. faecalis_ wild-type and efcutC mutant strains (Fig. 3). The absence of efcutC generates a statistically significant increase (approximately 1.3 times) in copper content after 90 and 135 min of exposure to the metal in the efcutC mutant. A similar phenotype is observed in _E. faecalis_ when the copper efflux P-type ATPase protein (CopA) is absent, in which the intracellular metal content increases nearly 1.6 times after 2 h of exposure to 0.5 mM CuSO4, which is directly related to a decrease in cell viability [18]. The increment in intracellular copper levels as a consequence of the absence of efcutC suggests that the protein could be involved in mechanisms of homeostasis regulation related to metal efflux. The viability of the efcutC mutant exposed to copper is not altered (Supplementary S2), and a possible cause for this might be the active presence of CopA or other mechanisms of resistance to high copper levels. These results suggest that under copper exposure, the presence or absence of certain elements (such as CopA or CutC) can cause differences in the accumulation of the metal inside the cell, establishing different thresholds of copper tolerance in _E. faecalis_ that depend on the activity of these proteins.

4. Conclusion

The elevated intracellular copper levels that result from a prolonged exposure to the metal induces the expression of efcutC. When efcutC is not present, the increase in transcript abundance is temporally correlated with an increase of the intracellular copper concentration, suggesting that efcutC may participate directly or indirectly in copper efflux as a chaperone or as a copper-user protein involved, for instance, in metabolic processes capable of generating sufficient energy (ATP) required by the efflux ATPases systems (CopA), suggesting an indirect participation in copper homeostasis. Finally, along with the characterization of CutC as a component involved in copper homeostasis, our results position _E. faecalis_ as the first bacteria with an active member of the Cut protein family and a Cop operon able to respond to copper and modify the cellular metal content, making this bacteria an
interesting model to study the complementation of the homeo-
static mechanisms controlled by these proteins.

Acknowledgments
We wish to thank Dr. Barbara Murray (Division of Infectious
Diseases, Department of Medicine, Houston, TX, USA) for technical
support in CuT mutant generation. This work was financed by
Fondect No. 1071083 and FONDAP No. 15090007 projects. M. Latorre
is a recipient of a Conicyt doctoral fellowship.

Appendix A. Supplementary data
Supplementary data associated with this article can be found,

References
D.R. Winge (Eds.), Metal Ion Homeostasis: Molecular Biology and Chemistry,
Machado, A.A. De Souza, Copper resistance of biofilm cells of the pathogen
Caenorhabditis elegans cutc-1 exacerbates the sensitivity toward high levels of
399–405.
preliminary crystallographic studies of CutC, a novel copper homeostasis
protein from Shigella flexneri cutc-1 exacerbates the sensitivity toward high levels of
[14] A. Reyes, A. Leiva, V. Cambiasso, M.A. Mendez, M. Gonzalez, Cop-like operon:
structure and organization in species of the Lactobacillaceae order, Biol. Res. 39
functional role of the binuclear metal center in α-aminocacylase: one-metal
13967.
[17] V. Calderone, B. Dolderer, H.J. Hartmann, E. Hechner, C. Luchinat, C. Del Bianco,
S. Mangani, U. Weser, The crystal structure of yeast copper thiolene: the
oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic
[19] C. Rensing, G. Grass, Escherichia coli mechanisms of copper homeostasis in a
[21] B. D’Autrechoir, M.B. Toledano, ROS as signalling molecules: mechanisms that
824.
[22] T.C. Hoopman, W. Liu, S.N. Joslin, C. Pybus, C.A. Brautigam, E.J. Hansen,
Identification of gene products involved in the oxidative stress response of
[23] H.E. Schellhorn, Regulation of hydroperoxidase (catalase) expression in
Kusters, S. Bereswill, A.H. van Vliet, Iron-responsive regulation of the
Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by
tuberculosis to physiological levels of copper, J. Bacteriol. 190 (2008) 2939–
2946.
[26] L.M. Gaetke, C.K. Chow, Copper toxicity, oxidative stress, and antioxidant
mechanisms underlying copper-induced damage in biological membranes
Morgan, J. Quinn, Thioredoxin regulates multiple hydrogen peroxide-induced
[29] H. Ding, K. Harrison, J. Lu, Thioredoxin reductase system mediates iron
binding in IscA and iron delivery for the iron-sulfur cluster assembly in IscU, J.
[30] L. Macomber, J.A. Imlay, The iron-sulfur clusters of dehydratases are primary
8344–8349.