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Abstract
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1. Introduction

The theory and practice of wavelet decomposition of signals and functions is a particularly attractive
research area in approximation theory and in signal processing. Their applications range from transmit-
ting or filtering signals to the numerical solution of partial differential equations (see, e.g., [4,8]). The
most used wavelets bases for multiresolution analysis (MRA) in multiple dimension are obtained through
tensor products of one-dimensional functions (see, e.g., [5,6]). Quite from the beginning, a more general
multi-dimensional approach was given by the pioneers of the MRA (see [15,16,21]); for the actual con-
struction of multivariate pre-wavelets, see [7].

In this context, polyharmonic functions have been considered very often in literature. Indeed, the pos-
sibility of doing MRA generated by classes of polyharmonic splines have been studied in some detail
as far back as the works [15] and [17], where the scaling function generates orthogonal Riesz basis, and
many others authors continued this development [14,16,18,20]. In these works, in particular we find the
class of the so-called polyharmonk-splines. As is well known, in [22,23] polyharmoni-splines
were introduced as a finite linear combination of translates—actually a discretization of the iterated
Laplacean operatok™—of the fundamental solution af™. These basis functions were earlier consid-
ered in [10], then in [11] and [12] for improving the condition number of linear systems involved for thin
plate spline interpolation, and were used for cardinal interpolation (see, e.g., [3]). Despite the fact that the
polyharmonicB-splines violate the rapid-decay requirements of classical wavelet theory (they typically
algebraically decay), they generate Riesz bases and are perfectly scaling functiens fg2. This was
proved for instance by Micchelli et al. [20] for a wider class of refinable functions, or by Madych [18],
cf. pp. 274-276, with a different approach.

As it appears from the cited works, the theory of polyharmonic MRA have been well designed,;
whereas, the aspects connected with the actual construction of the related wavelet decomposition has
not been addressed all that often in the applied literature, especially in dimension greater than two. For
instance, one can find a numerical application in [19] where the refinement equation of the Lagrangean
polyharmonic splines is used to recover a surface by means of the Fourier transform and the usual dis-
crete convolution product; and very recently (actually later than, but independently from this work), Van
De Vill et al. [26] defined a particular polyharmonizspline, which they called “isotropic polyharmonic
B-spline” to build a specific bi-dimensional MRA, in order to process a signal.

The aim of this paper is to provide a very explicit construction of a polyharmonic pre-wavelet decom-
position, which gives possible direct implementation of the involved filters in all dimensions; the scaling
function is in the class of polyharmoni®-splines with centers over the lattié® and the pre-wavelets
are polyharmonic splines with centers over the fine latticez2. In addition, we clarify some theoret-
ical features, specific to this decomposition, such as the rate of decay of the filters. Explicit formulae
for deriving the filters and functions involved in the polyharmoBispline wavelet transform are here
provided. Our scheme works in the spatial domain. The filters are computable once for all, getting simple
procedures for code’s implementation. The wavelet decomposition/recomposition algorithm results com-
putationally efficient since formulae involve upsampling/downsampling and convolutions, exactly as in
the one-dimensional case. This offers the reader an easy use of the given wavelet decomposition, whict
may be useful in the applications [1,2]; in this sense this work improves the related earlier works.

The paper is organized as follows. In Section 2 we give the definitions and some properties. We define
some classes of functions and vectors, which are absolutely bounded by a radial algebraically decaying
function or vector, respectively, and we prove some of their properties that we use later on. In particular,
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we extend Wiener’s lemma (see Lemma 2). The scaling function and its most important features are
recalled and an estimate of the Riesz constants is given. Then we present the pre-wavelets, and the
filters defined by the classical dyadic scaling relations. In Section 3 we provide the formulae for deriving
the filters, and we show their algebraical decay. The algorithm for decomposing and recomposing a
multidimensional signal is given in Section 4.

2. Preliminary results
2.1. Basic notation, concepts

Throughout this papes, is the dimension of the space amds an integer such thai > s/2.

Without further words, a “function” is a function frorR* to R and a “vector” has index iZ* and its
components are iR; multiintegers are iV and are denoted by Greek letters.

| o || denotes the euclidean norm &3, while || e ||, denotes the usual norm @A(Z*) orin L”(R*)
(1< p<o0).

We use standard notation for the inner producf.8ar®), i.e. (f, g) := fRS f(x)g(x)dx.

