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Abstract: We consider the nonlinear Schrödinger equation

ε2�u− V (x)u+ |u|p−1u = 0, x ∈ R
N,

with superlinear and subcritical nonlinearity.Assuming that the potential is radially sym-
metric we find radial sign-changing solutions of the equation that concentrate in a ball, as
the parameter ε goes to zero. We study the asymptotic profile of these highly oscillatory
solutions, completely characterizing their behavior by means of an envelope function.

1. Introduction

In this article we are interested in the study of highly oscillatory standing waves for the
nonlinear Schrödinger equation

i�ψt = −(�2/2m)�ψ +W(x)ψ − γ |ψp−1|ψ, (1.1)

for a radial potential W and constants m, γ > 0, as the parameter � approaches zero.
This celebrated equation has been used to describe numerous physical phenomena.

Among them we mention fluid dynamics, plasma physics and dispersive phenomena in
waves, in particular optical waves. In all these cases the complex function ψ represents
a density, through |ψ |2. Standing waves are obtained by considering in (1.1) the Ansatz

ψ(x, t) = exp(−iEt/�)u(x).
After proper scaling, we find that the amplitude u satisfies

ε2�u− V (x)u+ |u|p−1u = 0, x ∈ R
N, (1.2)
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for ε > 0 and V (x) = W(x) − E. It is the purpose of this article to analyze the
asymptotic behavior of highly oscillatory sign-changing solutions of (1.2) in H 1(RN),
concentrating in a ball of finite radius around the origin, as the parameter ε → 0. These
solutions represent excited bound states of the system that keep the overall mass, that is
the integral of u2, bounded away from zero along the limiting process.

The semi-linear elliptic problem (1.2) was first studied, in a pioneering work, by Floer
and Weinstein [13], in the one dimensional case, for V positive and p = 3. They show
that as ε → 0, positive single peaked solutions exist near any non-degenerate critical
point of V . Since then, numerous authors have extended this result in many directions.
We mention the works by Oh [19], Rabinowitz [21], Wang [24], Ambrosetti, Badiale and
Cingolani [1], del Pino and Felmer [7, 8], among many others. In all cases the potential
is considered positive and concentration occurs at isolated points in RN . Concerning
multiple concentration or clusters we have the contribution by Kang and Wei [14] in
dimension N and by del Pino, Felmer and Tanaka [9] in dimension one.

More related to our work, the N -dimensional radial case, we find articles by Benci
and D’Aprile [5], D’Aprile [6] and Ambrosetti, Malchiodi and Ni [3], where positive
solutions are constructed, concentrating around a sphere centered at the origin. More
recently,Ambrosetti, Malchiodi and Ni [4], and Malchiodi, Ni andWei [18] have obtained
clusters of positive solutions for (1.2), concentrating on a sphere whose radius is located
at a positive maximum point of the effective potential (1.4).

In this paper we divert in two directions from previous works. On one hand we allow
the potential V to take negative values near the origin. We observe that this situation may
occur when we consider standing waves for (1.1) with high values of E, that is highly
excited states. On the other hand we consider oscillatory sign-changing solutions that
keep their L2 norm away from zero as ε → 0. The asymptotic behavior of our solutions
is so that their frequencies increase as ε−1, their amplitudes stay away from zero and the
oscillations take place in a ball of finite radius, while away from that ball the solutions
decay as e−r/ε. In this way our solutions concentrate rather than in spheres, in a whole
ball of finite radius.

Our analysis goes further, by identifying an envelope function that completely de-
scribes the asymptotic amplitude of the solutions. By means of this envelope we can
also determine the asymptotic frequency at any given radius, and the mass and energy
distribution in the concentration ball, see comments after Theorem 1.2.

Let us describe our results more precisely. Our first goal is to find solutions for
(1.2) having high energies. We achieve this by using the variational formulation of the
problem, taking advantage of the even character of the associated functional

Jε(u) =
∫

RN

ε2

2
|∇u|2 + 1

2
V (x)u2 − 1

p + 1
|u|p+1dx. (1.3)

For our existence theory we assume the potential V satisfy the following hypothesis:

(V1) V : [0,∞) → R is of class C1 and lim infr→∞ V (r) > 0.

In the appendix we prove the following existence result

Theorem 1.1. Assume that the potentialV satisfies (V1)and that 1 < p < (N+2)/(N−
2) if N ≥ 3 and p > 1 if N = 2. Then, for every c > 0 there is a sequence (εn, un) of
radial solutions of (1.2), with εn converging to zero and such that Jεn(un) = c, for all
n ∈ N.
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In order to analyze the asymptotic behavior of the solutions of (1.2) we require extra
hypotheses on the potential. First we need

(V2) V is uniformly continuous.

Second, an hypothesis that is better presented in terms of the effective potential, defined
as

U(r) = rα(p−1)V (r), (1.4)

where α = 2(N − 1)/(p + 3). We assume

(U) There is d > 0 and η > 0 such thatU(r)(r−d) > 0 if r > 0, r �= d, andU ′(r) ≥ η

if r ≥ d.

For positive potentials we slightly change the hypothesis on U :

(U+) U(r) > 0 and U ′(r) > 0 if r > 0, and there exists η > 0 such that U ′(r) ≥ η if
r ≥ 1.

Our goal is to study the asymptotic behavior of the solutions {un} found in Theorem
1.1. The first result we get is the oscillatory character of the functions un. Thinking
these functions as dependent on the radius r , this means that the zeroes of un become
dense in an interval of the form (0, R), as εn → 0. In order to describe the asymptotic
behavior of the sequence, we associate to each un an approximate envelope function en,
obtained simply by joining through straight lines their maxima. This piece-wise linear
function has the information on the amplitude of the oscillatory solution un. See the
precise definition in Sect. 5. Our main theorem is the identification of the limit of the
sequence {en}.

We consider the equation

{
w′′(y)− V (r)w(y)+ |w|p−1w(y) = 0, y ∈ R,

w(0) = s, w′(0) = 0,
(1.5)

where r, s > 0 are parameters, w = w(r, s; y). We denote by T = T (r, s) a quarter of
a period of w, if w is periodic with zeroes. When w is positive with exponential decay,
we set T = ∞. Then we introduce the functions

Q(r, s) = 1

T

∫ T

0
w2dy and R(r, s) = 1

T

∫ T

0
|w|p+1dy, (1.6)

if T < ∞, and Q(r, s) = R(r, s) = 0 if T = ∞. We also define

H(r, s) =
(
V ′(r)+ α(p − 1)V (r)/r

)
(s2 −Q(r, s))

2(sp − V (r)s)
− α

s

r
, (1.7)

and the asymptotic energy functional

J̄ (e) = p − 1

2(p + 1)

∫ ∞

0
R(r, e(r))rN−1dr, (1.8)

for a function e(r). Here is our main result.
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Theorem 1.2. We assume that V satisfies the hypotheses (V1)–(V2), (U) or (U+), and
that p satisfies 1 < p < min{5, (N + 2)/(N − 2)}. Let (εn, un) be a sequence of
radial solutions of (1.2) such that Jεn(un) = c > 0. Then the sequence of approximate
envelopes en converges locally uniformly in R

+ = {r > 0} to a function e, which is the
unique solution of the differential equation

e′ = H(r, e) r > 0, (1.9)

subject to the condition

J̄ (e) = c. (1.10)

We point out that the function H fails to be Lipschitz continuous over the graph of the
function e0, defined in (5.1). Thus, condition (1.10) replaces the initial condition in order
to obtain uniqueness of the solution.