* denotes the convolution products for all functiofisandg in L*(R*) and all vectors: andv in
El(ZS)

f*g::/f(x)g(o—x)dx, u*v::Zujv._j, u*f::Zujf(o—j).
Bs

jezs jezs

A is the Fourier transform, i.e. for any functighin L1(R*) and any vecton e ¢*(Z*),

f(a)) —/f(x)e_”‘”‘dx n(w) = Zu] e we R,

jezZs

Thusu is the vector of the Fourier coefficients 6f The map “u — # is linear and continuous
(with norm 1) from/%(Z*) into C(T*) (continuous functions over*), whereT* = [—x, 7)*, is the
s-dimensional torus. We also use * for the Fourier transform of distributions.

e1,...,es € R are the coordinate vecto(s; ), := 8, 1< j, k <.

Dirac denotes the usual Dirac distribution ands the Laplacean operatat (= >;_, 8%/(3x?)). A™
is themth iterated Laplacean operatax{ = A - A¥1),

A, is the discrete version ok, defined for any functiorf by

Alf:Z(f(o—ej)—2f+f(o+ej)).

j=1

A" is the discrete version af” (A% = A; - AS™1). A direct calculation provides

A’B@):( 4Zsm2 )(a)) AT F(w) = <4Zsm2 ) f(w). 1)

Let y andy™ be the vectors defined by



B. Bacchelli et al. / Appl. Comput. Harmon. Anal. 18 (2005) 282—299 285

—2s, if j=0,
yi'=11L iflljll=1 jeZ, 2
0, otherwise

yo o=y xyFt keN,.
So we can expresA}’ f as a convolution
AVF=D "yl fC=j=y"xf. 3)
jezZs

We say that a vectar is symmetridf v_; = v, forall k € Z°.
We recall the multiresolution setup (see, for instance, [21]). Given a fungtioi.?(R*) which satis-
fies the stability condition

AD TIPS D (o — k)

keZs keZs

2

<BY Il 4)
2

keZs

valid for all & = {A}xezs € [2(Z%), whereA, B are constants such thatk0A < B. We associate with

an infinite sequence of closed subspagég, ., of L? defined for alln € Z as the one spanned by the
family of functions{¢ (2" - —k)}iezs, namelyV, :={>_, ., lp(2'e —k): L € 1?(Z*)}. We say thaip
admits a multiresolution, or that the sequefi®g},., form a MRA of L2(R*) with scaling functiony,
provided that, in addition to (4), we have

Vi S Vi1, nez (U vn) =L%(R’), (Vo =10}
nezZ nezZ
where the overline denotes closure. We also sayitlisthe scale (or resolution) level.
We need the following concepts to express the algebraic decay of the scaling function, the pre-wavelets
and the filters of this note.

Definition 1. Let « € R, a > 5. A function ¢ (x) is in the classRB(«) if there exists some positive
constantC such that
C
pX)| < ———, XER.
| | 3+ [lxID*
A vectorv = {v Jrezs IS in the clasdB3(x) if there exists some positive constansuch that

C
| K ———, keZ'.
A+ [kl

Froma > s we easily gelRB(«) C LY(R*) andB(«a) C I*(Z*). Let us show the following results.
Lemma 1. The class3(«) is an algebra with respect to the convolution product.
Proof. Suppose that andy belong toB(«) and letz = x x y. Then|(x % y),| < Y oz [Xni )kl =

Y vezs [Xn—kllykl. Let|n|| = £ and separate the sum, . |x,—«||yx| in two parts: in one pattk|| < €/2,
in the other||k|| > ¢£/2. We have
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D sl €1 YD (A In—kl) Iyl

lkli<e/2 lkll<t/2
<C1l+£/27 > Ind < Callyla(@+£/2)7%,
kll<t/2
D bkl <C2 D0 Il (T 1K)
lkll>¢/2 lkl>¢/2
<Co(l+£/2)7 Y ikl < llxlaQ+€/2)7%,
lkll>¢€/2

and so|z,,| < (C1llyllr + Calix|l2) (A + |In]|/2)~%, which impliesz € B(x). O

Moreover, every elementin B(«) with 9(w) # 0, w € R*, has an inverse according to the following
lemma, which extends a well-known result due to N. Wiener.

Lemma 2. Let v € B(«) such thatd(w) # 0, w € R*. Then there exists a vectare B(«) such that
vku=>~.