The envelope function carries asymptotic information on the sequence {un}. In par-
ticular, the functions

E(r) = p − 1

2(p + 1)
R(r, e(r))rN−1 and ρ(r) = Q(r, e(r))rN−1, (1.11)

correspond to asymptotic energy and mass densities, respectively. The function e(r) itself
represents the asymptotic amplitude and T −1(r, e(r)) the asymptotic frequency. In par-
ticular, the number of zeroes of u in an interval (r0, r1) is approximately
ε−1
n

∫ r1
r0
T −1(r, e(r))dr .

Our results can also be described using the effective potentialU . If we define vn(r) =
rαun(r) and the corresponding sequence of approximate envelopes for vn, say ẽn, we
can prove that ẽn converges locally uniformly in R

+ to the function ẽ(r) = rαe(r)which
is a solution of

ẽ′ = U ′(r)(ẽ2 − Q̃(r, ẽ(r)))

2(ẽp − U(r)ẽ)
, (1.12)

where Q̃(r, s) = s2αQ(r, r−αs).
As a consequence of Theorem 1.2 we can prove the following surprising result on

the behavior of un near the origin.

Corollary 1.1. There is a constant C > 0 such that

|un(r)| ≤ C

rα
, for all r > 0

and

lim
n→∞ ‖un‖∞ = ∞.

At this point we mention the earlier work by Felmer and Torres [12] where the one
dimensional case of (1.2) is studied. In [12] the existence of an envelope equation like
(1.12), is proved but where U is replaced by V . The fact that it is the effective potential
what governs the concentration phenomena has been already observed in [5, 6, 3, 4],
and [18] in the case when concentration of positive solutions occurs at spheres away
from the origin. For recent results in related one dimensional problems see Felmer and
Martı́nez [10] and Felmer, Martı́nez and Tanaka [11].
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Remark 1.1. For the nonlinear Schrödinger equation in the radial case we have shown
that a concentration phenomena of sign-changing solutions occurs in a set with non-
empty interior. We conjecture that, if the effective potential has a local maximum at the
origin, then there exist positive highly oscillatory solutions concentrating in a ball, with
a singularity at the origin.

For concentration phenomena in a lower dimensional set, other than points, we should
mention the recent results by Malchiodi and Montenegro [16] and [17] and Malchiodi
[15] in the case of a related Neumann problem, in a bounded domain.

Remark 1.2. In this article we have considered that the effective potential U does not
have critical points in (d,∞); in this way concentration occurs only in a ball near the
origin. If there are critical points in (0, d), then we expect concentration of oscillating
solutions in fat spheres around these points. We do not pursue this line of research, but
we mention the work by Felmer, Martı́nez and Tanaka [11], where an analogous situation
is considered in the unbalanced Allen-Cahn equation.

Remark 1.3. Our hypotheses on the potential imply control of the growth ofV at infinity,
that can be interpreted as a confinement condition. The strength of these hypotheses is
used in obtaining a uniform estimate of the L∞ norm of the sequence {un}, a fact that is
proved in Sect. 3. This is perhaps the hardest part of the paper.

There is a wide class of potentials satisfying our hypotheses. They are satisfied, for
example, by a potential behaving like mr for large r , m > 0. Another particularly
interesting case is the constant potential V ≡ 1. Here, our Theorem 1.2 holds if

2N + 1

2N − 3
≤ p <

N + 2

N − 2
.

This certainly exclude the case N = 2, where we require the extra assumption p < 5,
see (3.5). We do not know if the constraint p < 5 can be removed.

Our work is organized in the following way. In Sect. 2 we prove some preliminary
results. In Sect. 3 we prove that un is locally bounded in R

+ and that vn is uniformly
bounded. In Sect. 4 we prove that the zeroes of un and vn, are densely distributed in a
bounded interval. This allows us to define the approximate envelopes en and ẽn. In Sects.
5 and 6 we study the asymptotic behavior of en and ẽn, and we characterize completely
their limits through the solutions of the corresponding envelope equations.

2. Preliminary Properties of Solutions

In this section we introduce some elements in order to study the asymptotic behavior of
the solutions (εn, un) given by Theorem 1.1. Let us first observe that, as a function of r
a solution u of (1.2) satisfies the ordinary differential equation



ε2
(
u′′ + N − 1

r
u′
)

− V (r)u+ |u|p−1u = 0, r > 0,

u′(0) = 0, lim
r→∞ u(r) = lim

r→∞ u
′(r) = 0.

(2.1)

We notice that the function v = rαu satisfies equation

ε2r(p−1)α
(
v′′ + (p − 1)α

2

v′

r

)
− Uε(r)v + |v|p−1v = 0, (2.2)
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where

Uε(r) = U(r)+ α

(
(p + 1)α

2
− 1

)
ε2r(p−1)α−2,

withU(r) andα as defined in the Introduction. We observe that the exponent (p−1)α−2
is negative, so that the function Uε has a singularity at the origin. If N ≥ 3 then the
coefficient (p + 1)α/2 − 1 is positive, while if N = 2 it is negative. In any case, Uε
converges to U in a C1 uniform sense in any interval of the form (r0,∞), with r0 > 0.

In the next two lemmas we prove preliminary properties of un and vn.

Lemma 2.1. Given r̄ > d there exists ε0 > 0 such that if (ε, u) is a solution of (2.1)
with ε ∈ (0, ε0), then u, and also v(r) = rαu(r), do not possess positive minima nor
negative maxima in [r̄ ,∞).

Proof. Multiplying (2.2) by v′ we see that

d

dr

(
ε2r(p−1)α |v′|2

2
− Uε(r)

v2

2
+ |v|p+1

p + 1

)
+ U ′

ε(r)
v2

2
= 0. (2.3)

By the positivity of the potential V at infinity we see that both u and v decay exponen-
tially. This together with the uniform continuity of V implies that

lim
r→∞ ε

2r(p−1)α v
′(r)2

2
− Uε(r)

v(r)2

2
+ |v(r)|p+1

p + 1
= 0. (2.4)

Consider r1 ≥ r̄ , a critical point of u with m = u(r1) > 0. Integrating (2.3) between r1
and infinity and using that U ′

ε(r) > 0 in [r̄ ,∞) for all ε > 0 small, we find that

ε2r
(p−1)α
1

v′(r1)2

2
− Uε(r1)

v(r1)
2

2
+ |v(r1)|p+1

p + 1
≥ 0,

and since v(r1) = rα1m and v′(r1) = αrα−1
1 m we obtain

c
ε2

r2
1

+ 2

p + 1
mp−1 ≥ V (r1), (2.5)

for a certain constant c. If r1 is a positive minimum point of u, from (2.1) we see
V (r1) ≥ mp−1, and combining with (2.5) we get

c
ε2

r2
1

≥
(
p − 1

p + 1

)
V (r1),

which is impossible if ε > 0 is small enough. Here we used that V (r) is bounded away
from zero in [r̄ ,∞) as can be seen from (V1) and (U) or (U+). This completes the proof
in the case of u.

Now we consider v in the case when U changes sign (the case U positive is similar).
Let dε be the point near d where Uε changes sign. Let r1 ≥ dε be the critical point of
v(r) = rαu(r). Since U ′

ε(r) > 0 in [dε,∞), integrating (2.3) between r1 and infinity
we obtain

2

p + 1
mp−1 ≥ Uε(r1), (2.6)

where m = v(r1). Thus, if r1 is a positive minimum point of v, from Eq. (2.2) we see
that mp−1 ≤ Uε(r1), providing a contradiction. ��
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Lemma 2.2. Let (ε, u) be a solution of (2.1). If 0 < r1 < r2 are two consecutive critical
points of v then

i) |v(r1)| < |v(r2)| if U ′
ε > 0 in [r1, r2], and

ii) |v(r1)| > |v(r2)| if U ′
ε < 0 in [r1, r2].

Here we can replace <,> by ≤,≥.

Proof. It is enough to prove the lemma in case U ′
ε(r) < 0 in [r1, r2]. Defining hi =

|u(ri)|, i = 1, 2 and considering the functions

Fi(s) = sp+1

p + 1
− Uε(ri)

s2

2
, s > 0, i = 1, 2,

after integrating (2.3) between r1 and r2 we find

F2(h2)− F1(h1) = −
∫ r2

r1

U ′
ε(r)

v2

2
dr.

Noticing that F1(h2)− F2(h2) = (Uε(r2)− Uε(r1)) h
2
2/2, we find

F1(h2)− F1(h1) =
∫ r2

r1

U ′
ε(r)

2
(h2

2 − v2)dr. (2.7)

Now we assume for contradiction that h1 ≤ h2. If Uε > 0 in [r1, r2], from the equation

for v we see that h1 ≥ (Uε(r1))
1

p−1 , and then F1 is increasing in [h1, h2], since

F ′
1(s) = sp − Uε(r1)s > 0

for s > (Uε(r1))
1/(p−1). Thus we obtain that the left-hand side in (2.7) is positive, while

the right-hand side is negative. If Uε < 0 in [r1, r2], the function F1 is also increasing
and we get the same contradiction. The remainder cases are treated similarly. ��

3. Uniform Bounds for the Solutions

In this section we consider the sequence (εn, un) of solutions of (2.1) with Jεn(un)= c

and εn → 0. The goal is to obtain uniform estimates for un and vn = rαun. This task is
perhaps the hardest part in all our analysis.

It is not hard to check that the sequence un has an increasing number of zeroes and
critical points, as n → ∞. The contrary would lead to Jεn(un) → 0. We can see this
either by analyzing the min-max procedure or by an asymptotic study of un. Our first
lemma says that critical points of un are not isolated.

Lemma 3.1. Let (εn, un) be a sequence of solutions of (2.1) such that εn → 0 and
Jεn(un) = c, for all n ∈ N. If r̄ > d , and xn < yn are sequences of consecutive critical
points of un so that yn ≥ r̄ , for all n ∈ N. Then yn − xn → 0 as n → ∞.
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Proof. Before starting our proof, let us consider a generic situation we encounter several
times later. Let ζn be a maximum point of un and letmn = un(ζn). It will be convenient
to consider the re-scaled function

wn(z) = un(ζn + εnm
(1−p)/2
n z)/mn, (3.1)

that satisfies the equation

P(ζn)



w′′(z)+ N − 1

ε−1
n m

(p−1)/2
n ζn + z

w′(z)− Vn(z)w(z)+ |w|p−1w(z) = 0,

w(0) = 1, w′(0) = 0,

with

Vn(z) = V (ζn + εnm
(1−p)/2
n z)/m

p−1
n .

Now we start our proof. Assume, without loss of generality, that our points yn are max-
imum points of un. Then we re-scale around yn obtaining wn that satisfies P(yn) and
we can follow the proof of Lemma 2.1, to get as (2.5),

c
ε2
n

y2
n

+ 2

p + 1
m
p−1
n ≥ V (yn) ≥ V̄ and lim inf

n→∞ m
p−1
n ≥ p + 1

2
V̄ ,

where V̄ = infr∈[r̄ ,∞) V (r) > 0. By the uniform continuity of V we find that Vn(z)
converges, up to sub-sequence, locally uniformly to some constant γ ∈ [0, 2/(p + 1)].
On the other hand,wn and also Vn are locally bounded in R so that from equation P(yn)
we see that wn converges, up to a sub-sequence, to the solution of

E(γ ) w′′ − γw + |w|p−1w = 0, w(0) = 1, w′(0) = 0.

Now we consider a constant C > 0 such that r̄−2C > d and we assume that un(r) > 0
in [yn − 2C, yn], up to a sub-sequence. This implies that γ = 2

p+1 and w is the positive
homoclinic solution.

Thus un(yn −C) → 0, and consequently un(r) → 0, for all r ∈ [yn − 2C, yn −C].
From here we can easily prove that there is r̄n ∈ [yn − 2C, yn − C] such that

0 < un(r̄n), u
′
n(r̄n) ≤ c0 exp(−c1/εn), (3.2)

for certain positive constants c0, c1. We just need a comparison argument for the function
w̄n(z) = un(yn − 2C + εnz) with the solution of

u′′ − ρ2u = 0, u(0) = u(C/εn) = 1, (3.3)

for an appropriate ρ > 0. Now we use (3.2) to obtain

ε2
nr̄
(p−1)α
n

v′
n(r̄n)

2

2
+ |vn(r̄n)|p+1

p + 1
≤ c2r̄

(p+1)α
n e−c1/εn, (3.4)

for certain c2 > 0. On the other hand, using (U) or (U+) and the convergence of wn to
w, by a direct estimate we get

εnr̄
2α
n m

(5−p)/2
n ‖w‖2

2 ≤ c2

∫ ∞

r̄n

U ′
εn
(r)vn(r)

2dr. (3.5)
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Next we integrate (2.3) for (εn, vn) between r̄n and infinity and we use that
lim infn→∞mn > 0, p < 5, (3.4) and (3.5) to obtain

εn ≤ c2r̄
(p−1)α
n e−c1/εn, (3.6)

enlarging c2 if necessary. But εnr̄N−1
n is bounded as the inequality

1

2
εnr̄

N−1
n m

(p+3)/2
n

∫
R

|w|p+1dz ≤
∫ ∞

r̄n

|un|p+1rN−1dr

shows, for n large. Thus, from (3.6) it follows that ελn ≤ c̄2e
−c1/εn, with λ = 1 + p−1

N−1α

and a proper c2. This is impossible for n large.
Thus, we have proved that there is a sequence bn < yn, such that un(bn) = 0 and

yn− bn converges to zero. To complete the proof of the lemma it is enough to show that
bn − xn → 0. In order to accomplish this we use again the argument just given. For that
purpose it will be sufficient to assume that un < 0 and u′

n > 0 in (bn − 2C, bn), and
prove that un(bn −C) → 0. Then we go step by step as before to reach a contradiction.

Let us assume that un(bn − C) → −∞ then un(r) → −∞ in [bn − 2C, bn − C],
which contradicts the boundedness of the integral

∫ ∞

0
|un|p+1rN−1dr. (3.7)

Let us assume now that lim infn→∞ un(bn − C) < 0 and finite. Then there exists
x̄n ∈ [bn− 2C, bn− 3C/2] such that u′(x̄n) is bounded, since the contrary would imply
again that (3.7) is unbounded. We let mn = un(x̄n) and we re-scale un around x̄n to
obtain wn as in (3.1), satisfying equation P(x̄n).

We claim that Vn converges locally uniformly to a constant γ ∈ [0, 2/(p + 1)]. In
fact, integrating (2.3) between x̄n and infinity we find

ε2
nx̄
(p−1)α
n

v′(x̄n)2

2
+ |v(x̄n)|p+1

p + 1
≥ Uεn(x̄n)

v(x̄n)
2

2
,

and replacing v(x̄n) = x̄αnmn and v′(x̄n) = αx̄α−1
n mn + x̄αn u

′
n(x̄n) we obtain

ε2
n

(
α

x̄n
+ u′(x̄n)

mn

)2

+ |mn|p−1 ≥ p + 1

2

(
V (x̄n)+ C1

ε2
n

x̄2
n

)
,

from where the claim follows, as mn ≤ lim infn→∞ un(bn − C) < 0 and u′(x̄n) is
bounded.