Proof. The existence of the vectare [1(Z*) is assured by the Wiener’'s lemma (cf. [24, p. 226]). Let
now U andV be the infinite matrix defined by;; = u;_; andV;; = v;_;. Let I be the infinite identity
matrix (Iij = 81'_]'). Then(U - V),'j = Zker Uikaj = ZkeZ-‘ Ui Vk—j = ZkeZ~‘ UpVi—f—j = 8i—j- Thus
UV =1, thatis,U is the inverse of an infinite matri¥ which meetgV;;| < C1(1+ [li — j[D~%, all

i,j € Z4 witha > d. Then (cf. [13]),U has the same order of decayofi.e.u meetsju;_;| = |U;;| <
Co(1+ i —jIh~, alli, j ez, thatisu € B(a). O

Finally we prove the following
Lemma 3. Let f € RB(x) andy € B(«), theng :=y x f € RB(«).
Proof. Let x € R* be fixed with|x|| = ¢ and letv, := f(x — k), k € Z°. We havev € B(«). As in the
proof of Lemma 1, separate the son) .. |y f (x — k)| in two parts: in one parik| < £/2, in the other
Ikl > €/2. We have

D@ =k Il A4 £/27 D Ind < lylla@+ /277

lkl<e/2 lkl<e/2
Y FE=B|A+IK) T <A+£/27 D [fx—k)| < v+ £/2)~
lkl>€/2 lkl>¢€/2

andsolg(x)|<CA+ x| O
2.2. Polyharmoni@®-spline as scaling function

According to Duchon [9], we recall that a polyharmonic spline is defined through an interpolation
problem associated to a certain set of knots:Adbe a discrete set iR*, and suppose: > s/2; the
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m-harmonic spline interpolating in A is the solution (unique ifA contains aP,,_;-unisolvent subset)
of the problem of minimizing the seminorm

172
m m! (0%u 2
[ D" | sy = (f > J(axa (X)> dx)

RS aeNS, |a|l=m

amongst all the functions in the Sobolev spacH™ (R*) (the spacéd™ (R®) is the space of all functions
whosemth derivatives, in the sense of distributions, ar&.f{R*)) and which are equal tg in A. All
m-harmonic splines associated to a givengébrm a vectorial space. In this paper we consider the case
of a cardinal mesh.

More precisely, for anyn € N, m > s/2, let V; be the space of the-harmonic splines associated to
the setA = Z*. Rabut [22,23] showed thaf, is generated by the family of functiod®,, (- — k) }rezs,
whereg,, is a basion-harmonic spline named polyharmormespline, which is defined as follows. For
everyme N, m > s/2, let

_1ym—s/2+1 s
e ez | @ 17" Infl e |12, s even -
Uy = m -
ez e | e |2, s odd
This function is the Green'’s function for the iterated Laplacean opersitoindeed it has been shown

[25, p. 257] that

O (@) = (=1)" ]| 72", (6)
and then
A"v,, = Dirac. @)
The polyharmonid-spline is then defined as
¢m = AT Up - (8)
According to (3)¢,, can be fairy efficiently computed via a convolution product
¢m = )/m * Uy (9)

Note thaty™ has a finite support, and so the convolution in (9) is exactly computed with a finite
number of operations.

The functiong,, is a multivariate extension of the odd degree, equidistant knots polyn@¥splines
(howeverg,, is not positive for allx in R*).

We list now some properties of the polyharmomiesplines, which will be useful in the wavelet de-
composition (one can find more extensive proofs of points (iv) to (viii) in [22,23]).

(i) Symmetry.
G (—x) = n(x), x€R’, (10)
sincey_; = y, andv,, is a radial function.
(i) Fourier transform.
From (8), (1), and (3) we get
i sirfw;/2)"
lw/2)|2m

b (@) = , aewekR" (11)
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(iii) The class of the polyharmoniB-splines is closed with respect to convolution

¢s * ¢r = ¢r+sv (12)
that is an direct consequence of (11).

(iv) Shape of the Fourier transform.
From a Taylor expansion of si#} /2 centered inv = 0, it follows:

$n(@) —1=0(lol?), ol -0, (13)
Making partial derivative with respect to a variable, the order of the zeffwfis—> 0 decreases of one
unity; thus

S =1 and |a¢|=1 = D%, (0) =0, (14)
andé,, € C2(R*); being also & > s + 1, then

ém € C3(R°) N LY(R®).

(v) Decay at infinity:¢,, belongs to the clasRB(s + 2). A

Let us takex € N°; using the previous arguments, we can show B8, | is locally summable for
any o such that«| glk\with the condition 2— k > —s + 1. But D%¢,,(w) = O (J|o||~?"), ||lw| — oo,
and 2n > s; then|D“¢,,| is always summable in a neighborhood of infinity. We can then conclude that
|D¢,,| € LY(R®) for |a| < s + 1, and from this it follows, cf. [27, p. 26], thag,, (x) = o([|lx||~*™Y),
x|l = oo. Finally, sinceg,, admits a series expansion out of a certain neighborhood of the origin (see
the next observation), then

¢n(x) = O(Ix77%), [x]| = oo. (15)

(vi) Regularity.
Sinceg,, is a finite sum of integer translates of functianse C?"~*~1(R*) N C>®(R* \ {0}), then (we
remind the reader thati2— s > 1)

¢m € C"HRY) N C®(R* \ Uy (0)),
wherelt,, (0) is a neighborhood of zero. Thus, according to (15)
¢m € CP"HRY) N LY(RY) € L™(R*) N L*(RY).
(vii) Partition of unity.

Using (11) and (14), we get for alb € R*, 3", b (27k)e!?™* = $,,(0) = 1 and applying the
Poisson summation formula we get

Z¢m(.—k) =1

keZ?®

(viii) Reproduction of polynomials of degree one.

Forle| =1, Y, ., D@m(27k)e'?™*® = D*g,, (0) = 0 which implies for anyx in R* Y, _,, (x — k)
om(x —k) =0, which is)_, _, kg, (x —k) =x),_, ¢n(x — k) = x. Note that all summations are
absolutely convergent thanks to the decaygfgiven in (15).
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(ix) Stability condition.
The family of functions{¢,, (e — k)};czs is a Riesz basis ofy C L2(R*), i.e. ¢,, satisfies the stability
condition (4) which is equivalent to

ALY |pu@+2%m)P< B, aeweR, (16)
keZs

with the same constantd and B. Let us give an estimate of these constants. Considering the first
inequality in (16), let us take the term whén=0. For allx € [—n/2, /2], sifx > ((2/7)x)?, SO
i sirfw; /2> (2/7)?|lw/2||> and so we have

3w+ 26m) | > (Zﬂs#) > (—) =A.
= lw/2] m
Let us now consider the second inequality in (16). # 1
— 2 sifw/2 \*" sirfw/2\?"
Y |G+ 2km)] =Z(7> <( <1,
P = (w/2+ kmr)? (w/2)?
andB = 1. Now, ifs > 2

s . 2m om
- 2 Z~=lSIn2a),-/2 S
E |pm (@ + 2k7r)| =E (—2 <1+ § — .
feze G\ llo/2+ kx| = lw/2+ k||

Since the series is periodic of peri¢2r}*, we can limit the study to the casec [—, 7). Letw/2 €
’ 2 + km @ + km

[—7/2,7/2])° and letj = ||k|ls # 0. Then
> (k=S =(j-S)rz 2"
2 2 = 2 )T\ )P

w
2

Since 4n > 2m > s the last series is absolutely convergent and we can change the order of the terms. For

anyj>1lletD;={ke Z’| |kl = j} and let|D;| be the numbers of the elementsf. Then, being

|D;| < 2%71js-1 we get

>

o0

— llkmlloo

2 ‘

‘ [e¢]

e¢]

Z|q/5;(a)+2k7r)|2< 1+s2’"2

kezs j=1

|D]| o 225—1+41n .

where¢ (k) = Z?"le‘k is the usual special function. Note that the valugafan be made smaller since
the bound(j — 1/2)7 > jx/2 is not a sharp one. As an examples & 2 andm = 2 we find the values
A=0.27 andB = 3.48.

2.3. Pre-wavelets and multiresolution

Let m € N, and let us consider the harmonizspline ¢,, defined by (8). In the previous section
it is shown thatg,, € C"~*~Y(R*) N L*(R*) and it satisfies the stability condition (4). For the use of
the reader, in this section we present the decomposition theorem and the related definitions. The results
here stated are proved by Miccelli et al. [20] in a more general context, where multiresolution analysis,
stationary subdivision, and pre-wavelet decomposition&fR*) are provided, based on functions in a
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specific class, calle®, ,. R, , is defined as the set of functiopsvhose Fourier transform is of the form
é = T/q, whereT is a trigonometric polynomial such th@(w) = 0, ||w|lsx < 7 impliesw =0, and
q is an elliptic (i.e.q(w) =0 impliesw = 0) and homogeneous polynomial of degrewith r > 5/2;
moreover there exists an integeisuch thatl' () — g(w) = O (ol "), @ — 0. From (11) and (13)
it follows that¢,, € Ry, 1 and we get the case of polyharmoiiiesplines.

Now, let us define the infinite sequence of closed subspagés., of L? by

V, = : D hipw(2'e—k): 1€ lZ(ZS)}.

keZs
SoV, is the space ofz-harmonic splines with knots in"2Z* [22]. In order to define the associated
pre-wavelet, lef.,,, denote the Lagrangeam2harmonic spline, which is by definition the:2harmonic
spline inH?"(R*) interpolating the data/, 8;)jezs, i.€. Ly, satisfies
.~ )1 j=0,
Fan(7) = {o, j €2\ (0.
Let E andE’ be
E=[0,1°NnZ° and E' =E\ {0}
and define

Y = (A"L2y)(20), Yy = Ym ( + g) ecE. 17)

The functionsy,, andy¢,, e € E, arem-harmonic splines with knots i#* /2.
Foranyn € Z ande’ € E’ let W’ denote the space spanned by the farfily’'(2"e — j)} <z and let
W, be the one spanned by, (2"e — j)}jczs, crcr. HENCE

W,=H W, nez
e¢'eE’

Now we can state the following theorem.