Since Vn and wn are locally bounded to the right of 0, and since
w′
n(0) = εnm

−(p+1)/2
n u′

n(x̄n) converges to zero, the sequence wn converges, up to
a sub-sequence, to the solution of equation E( 2

p+1 ). This implies, in particular, that
un(bn − C) converges to zero, obtaining a contradiction. ��

The next proposition is crucial, allowing to obtain upper bound for un away from the
origin.

Proposition 3.1. Let r0 > 0 and (εn, un) be a sequence of solutions of (2.1) such that
εn → 0 and Jεn(un) = c for all n ∈ N. Then ‖un‖L∞[r0,∞) is bounded.
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Proof. Let us denote by yn,1 > yn,2 > · · · > yn,s(n) the zeroes of un and by xn,k a max-
imum point of |un| in [yn,k+1, yn,k], for k = 1, . . . , s(n) − 1. Let xn,0 be a maximum
point of |un| in [yn,1,∞) and xn,s(n) be a maximum point of |un| in [0, yn,s(n)]. We also
define mn,k = |un(xn,k)|, k = 0, . . . , s(n), for all n ∈ N.

Our first goal is to prove that the sequence xn,0 is bounded. To do so we assume the
contrary and we prove that Jεn(un) is unbounded.

We can assume that un(xn,0) > 0. From the proof of Lemma 3.1 we know that the
sequence of functions

wn(z) = un(xn,0 + εnm
(1−p)/2
n,0 z)/mn,0 (3.8)

converges locally uniformly to the solutions of E( 2
p+1 ), since wn > 0 to the right of

xn,0. From Lemma 3.1 we also see that yn,1 − yn,k → 0, for all k ≥ 2.
Let us assume, for the moment, that ln ∈ N is a sequence such that yn,1 −yn,ln+1 → 0

as n → ∞. From the uniform continuity of V and Lemma 2.2 we obtain that

lim
n→∞

mn,kn

mn,1
= 1 and lim

n→∞
V (xn,kn)

m
p−1
n,kn

= 2

p + 1
,

uniformly on the sequences kn ∈ {1, 2, . . . , ln}. This implies that the sequences of
functions

wn,kn = |un(xn,kn + εnm
(1−p)/2
n,kn

z)|/mn,kn
converge to a solution w of equation E( 2

p+1 ) and

lim
n→∞

1

εnm
(5−p)/2
n,kn

x2α
n,kn

∫ yn,kn

yn,kn+1

v2
ndx =

∫ ∞

−∞
w2dz,

uniformly in the sequence kn. Integrating (2.3) between two consecutive zeroes of un
we find

y
(p−1)α
n,k+1 v′

n(yn,k+1)
2 − y

(p−1)α
n,k v′

n(yn,k)
2 = 1

ε2
n

∫ yn,k

yn,k+1

U ′
εn
(r)vn(r)

2dr

≥ ηm
(5−p)/2
n,k x2α

n,k

εn

||w||22
2

,

and integrating between yn,1 and infinity,

y
(p−1)α
n,1 v′

n(yn,1)
2 = 1

ε2
n

∫ ∞

yn,1

U ′
εn
(r)vn(r)

2dr ≥ ηm
(5−p)/2
n,0 x2α

n,0

εn

||w||22
2

,

from where

y
(p−1)α
n,k v′

n(yn,k)
2 ≥ c0kε

−1
n m

(5−p)/2
n,0 x2α

n,0,

for some c0 > 0, for all k ∈ {1, 2, . . . , ln}. Since v′
n(yn,k) = yαn,ku

′
n(yn,k) and

yn,k/xn,0 → 1, we find

u′
n(yn,k)

2 ≥ c0km
(5−p)/2
n,0

εnx
(p−1)α
n,0

. (3.9)
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Next we obtain an estimate for the distance between two zeroes of un. Let us assume
that rn → ∞ is a sequence of maximum points of un and let an < bn be the consecutive
zeroes of un so that rn ∈ (an, bn). Let mn = un(rn) and let us further assume that
wn(z) = un(rn + εnm

(1−p)/2
n z)/mn converges to the solution w of E( 2

p+1 ). We claim
that

bn − an ≤ −γ1
εn

m
(p−1)/2
n

log

(
ε2
nu

′
n(bn)

2

m
p+1
n

)
. (3.10)

Let us prove this claim. From (2.3) and for r ∈ [an, bn] we have

ε2
nb
(p−1)α
n

v′
n(r)

2

2
− Uεn(an)

vn(r)
2

2
+ |vn(r)|p+1

p + 1
≥ ε2

nb
(p−1)α
n

v′
n(bn)

2

2
, (3.11)

where we used that U ′ > 0. Let us consider µn =
(
p+1

2 Uεn(an)
)1/(p−1)

so that

Uεn(an)s
2 − 2

p+1 s
p+1 ≥ 0 for all s ∈ [0, µn]. Evaluating (3.11) at the maximum

point of vn in [an, bn] we see thatµn ≤ maxr∈[an,bn] vn(r), and then there are two points
r−n , r+n ∈ (an, bn) with r−n < r+n so that vn(r−n ) = vn(r

+
n ) = µn. From (3.11) we also

have that

(r−n − an)+ (bn − r+n ) ≤ 2
∫ µn

0

εnb
(p−1)α/2
n ds√

ε2
nb
(p−1)α
n v′

n(bn)
2 + Uεn(an)s

2 − 2
p+1 s

p+1
,

and then, after changing the variable and taking into account that v′
n(bn) = bαnu

′
n(bn),

we find

(r−n − an)+ (bn − r+n ) ≤ 2εnb
(p−1)α/2
n√
Uεn(an)

∫ 1

0

dt√
λnε2

nu
′
n(bn)

2 + t2 − tp+1
, (3.12)

where

λn =
(

2

p + 1

)2/(p−1)
b
(p+1)α
n

Uεn(an)
(p+1)/(p−1)

.

From the definition of Uεn , the uniform continuity of V and, since V (rn)/m
p−1
n ap-

proaches 2/(p + 1), we obtain

lim
n→∞m

p+1
n λn = p + 1

2
and lim

n→∞m
(p−1)/2
n

b
(p−1)α/2
n√
Uεn(an)

=
√
p + 1

2
. (3.13)

On the other hand, it can be proved that there is a positive constant γ so that for all
ξ > 0,

∫ 1

0

ds√
ξ + s2 − sp+1

≤ γ (1 − log−(ξ)),
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where log−(ξ) = min{0, log(ξ)}. Then, combining (3.12) and (3.13) we find γ1 > 0
such that

(r−n − an)+ (bn − r+n ) ≤ γ1
εn

m
p−1/2
n

(
1 − log−

(
ε2
nu

′
n(bn)

2

m
p+1
n

))
. (3.14)

But, since wn converges to the solution of E( 2
p+1 ), and since V (rn)/m

p−1
n approaches

2/(p + 1), we see that

lim
n→∞

un(r
−
n )

mn
= lim
n→∞

un(r
+
n )

mn
= 1,

and then r+n − r−n ≤ Cεnm
(1−p)/2
n , for some C > 0. From here we finally conclude

(3.10), proving our claim. We notice that the argument of log− in (3.14) converges to

zero, since the distance between the corresponding zeroes ofwn is ε−1
n m

(p−1)/2
n (bn−an),

which diverges to infinity.
Next we apply (3.9) and (3.10) to obtain γ2 > 0 so that for all 1 ≤ k ≤ ln,

yn,k − yn,k+1 ≤ −γ2
εn

m
(p−1)/2
n,0

log

(
kεn

x
(p−1)α
n,0 m

3(p−1)/2
n,0

)
.