Theorem 1. For eachm € Z, m > s/2, the polyharmonid-spline¢,, is a scaling function that forms
a MRA{V,},cz of L?(R*) and the sequencgV, },., provides an orthogonal decomposition of(R*)
with pre-waveletsgy'}., ... Moreover

Vi=V,_1®W,_1, ne-Z.

In particular for each € Z, V, is orthogonal toW,,, namely
(¢ (20— j), ¥ (2"e)) =0 foralle’ e E'andj € Z°. (18)

Note that, ifr < n, thenW, is a subspace df,,, which is orthogonal taV,,, so eactW, is orthogonal
to all the otherd¥,. Hence the functions of the fami[yjnez{g/f,f{(zno — k)}ercp kezs are orthogonal on
different scales. However, for given functions ofW,, are usually not orthogonal to other functions of
sameW,. That in general the orthogonality fails if we take functionsVif, i.e. with the same scale
leveln (i.e.ingeneralihe Z, ¢',¢' € E', j, ke Z, then(w;’,’(zno -, w,i’(zn. —k)) #0). This is the
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reason why these functiomsj; (2"e — j) are calledore-wavelets, instead of wavelets which usually form
an orthogonal basis d¥,.

Since both the scaling functia#), € V, and the waveletr,, € Wy are inV, and sinceV; is generated
by {¢, (20 — j)}rezs, there exist two (unique) vectors, nametomposition filtersc = (c;) jezs and
d=(dj)jez € 1?(Z*) such that the two-scale relations of the scaling function and wavelet

b= cin(20 = j)=(c*du)(2e), (19)
jezs

Y=Y din(2e — j) = (d * pn)(20), (20)
=4

are satisfied. By (17) it follows:
Vo= dipn@ete—)=dx¢,)20+e), ceE. (21)

JjezZ
On the other hand, since all the functiof#s, (2e + ¢)}.cx are inVy = Vo & Wy, and the family of

functions{¢,,(e — k) }iczs and{I/f,fl/(O — k) }rezs. ecp are basis ofVy and Wy, respectively. So, for any
e € E there exist (unique) vectors IA(Z*), which we denote by* andg®*’, ¢ € E’ such that

Pn(20+e)=p°xdnt+ Y g %Y, eck. (22)

e'eE’
The so-callediecomposition filterp andg®’, ¢’ € E’ are defined for alj € Z* ande € E by

Pove=r; and g5, =q;°. ek (23)

3. Thefilters

In this section we give formulae for deriving the filtersd, p, andg® (¢’ € E'). Moreover, we show
that the filters belong t&(s + 2), and therefore they belong t&(Z*).
Lemmad. Forallme N, m > s/2, let " = (B )rezs be the vector defined by
=¢n(k), keZ'. (24)

Thenpg™ € B(s + 2), for all w € R*, fﬁ(w) # 0, and there exists a symmetric vectot € B(s + 2)
meeting

a" % B =8, (25)

Proof. Firstnote that, from (155" belongs ta3(s +2). By Poisson summation formul@kezq (0 +
2k) = Zlezy Gm(jle e = Z]ezc [3;%"/“’ ,Bm(a)) for any w € T*. Now, using siAx > (2/7x)?,
x € [—m/2, 7 /2] and taking only the term with = 0, we get

am _ Zii=lS|nz(CUz/2+k7T) " Z?:]_Sinza)i/z m .
# (w)}_2< lw/2+ k|2 ) 2(Hw/—znz) = (2/m)

keZs



292 B. Bacchelli et al. / Appl. Comput. Harmon. Anal. 18 (2005) 282-299

ThusB™(w) # 0, w € R* and by Lemma 2 there exists a vectdt € B(s + 2) meeting (25). Besides”
is symmetric sincgg™ is. O

We can now give explicit formulae for the filters.

Theorem 2. Let ¢ be the recomposition filter defined by the two-scale equati®, and lets™ =
(b kezs be defined by

k
bl = Py (§> keZ, (26)
and leta™ be the vector defined 25). Then
c=a"xb", (27)
andc € B(s + 2).

Proof. Let L be the function defined by
L=a"x¢n=) d'pn(e—j). (28)
JjezZs

Since by (25), for alk in Z*, L(k) = Z,Ezs a'ouk — j) = Z/.GZS aj'Bi-; = &, L is the fundamental
Lagrangeam:-harmonic spline (interpolating the data 6;)rcz:). Now, the family of functiong L (e —
J)}jezs is abasis folVy, andV_; C V. Thus we can uniquely write, by using (26),

Pn(0/2) =) bIL(e— ). (29)
jezs

Then we writeg,, (¢/2) in two different ways, according to (19) and (29), and let us use (28):

On(0/2) =c*x ¢, =b" x L =b" % (am >x<¢>m) = (b’" *am) * Qs
where in the last equality we changed the order in the summation, being the series absolutely convergent
As there is a sole decomposition of the functipfp(e/2) in the basis{¢,,(e — j)}jczs, We get (27).
Finally c € B(s +2) by Lemma 1. O

Let nowg?" = (ﬂ,fm)kezs be the vector defined as follows:
B =¢an(k), keZ, (30)

whereg,,, is the 2n-harmonicB-spline which, according to (8) and (9), is expresseahy—= Af’" Vo =
Y™ % vy, From Lemma 482" € B(s + 2), f2"(w) # 0, w € R*, and there exists a symmetric vector
a®" e B(s + 2) meeting

a®" x B2 =3§. (31)
Theorem 3. Letd be the recomposition filter as defined(@p) and lety™ anda?" be the vectors defined
by (2) and(31). Then

d=a”" xy™, (32)
andd € B(s + 2).
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ssssss @ function , m=2 prowavelet, m=2

Fig. 1. Scaling functiom,, (on the left) and pre-wavelet generaty, (on the right),s =2, m = 2.

Proof. From (6) it follows thatv,,, = v,, * v,,. Then by (7)A"v,,, = A™ (v, * v,) = (A"v,) *x v, =
Dirac v,, = v,,. Using the linearity of the operatax™, y2" = y” % ™, and the fact that the support of
y™ is finite, we get

A" o = A" (2" 5 v2) = Yo"k A g = 2" kv = (Y %k Y") % Uy
=y" % (y’" * vm) =y" x¢,. (33)

Now note that the 2-harmonic Lagrangean splitie,, can be written a&.»,, = a®" * ¢,,,. Then write
¥, (e/2) in two different ways, as (20), and according to (17), then by using the linearity’aind (33)
we obtain

Yin(8/2) =d % Gy = A" Loy = A" (a®" % o) = a”" 5 A" o = a”" 5 (y" % ¢
= (azm * y’”) * O

and since there is a sole decomposition of the funatipte /2) in the basig¢,,(e — j)) jczs We get (32).
Finallyd € B(s + 2) by Lemma 1. O

Note Sinced belongs to the clas8(s + 2) and¢,, belongs to the clasRB(s + 2), by Lemma 3 it
follows thaty,, belongs to the clasRB(s + 2). Moreover, since,, € C?"—*~1(R*) andd € [*(Z*) then
VU € CP"~H(R®). Sinceg,, is symmetric with respects to its central point, ahis symmetric as a
convolution between symmetric vectors, thgp is symmetric too with respects to its central point.

By (32) one can compute the filter We can solve Eq. (31) by means of classical use of direct and
inverse Fourier transform. Alternative, an efficient algorithm is given in [1], to compute the inverse in the
convolution. Then, knowing the filtef, one can easily compute the multidimensional pre-wavelets by
using (20). The scaling functiap,, is computed according to (9).

Figure 1 shows the functiong, and¢,, for the bivariate bi-harmonic cage: = 2).

Let us now consider the decomposition filieas defined by (23) by meanspf, ¢ € E. The following
theorem gives the formulae for deriving from the vectors:, 2" anda?”.

Theorem 4. Let 82", a?", ¢, and p¢ be defined by30), (31), (19), and (22). For anye € E, leta® =
(@) jezs be defined by

Ot; = (¢m(2°+€),¢m(._j))‘ (34)
Then for any € E
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@ =2"(cx ")y, JEZ, (35)
pe — o x aZm’ (36)
and the filterp defined by23) belongs ta3(s + 2).