Adding this inequality from k = 1 to ln, and using thatM! ≥ (θM)M , for some constant
θ > 0, and for all M ∈ N, we obtain

yn,1 − yn,ln+1 ≤ −γ2
εnln

m
(p−1)/2
n,0

log

(
εnln

x
(p−1)α
n,0 m

3(p−1)/2
n,0

)
,

and then

Tn := yn,1 − yn,ln+1 ≤ εnln

m
(p−1)/2
n,0

(
εnln

x
(p−1)α
n,0 m

3(p−1)/2
n,0

)−ρ
, (3.15)

for a fixed ρ ∈ (0, 1) and n sufficiently large.
We recall that wn,kn converge to w uniformly in the sequences kn, with kn ∈

{0, . . . , ln}. Then, for large n,
∫ yn,k

yn,k+1

|un|p+1rN−1dr ≥ εnx
N−1
n,k m

(p+3)/2
n,k

∫
R

wp+1dz,

for all k ∈ {0, . . . , ln}. This and (1.10) imply that εnlnx
N−1
n,0 m

(p+3)/2
n,0 is bounded, which

together with (3.15) lead us to a constant c1 > 0 such that

Tn ≤ c1

(
x
(p−1)α+N−1
n,0 m2

n,0

)ρ

xN−1
n,0 m

p+1
n,0

. (3.16)

By choosing an appropriate ρ > 0, we see that the right-hand side in (3.16) converges
to zero. But, on the other hand, we may choose ln large enough so that Tn converges to
zero at a lower rate, providing a contradiction.
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Thus xn,0 is bounded and we are ready to show that un is uniformly bounded in
[r0,∞). We first notice that if r̄ > lim supn→∞ xn,0 then un(r̄) is bounded, since on
the contrary the integral (3.7) would be unbounded. Now we see that the functions |un|
and |vn| decay exponentially, in a uniform way in the interval [r̄ ,∞). Next, let rn be the
maximum point of |un| in [r0,∞). Integrating (2.3) for (εn, vn) we obtain

ε2
nr
(p−1)α
n

v′(rn)2

2
− Uεn(rn)

v(rn)
2

2
+ |vn(rn)|p+1

p + 1
=
∫ ∞

rn

U ′
εn
(r)
vn(r)

2

2
dr. (3.17)

Since the functions U ′
εn

have polynomial growth and the vn decay exponentially, the
right-hand side in (3.17) is bounded. From here we see that un(rn) and also vn(rn) are
bounded. ��
Proposition 3.2. Let (εn, un) be a sequence of solutions of (2.1) such that εn → 0 and
Jεn(un) = c for all n ∈ N. Then the functions vn(r) = rαun(r) are uniformly bounded
in R

+.

Proof. First we consider the case N ≥ 3 and V negative near the origin. Let rn be the
maximum point of |vn(r)| and assume, for contradiction, that |vn(rn)| → ∞, as n → ∞.
From Proposition 3.1 we see that rn → 0, and from Lemma 2.2 we see that vn(r) �= 0 in
(0, rn), since the existence of a critical point to the left of rn, would imply that |vn(rn)| is
not the maximum value of |vn|. Let us assumemn = un(0) > 0, then since V is negative
near the origin, un has a local maximum point in zero and is decreasing in (0, rn), and
since vn(rn) ≤ rαn mn, we see that mn → ∞. Let us re-scale un defining

wn(z) = un

(
εnm

(1−p)/2
n z

)
/mn.

Thenwn satisfies equationP(0), see (3.1) and the following equations, andwn converges
to the solution of

w′′(z)+ (N − 1)

z
w′(z)+ |w|p−1w(z) = 0, w(0) = 1, w′(0) = 0. (3.18)

It is well known (using Emden-Fowler transformation, for example) that this equation
has infinitely many solutions. Let z0 be the first zero of w and ȳn = yn,s(n) be the first
zero of un, then

lim
n→∞

ε2
nȳ
(p−1)α
n v′2

n (ȳn)

(ȳαnmn)
p+1 = w′(z0)

2.

Since vn(rn) ≤ ȳαnmn, we obtain that ε2
nȳ
(p−1)α
n v′2

n (ȳn) converges to infinity. Let a0 > 0,
be such thatU ′

ε(r) < 0 in (0, a0). Then, integrating (2.3) between ȳn and a0 we find that

ε2
na
(p−1)α
0

v′
n(a0)

2

2
− Uεn(a0)

vn(a0)
2

2
+ |vn(a0)|p+1

p + 1
≥ ε2

nȳ
(p−1)α
n v′2

n (ȳn), (3.19)

which is impossible in view of Proposition 3.1.
When V is positive, we consider an as the point where Uεn has its global minimum.

Following the last part of the proof of Proposition 3.1, we see that vn(an) is bounded,
sinceU ′

εn
is bounded in [an, r0], for any given r0. Let rn be the maximum point of |vn(r)|

and assume, for contradiction, that |vn(rn)| → ∞, as n → ∞. As before we see that
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rn → 0 and that vn(r) �= 0 in (0, rn). If tn is the maximum point of un in [0, rn], which
exists since u′

n(rn) < 0, then mn = un(tn) satisfies vn(rn) ≤ rαn mn and then mn → ∞.
Now we re-scale un around tn defining

wn(z) = un

(
tn + εnm

(1−p)/2
n z

)
/mn.

Then wn satisfies equation P(tn) and it converges to the solution of

w′′(z)+ (N − 1)

z+ t̄
w′(z)+ |w|p−1w(z) = 0, w(0) = 1, w′(0) = 0, (3.20)

where t̄ = limn→∞ ε−1
n m

(p−1)/2
n tn; here we allow t̄ = ∞. In any case, this equation

has also infinitely many zeroes, and then we can repeat the argument given above, just
changing a0 by an in (3.19). This finishes the proof in the case N ≥ 3.

Now we consider the case N = 2 and we assume first that V is negative near the
origin. Let sn > 0 be so that U ′

εn
(sn) = 0 and sn → 0 as n → 0. We have in this case

that U ′
εn
(r) > 0, for all r ∈ (0, sn), if n is large.

We start our argument assuming that vn is bounded in [sn,∞) and unbounded in
(0, sn]. Noticing that vn(0) = 0, if vn does not have critical points then vn is bounded
in [0, sn]. Thus we can assume that vn has critical points in (0, sn]. Let bn ∈ (0, sn) so
that v′

n �= 0 in (bn, sn), then using that U ′
εn
> 0 in (0, sn) and Lemma 2.2 we have that

vn(bn) → ∞, as n → ∞.
Let us assume that v′

n(sn) < 0 and vn(sn) > 0, and denote by zn the first critical
point of vn to the right of sn. Integrating (2.3) from bn to zn we get

−Uεn(zn)
vn(zn)

2

2
+ |vn(zn)|p+1

p + 1
+ Uεn(bn)

vn(bn)
2

2
− |vn(bn)|p+1

p + 1
=

−
∫ sn

bn

U ′
εn
(r)
v2
n(r)

2
dr −

∫ zn

sn

U ′
εn
(r)
v2
n(r)

2
dr.

Since the right-hand side here is bounded below, we see that our assumption implies that
|vn(zn)| → ∞, which is a contradiction.

If we have v′
n(sn) > 0, we repeat the same argument. Our conclusion is that vn is

unbounded in [sn,∞). Let r̄ > 0 so that U ′(r) < 0, for all r ∈ (0, r̄), then U ′
εn
(r) < 0

in (sn, r̄), if n is large enough. Let zn be the first critical point of vn to the right of sn,
then integrating 2.3 between zn and r̄ we get

−Uεn(r̄)
vn(r̄)

2

2
+ |vn(r̄)|p+1

p + 1
+ Uεn(zn)

vn(zn)
2

2
− |vn(zn)|p+1

p + 1
=

−
∫ r̄

zn

U ′
εn
(r)
v2
n(r)

2
dr.

By Proposition 3.1, vn(r̄) is bounded and we see that the right-hand side is bounded
below. We conclude that vn(zn) is bounded. But then vn is bounded in (sn, r̄), using
Lemma 2.2, completing the proof.

We are left with the case V positive, which is direct from Lemma 2.2 since Uεn is
increasing. ��
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Remark 3.1. From this proposition there exists C > 0 such that

|un(r)| ≤ C

rα
, for all r > 0,

proving the first part of Corollary 1.1.

4. Zeroes and Critical Points are Dense

In this section we study the behavior of zeroes and critical points of the sequence un, as
n goes to infinity. Let us consider now the number d̄ = lim infn→∞ yn,1, where yn,1 is
the rightmost zero of un.

Proposition 4.1. For every interval (a, b) ⊂ (0, d̄), with a < b, there exists n0 ∈ N

such that (a, b) contains at least one zero of un, for all n ≥ n0.

Proof. We first prove the proposition in case (a, b) ⊂ (0, d). Let us assume the result
is not true. We can assume that un(r) > 0 in (a, b). We first analyze the case when, up
to a sub-sequence, un does not have a critical point in [a, b]. Let us consider the case
u′
n(a) < 0 for all n ∈ N. Then, since

ε2
n

d

dr

(
rN−1u′

n

)
= rN−1

(
V (r)− |un|p−1

)
un

and V is negative in (a, b), we see that rN−1u′
n(r) < aN−1u′

n(a) for all r ∈ (a, b). And
then

un(a) = un(b)+
∫ b

a

−u′
ndr ≥ aN−1|u′

n(a)|
∫ b

a

r1−Ndr,

which implies u′
n(a)/un(a) is bounded. Let us definemn = un(a) and wn(z) = un(a+

εnz)/mn, where we assume thatmn converges up to a sequence tom ≥ 0. The functions
wn satisfy

d

dz

(
(a + εnz)

N−1w′
n

)
= (a + εnz)

N−1
(
V (a + εnz)−m

p−1
n |wn|p−1

)
wn. (4.1)

Since wn is uniformly bounded to the right of 0 and w′
n(0) = εnu

′
n(a)/un(a) con-

verges to zero, integrating (4.1) between zero and z > 0 we see that the functions
(ε−1
n a + z)−1w′

n(z) are locally uniformly bounded. Then we can prove that wn con-
verges, up to a sub-sequence, to the solution of

w′′ − V (a)w +mp−1|w|p−1w = 0, and w(0) = 1, w′(0) = 0, (4.2)

which is periodic with zeroes. This is impossible.
On the other hand, if for some sub-sequence we have u′

n(a) > 0, then from the
equation we see that u′′

n < 0 in (a, b) and then u′
n(r) > u′

n(b) for all r ∈ (a, b). Thus

un(b) = un(a)+
∫ b

a

u′
ndr ≥ (b − a)u′

n(b),

and then u′
n(b)/un(b) is bounded. Re-scaling un as before, but around b, we reach again

a contradiction.
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Finally, if there is a sequence xn ∈ [a, b] with u′
n(xn) = 0, then xn is a maximum of

un and if we define mn = un(xn) and

wn(z) = un(xn + εnz)/mn,

we can prove, using the argument as before, that there exists x̄ ∈ [a, b] andm ≥ 0 such
that wn converges, up to a sub-sequence, to the solution of (4.2), but with a replaced by
x̄. This is impossible again.

To end we consider the case (a, b) ⊂ (d, d̄). We observe that Lemma 3.1 implies
that for any sequence of two consecutive zeroes an < bn of un and lim infn→∞ bn ≥ b,
we have bn − an → 0. We may assume that yn,1 > b and take bn as the first zero of un
to the right of b, we see then that an ∈ (a, b), for n large enough. ��

5. The Envelope Function

In this section we construct the envelope function associated to the sequence of solution
(εn, un) under study. We obtain this function as the limit of piece-wise linear functions
joining the peaks of the functions un.

We start with some qualitative results that we need next. It will be convenient to
consider the trivial envelope, which is given by

e0(r) =
(
p + 1

2
V (r)

) 1
p−1

, (5.1)

for r ≥ d and e0(r) = 0 for r < d . We can easily check that this function satisfies (1.9)
for r > d. In the next two lemmas we analyze the behavior un in relation to e0.

Lemma 5.1. Let xn be a point of maximum for |un| for n ∈ N, and assume that xn → x̄,
then lim infn→∞ |un(xn)| ≥ e0(x̄).

Proof. If x̄ > d then the result is a consequence of (2.5), which implies

C2
ε2
n

x2
n

+ 2

p + 1
|un(xn)|p−1 ≥ V (xn). ��

In what follows we assume, taking a sub-sequence if necessary, that xn,1 converges
to d̄. We have

Lemma 5.2. If d̄ > 0 then

lim
n→∞ |un(xn,1)| = e0(d̄).

Proof. Without loss of generality, we may assume that un(xn,1) > 0. From the proof of
Proposition 4.1 we know that d̄ ≥ d . If d̄ > d , from the proof of Lemma 3.1 we have
that the sequence

wn(z) = un(xn,1 + εnm
(1−p)/2
n z)

mn
,

with mn = un(xn,1), converges to the solution of E( 2
p+1 ). This implies that Vn(0) =

V (xn,1)/m
p−1
n converges to 2

p+1 , and then the result follows.
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If d̄ = d and if, up to a sub-sequence, we have that limn→∞ un(xn,1) > 0, then the
sequence wn(z) = un(xn,1 + εnz), converges to the solution of

w′′ + |w|p−1w = 0, and w(0) = lim
n→∞ un(xn,1), w

′(0) = 0.

Since this solution is periodic with zeroes, we reach a contradiction. Thus, we conclude
that limn→∞ un(xn,1) = e0(d) = 0. ��

Next we study the behavior of the critical points of un in (0, d). It will be useful to
consider the functions vn.

Lemma 5.3. Assuming that V is negative near the origin. Given r0 ∈ (0, d), let xn ≥ r0
be a critical point of vn, n ∈ N. If vn(xn) → 0 then vn(zn) → 0, for any sequence zn of
critical points of vn such that zn ≥ r0 and lim supn→∞ zn ≤ d.

Proof. Let b0 < d so that U ′
εn
> 0 in [b0, d] for n sufficiently large. Let zn as in the

lemma and assume that xn ∈ [b0, d] and vn(xn) → 0. We claim that vn(zn) → 0. If
zn ≤ xn, from Lemma 2.2 we have |vn(zn)| ≤ |vn(xn)| and if xn ≤ zn then from (2.3)
and, since U ′

εn
> 0 in (xn, zn), we find

|vn(zn)|p+1

p + 1
− Uεn(zn)

vn(zn)
2

2
≤ |vn(xn)|p+1

p + 1
− Uεn(xn)

vn(xn)
2

2
.

In both cases it follows that vn(zn) → 0, proving the claim.
Next we show the result when xn, zn ∈ [r0, b0]. We observe that there exist constants

m,M > 0 so that −Uεn(r)/2 ≥ m and |U ′
εn
(r)/2| ≤ M in [r0, b0], for all n large. Since

s ∈ [r0, b0], from (2.3) we have

ε2
n

v′
n(s)

2

2
− Uεn(s)

vn(s)
2

2
+ |vn(s)|p+1

p + 1
= −Uεn(xn)

vn(xn)
2

2
+ |vn(xn)|p+1

p + 1

−
∫ s

xn

U ′
εn

v2
n

2
dr,

from where we obtain that

m · vn(s)2 ≤ −Uεn(xn)
vn(xn)

2

2
+ |vn(xn)|p+1

p + 1
+M

∣∣∣∣
∫ s

xn

v2
ndr

∣∣∣∣ .
Using Gronwall’s inequality we find a constant C > 0 such that

vn(s)
2 ≤ C

(
−Uεn(xn)

vn(xn)
2

2
+ |vn(xn)|p+1

p + 1

)
,

for all s ∈ [r0, b0]. From here it follows that vn(r) → 0 uniformly in [r0, b0].
The conclusion in the general case follows from the fact that the critical points of vn

are densely distributed in [0, d]. ��
Corollary 5.1. In case V is negative near the origin, assume that xn is a sequence of
critical points of un such that xn → x̄ ∈ (r0, d) and

lim inf
n→∞ |un(xn)| > 0.