Proof. According to (125, = ¢, * ¢,,, and due to the symmetry (10) ¢f, and¢,,, we get

(Bm(®+ ). ) = B2 = B2". (37)

To prove (35) let us compute the inner product (34) by using (19), the change of variable®;2+ k
into e, and (37). For allj € Z* ande € E we get

@ = (pm (20 +€), pn(® = j)) = (¢ (20 +¢), $(j — )
_ <¢m(2. 10, Y cin(2 - —k)) = 3 (fn(2e 4 ). 6, (2] — 20— )
keZs keZs

=27 ci(pmo+2j+e—k)pn) =27 i, =2"(cx B e

keZs keZs

To prove (36) let us compute the inner product (34) by using (22), the orthogonality (18), the change of
variablee — j = ¢ and (37): for anyj € Z* ande € E we get

o = ($n(20+€). bl =) =Y pi(dun(® = k), $u(e — )

keZs
=Y i (Gmlo+i—k)dn) =Y piBZ=(p"xB"),,
keZs keZs

thusa® = p¢ % 2", and by (31° % a?" = p¢ x B2" xa®" = p°. Finally p € B(s + 2) by Lemma 1. O

Let us now consider the decomposition filtgeg'}.cx. For anye’ € E’, the filter ¢¢ is defined
by (23) by means of the vectogs“', e € E. The following theorem shows that for alk E the vectors
(q°°)wep satisfy the following linear system (38) where the unknowns(@,?é?/)kezx,gey. Solving each
linear system obtained for eaefin E, the filtersq®’, ¢’ € E’ can be derived by using (23).

Theorem 5. Letd be the recomposition filter as defined (0) and lety™ be defined by2). For any
e € E the vectors(qe’e’)e/eE/ defined by(22) meet the linear system

q;,e (d * ym)é’—e’+2j—2k = y2n]1'+e—e” ] € ZS’ eek’. (38)

keZ*®
¢'cE’

Proof. Let us define the vectors”¢ = (éj’e/)jezs, ec E, ¢ € E' as follows: for anyj € Z*, e € E,
eecFE
S;,e/ 1= (¢ (20 +€), Y (0 — ).

Foranye € E, ¢’ € E’ let us comput@;"” in two different ways. First, we use (21), (37), (32), (31), and
the symmetry of/™, getting for any; € Z*
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§0 = (pn(20+ ), Y5 (o — ) = (¢m<2- te) Y dipn(200 — )+ — k))

keZs
- (¢m(2. +e). Y dipn(20—2j+¢ — k)) =27 di(pu. du(e —e—2j +¢' — k)
keZs keZs
= 2_X Z dkﬂ%72j+6/,k = 2_S (d * ﬂm),e,2j+e/ = Z_S (ym * azm * ﬂzm)7872j+e/
keZ*
Z_Sy2n}+e —e’

Second, we computgj’e by using (22), the orthogonality (18), then (17), (21), (37), and finally (32),
and (31):

e.e e, 4 e . e,é e’ e’ .
£ = a; (Y (0 — k), Yy (0 — j)) = q <wm<.+§_k)7wm(.+§_]>>
keZ keZ
e¢'eE’ ¢'eE’
= (W < k) , wm>
kez
¢ ek’
= (Zd¢m(2. ¢ —e+2j—2k —i),Zdqum(Zo—l))
kEZA ez’ leZs
¢ ek’
=327 Y didion@ — €' +2j — 2k +1—1)
keZ’ i,leZ*
¢'cE’
=27 Y qi" Y didinden(@ — € +2j —2k—h)
keZ?® i,heZ’
¢ eE’
—s . 2m —s e,é 2m
=2 a Z d* By 2j o1 =2 a0 (dxdxp )E’—e’+2j—2k
ISEZ‘Y heZs keZ$
E/EE/ E/EE/
=27 qp¢ (dxy™ *a® x ﬁzm)é,_eurzj_z,( =2" q;° (d = J/m)é/_e,+2j_2k-
keZ* keZ®
¢'cE’ ¢'cE’

Comparing the expressions we get (381
Theorem 6. The filters{¢¢'}..cx belong to the clasB(s + 2).

Proof. By (23) it is sufficient to show, for akt € E, that the vectorgg®). .z belong toB(s + 2). For
all e € E, we can express the system (38) as

CQ°= B¢,
where forallj, k € Z*, ¢',¢' € E’

Cojme iz = (Y, (0 =), Y (0 — f)) = (d*v") 2 er-an-2y

e m
B3 . =Viisj_e» and Qy ;= qk
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Fig. 2. Recomposition filters andd and the decomposition filtes (on the left), recomposition filterg%2, 410, 411 (on the
right),s =2,m = 2.

Let T ={2j — €'}jezs,ercer- The coefficient matrixC = [C; ,]; ,er is @ real symmetric Toeplitz infinite
matrix which is non singular since the fami{yf,f,/(o — J}jezs,ecer 1S @ basis ofWy. Sinced x y™
belongs to the clags(s + 2) thenC is an infinite nonsingular matrix which satisfies the propétty; | <
h(1+ ||t —r|)~*72, t,r € T, and then (cf. [15, Proposition 3]) its inverse matfix! has the same decay
property, with the same order+ 2. Finally sinceS = supportB¢) is finite there exists € S such that
|r —t]l > |lr — ]|, forallz € S, and letM = maxcs | Bf|, thenQ¢ € B(s + 2):

) h hM
C B¢ § M| < _
= A+ QIr —t])+2 ‘ ;(HII"—HI)S+2

teS

— h/
A =1
O

<

03] -

A graph of the recomposition filters is given in Fig. 2, together with the decomposition filters in the
bi-harmonic bivariate case.

4. Decomposition and recomposition algorithm
According to Theorem 1, for everye Z each signab, .1 € V,1 admits a (unique) representation in
V, + W,, namely,
Opt1 =0y + Unwy (39)

o, is the of approximation function af,; in V, ando,” is the detail function o&,,1, in W,.
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For everyn € Z, ande’ € E’, we call approximation coefficients and detail coefficients, the veators
andu™¢, ¢ € E’ respectively, which are defined by

JjezZs e'eE’ jeZS
As usual we say that a signa) € V, is decomposed at thiéh level (I € N) if and only if it is expressed
in the (unique) form

oo=0_+0o+o¥  ++0o¥,

whereo_; € V_; ando®; e W_;,i =1,2,...,1. Note thato_, is a signal (approximation) with knots in
2'7¢, and so it has less information thap has (the complementary information being(i”,)i=1,..;
(coarser and coarser details)).

Derivingo_; and(c",);=1,..; from oy, is called decomposition of the signal at tttke level. Deriving
oo fromo_; and(a,);=1,..; is called reconstruction of the signal. These processes are realized by using
decomposition and recomposition formulae involving the approximation and detail coefficients, which
we provide in this section.

Decomposition algorithm. For everyn in Z ande’ € E’, let A"*1, A", andu™¢ be the approximation
and detail coefficients, as defined by (41). lpeand, for every’ € E’, ¢¢ be the decomposition filters,
as defined by (22) and (23). Then the following relation holds foy &llZ*:

A= (At p)2j’ M’;’e/ = (2" qe/)zj, e ek (41)
Indeed, using (40), (41), and (22) we get
0n+1:Gn+G Z)\’n¢m 2”._] + ZILL m ._.])

JEZS jezs
e ek’
=D (2 e —k) = D 25 gu (2 e — 2 +e)
keZs keZ*®
ecE
X T S e si s T vilza—io)
ecE keZ?® JEZS jez’
e'cE’
e D D D )]
ecE \keZs jeZ’ keZs jez®
e'eE’

which is, by changing into j — k,

an+1=z<2 DS g (e =)+ D0 D M A (2 °—1)>

ecE \keZ’ jeZ’ keZs jez*
e'eE’

= Z( Z Myt k)¢m(2n. -J)+ Z ( Z Mt k)wf’(zn. —J)-
JEZS \ keZ® jezs \ keZ’

ecE ¢ cE' ecE
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So, from the unique representation @f,1 € V,41 = V, @ W, in the baseq¢, (2'e — j)};cz and
(Y, (2'0 — j)}jezs ererr, We get
n n+1 n,e n+l e .
Mp= ) apl and Wit =) agtait:

keZ’ keZ’
ecE ecE

the recursive formulae (42) can be obtained from the previous one by using (23).
Note that formulae (42) only involve convolutions and downsampling.

Recomposition algorithm. For everyr in Z, and any’ € E’, leta"*1, A, andu™¢ be the approximation
and the detail coefficients, as defined by (41), and:lahdd be the recomposition filters as defined
by (19) and (20). Then the following relation holds for k& Z*:

M= Meat Y wp e (42)
keZs keZ®
e ek’

Indeed, using (40), (41), (19), and (20) we get (we can change the orders of the sums since the series
are absolutely convergent):

Opt1 = Z)\‘;{+l¢m(2n+l. _ ]) =0, - O—;) — Zkz¢m(2n. _ k) + Z Mz,e’w’f’l[ (2”. — k)

Jj€Z keZ k/e%‘/
e e

=D MY cipn(2 e =2k — )+ D Y dipu (2 e — 2k + ¢ — )

keZs JjezZs keZ® jezs

e'cE’

=DM D cradn(@ e )+ 30w D dje-adn (2o — )

kezs  jezs kez’ jez

e'eE’

= Z < Z AxCi—ak + Z Mz’e/dj+e’—2k>¢m (2"t1e — j)

JEZS \keZ’ k/e%;/

e e

and from the unique representationogf.; € V,.1 in the bases$g,,(2" 1o — j)};cz:, we get (43).
Note that formulae (43) only involve upsampling and convolutions.
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