Then there exists a constant C > 0 such that |un(zn)| > C for any sequence zn of
critical points of vn such that zn ≥ r0 and lim supn→∞ zn ≤ d. Moreover, un possesses
a zero between any pair of consecutive critical points of un, for all n ∈ N sufficiently
large.
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Proof. In view of Lemma 5.3, we only need to prove that un does not have positive
minima nor negative maxima. Since V ≤ 0 in [0, d] and in view of Lemma 2.1, we just
need to rule out the possibility of a sequence yn → d of positive minima of |un|. Let
an < bn be consecutive zeroes of un such that yn ∈ [an, bn] and xn is the point where
|un| reaches its maximum in (an, bn). Considering the sequencewn(z) = un(xn+ εnz),
which converges, up to a sub-sequence, to the solution of

w′′ + |w|p−1w = 0, and w(0) = lim
n→∞ un(xn) �= 0, w′(0) = 0,

which is periodic with zeroes and does not have positive minima, nor negative maxima,
we conclude the proof. ��

Now we are prepared to define the approximate envelope in a precise way. Let us
assume for the moment that the hypotheses of Corollary 5.1 hold and let us define the
function en as

en(r) = |un(xn,k+1)| + |un(xn,k)| − |un(xn,k+1)|
xn,k − xn,k+1

(r − xn,k+1), r ∈ [xn,k+1, xn,k],

(5.2)

where xn,1 > . . . > xn,s(n) are the critical points of un. To extend en to [0,∞), we
notice that e0 is of class C1 in [d,∞), xn,1 → d̄ and |un(xn,1)| → e0(d̄), thus we can
find a sequence xn,0 such that xn,0 > xn,1, xn,0 − xn,1 → 0 and

e0(xn,0)− |un(xn,1)|
xn,0 − xn,1

(5.3)

is bounded. We extend en to the right of xn,1 as

en(r) = |un(xn,1)| + e0(xn,0)− |un(xn,1)|
xn,0 − xn,1

(r − xn,1),

in [xn,1, xn,0] and as e0 in [xn,0,∞). Now an important conclusion

Theorem 5.1. Under the hypotheses of Theorem 1.2, the sequence en converges, up to a
sub-sequence, locally uniformly in R

+ to a function e which is a solution to the envelope
equation (1.9).

Proof. Let us assume first that there is a constant C > 0 such that |u(xn,k)| ≥ C for all
n, k and let r0 > 0. Multiplying (2.1) by u′ we find

d

dr

(
ε2 |u′|2

2
− V (r)

u2

2
+ |u|p+1

p + 1

)
= −ε2N − 1

r
|u′|2 − V ′(r)

u2

2
. (5.4)

Let xn,k and xn,k+1 be two consecutive critical points of un. Integrating (5.4) for (εn, un)
between xn,k+1 and xn,k we obtain

h
p+1
2

p + 1
− h

p+1
1

p + 1
−V (xn,k)

h2
2

2
+ V (xn,k+1)

h2
1

2
= −

∫ xn,k

xn,k+1

ε2
n

N − 1

r
|u′
n|2 + V ′(r)

u2
n

2
dr,
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where h1 = |un(xn,k+1)| and h2 = |un(xn,k)|. By the Mean Value Theorem we find
ξn,k ∈ (h1, h2) such that hp+1

2 − h
p+1
1 = (p + 1)ξpn,k(h2 − h1), and then

h2 − h1

xn,k − xn,k+1
= Nn

Dn
, (5.5)

where

Nn = h2
1(V (xn,k)− V (xn,k+1))

2(xn,k − xn,k+1)
− 1

xn,k− xn,k+1

∫ xn,k

xn,k+1

ε2
n

N − 1

r
|u′
n|2+V ′(r)

u2
n

2
dr

(5.6)

and

Dn = ξ
p
n,k − V (xn,k)

h1 + h2

2
.

It is clear that for all xn,k+1 ≥ r0, bothNn andDn are bounded. On the other hand, from
Lemma 5.1 and under our assumption on the local maximum values of un, the denom-
inator Dn is bounded away from zero uniformly for 0 ≤ k ≤ s(n). By the election we
made for xn,0, it is also clear that the right-hand side of (5.5) is bounded for k = 1.
Thus, the sequence en is uniformly bounded and it is equicontinuous over [r0,∞). The
application of the Arzelà-Ascoli Theorem gives that en converges, up to a sub-sequence.
Since r0 is arbitrary, en converges locally uniformly in R

+ to a function e.
We define the functions fn : R

+ → R as the right-hand side of (5.5) for r ∈
[xn,k+1, xn,k), k = 0, . . . , s(n)−1, as (5.3) if r ∈ [xn,1, xn,0) and simply asH(r, e0(r))

if r ∈ [xn,0,∞). In what follows we prove that fn converges point-wise to H(r, e(r))
in R

+.
Given r ∈ (0, d̄), we let x−

n = xn,k(n)+1 ≤ r and x+
n = xn,k(n) ≥ r be the

extreme points of un closest to r . By Proposition 4.1 we see that x−
n , x

+
n → r and

en(x
−
n ), en(x

+
n ) → e(r). Then we have

lim
n→∞h

2
n,1

(
V (x+

n )− V (x−
n )

x+
n − x−

n

)
= e(r)2V ′(r)

and

lim
n→∞ ξ

p
n − V (x+

n )
hn,1 + hn,2

2
= e(r)p − V (r)e(r),

where hn,1 = |un(x−
n )|, hn,2 = |un(x+

n )| y ξn = ξn,k(n).
Next we consider the integral term in (5.6). We let wn(y) = un(x

−
n + εny) and we

assume that x−
n is a maximum point of un. Thenwn converges in tow(y) = w(r, e(r); y)

defined as the solution of (1.5).
Now we have to distinguish two cases. First, if r ∈ (0, d], then V (r) ≤ 0, w is

periodic with zeroes and (x+
n − x−

n )/εn converges to 2T (r, e(r)). Then, re-scaling we
get

lim
n→∞

1

x+
n − x−

n

∫ x+
n

x−
n

ε2
n

r
|u′
n|2dr = 1

T (r, e(r))

∫ T (r,e(r))

0

|w′|2
r
dy
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and

lim
n→∞

1

x+
n − x−

n

∫ x+
n

x−
n

V ′(r)u2
ndr = 1

T (r, e(r))

∫ T (r,e(r))

0
V ′(r)w2dy.

Second, if r ∈ (d, d̄], by Lemma 5.1 we have that e(r) ≥ e0(r). If e(r) > e0(r) then
the situation is as before. If e(r) = e0(r) then w is positive and decays exponentially.
This implies that

lim
n→∞

1

x+
n − x−

n

∫ x+
n

x−
n

V ′(r)u2
ndr = lim

n→∞
1

x+
n − x−

n

∫ x+
n

x−
n

ε2
n

r
|u′
n|2dr = 0.

Thus we have that for r ∈ (0, d̄],

lim
n→∞ fn(r) =

V ′(r)
2

(
e(r)2 −Q(r, e(r))

)
− N − 1

T (r, e(r))

∫ T (r,e(r))

0

|w′|2
r
dy

e(r)p − V (r)e(r)
, (5.7)

where w(·) = w(r, e(r); ·). We see that the right-hand side corresponds exactly to
H(r, e(r)). In fact, multiplying (1.5) by w′ and by w, after some computations we
obtain

1

T (r, s)

∫ T (r,s)

0
|w′|2dy = V (r)

(
Q(r, s)− s2

)
− 2

p + 1

(
R(r, s)− sp+1

)

and

1

T (r, s)

∫ T (r,s)

0
|w′|2dy = −V (r)Q(r, s)+ R(r, s),

respectively, from where

1

T (r, s)

∫ T (r,s)

0
|w′|2dy = 1

p + 3

(
(p − 1)V (r)Q(r, s)− (p + 1)V (r)s2 + 2sp+1

)
.

Replacing this in (5.7) we conclude. For r > d̄ it is direct from the definition of e0.
Next, testing against a compactly supported smooth function, we can show that e is

a weak solution of (1.9), which is C1 since H is a continuous function in {(r, s)/r, s ∈
R

+, s ≥ e0(r)}, as can be easily checked.
We have concluded the proof in case |u(xn,k)| ≥ C > 0 for all n, k. If this is not the

case, we know by Corollary 5.1 that un converges locally uniformly to zero in (0, d),
which implies en converges to the trivial envelope e0. Here we remark that in the defi-
nition of en, we may take as xn,k a maximum point of un in [yn,k+1, yn,k], which may
not be unique. In any case en converges to e0. ��
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6. Characterizing the Envelope

In this section we complete the proof of Theorem 1.2. We already have a limiting enve-
lope, but we do not know its uniqueness. We show in what follows that e can be charac-
terized by means of an asymptotic energy involving the function R(r, s).

Proposition 6.1. Let (εn, un) be a sequence of solutions of (2.1) with εn → 0 and
Jεn(un) = c. If e is the limiting envelope found in Sect. 5 then

lim
n→∞

∫ b

a

|un|p+1rN−1dr =
∫ b

a

R(r, e(r))rN−1dr,

for all a, b ∈ R
+.

Proof. We first observe that σ(r) := R(r, e(r))rN−1 is uniformly continuous in [a, b],
that is, given ε > 0 there exists δ > 0 such that x, y ∈ [a, b] and |x − y| < δ implies
|σ(x)− σ(y)| < ε.

Let x−
n , x

+
n be two consecutive extreme points of un converging to r̄ , then we have

lim
n→∞

1

x+
n − x−

n

∫ x+
n

x−
n

|un|p+1rN−1dr = σ(r̄). (6.1)

Consider a partition I1, . . . , Ik of [a, b] such that |Ik| < ε and let ri be the mid-point in
Ii for all i = 1, . . . , k. Then, by uniform continuity of σ we have

∣∣∣∣∣
1

x+
n − x−

n

∫ x+
n

x−
n

|un|p+1rN−1dr − σ(ri)

∣∣∣∣∣ < ε, (6.2)

for all pair of extreme points x−
n , x

+
n of un in Ii , i = 1, . . . , k and n large enough. This

implies that
∣∣∣∣∣
k∑
i+1

σ(ri)|Ii | −
∫ b

a

|un|p+1rN−1dr

∣∣∣∣∣ ≤ ε(b − a)+ o(1),

where o(1) → 0 when n → ∞. Since ε is arbitrary and σ is continuous, we conclude
the proof. ��

To complete our arguments we need the monotonicity of R(r, s). We have

Proposition 6.2. R(r, s) is strictly increasing as a function of s.

Proof. By conservation of energy in Eq. (1.5) we have

∫ T (r,s)

0
|w(y)|p+1dy =

√
p + 1

sp−1 s
p+1

∫ 1

0
G(t, λ)tp+1dt,

and then

R(r, s) = sp+1
∫ 1

0
G(t, λ)tp+1dt/

∫ 1

0
G(t, λ)dt,
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where

G(t, λ) = 1/
√

1 − tp+1 − λ(1 − t2) and λ = (p + 1)V/(2sp−1).

If V (r) = 0 then R is increasing in s since

∂

∂s
R(r, s) = p + 1

s
R(r, s) > 0.

In case V (r) �= 0, differentiating we get

∂

∂s
R(r, s)= p + 1

s
R(r, s)+

{
sp+1

∫ 1
0 G

′(t, λ)tp+1dt∫ 1
0 G(t, λ)dt

− R(r, s)

∫ 1
0 G

′(t, λ)dt∫ 1
0 G(t, λ)dt

}
dλ

ds
,

where G′ is the partial derivative of G with respect to λ. If V (r) < 0, then λ < 0 and
dλ/ds = −(p − 1)λ/s > 0. Thus, since G′ > 0, we just need to prove that

D(λ) = p + 1

s
− dλ

ds

∫ 1
0 G

′(t, λ)dt∫ 1
0 G(t, λ)dt

> 0.

To do so, we notice that

G′(t, λ)
G(t, λ)

= 1

2((1 − tp+1)/(1 − t2)− λ)
< − 1

2λ
,

and then

D(λ) >
p + 1

s
− (p − 1)λ

s

1

2λ
= p + 3

2s
> 0.

If V (r) > 0, then we have λ ∈ (0, 1) and dλ/ds < 0, and then we just need to prove
that

E(λ) =
∫ 1

0
G′(t, λ)tp+1dt

∫ 1

0
G(t, λ)dt −

∫ 1

0
G(t, λ)tp+1dt

∫ 1

0
G′(t, λ)dt

is negative. To show this we define

g(t, λ) = G′(t, λ)
G(t, λ)

= 1

2((1 − tp+1)/(1 − t2)− λ)
,

and we rewrite E(λ) as

E(λ) = 1

2

∫ 1

0

∫ 1

0
G(t, λ)G(τ, λ)(g(t, λ)− g(τ, λ))(tp+1 − τp+1)dtdτ.

Since g(t, λ) is decreasing with respect to t , we conclude. ��
With the following corollary, whose proof is a direct consequence of Proposition 6.1

and Proposition 6.2, we conclude the proof of Theorem 1.2.

Corollary 6.1. The sequence en converges to the unique solution e of Eq. (1.9) satisfying
the energy condition (1.10).
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Remark 6.1. If ẽ = rαe, it is not hard to see that ẽ is positive at the origin. In fact, since
J̄ (e) = c > 0 then e and ẽ are not trivial near the origin. This fact implies that e is not
bounded at zero. Actually, for a certain constant C we have e(r) ≥ Cr−α . This in turn
implies that un is not bounded, since its critical points approach the origin. This proves
the second part of Corollary 1.1.

Remark 6.2. Once we have identified the envelope ewe can define the asymptotic energy
and mass densities E and ρ, as in (1.11). Then, from Proposition 6.1, we see that for
every 0 ≤ a < b ≤ ∞,

lim
n→∞

∫ b

a

(
ε2
n

2
|u′
n|2 + 1

2
V (r)u2

n − 1

p + 1
|un|p+1

)
rN−1dr =

∫ b

a

E(r)dr,

and similarly

lim
n→∞

∫ b

a

u2
nr
N−1dr =

∫ b

a

ρ(r)dr.

7. Appendix

In this Appendix we prove the existence of solutions for (1.2) using the variational
method, taking advantage of the fact that the corresponding functional is even. Our
proof, written in the radial case, can be directly extended to the general N dimensional
case, considering some extra growth assumption for the potential at infinity.

We consider the Sobolev space

H =
{
u ∈ H 1(RN) /

∫
RN
V+(x)u2dx < ∞ and u is radial

}
,

where V+(x) = max{0, V (x)}, endowed with the inner product

〈u, v〉 =
∫

RN
∇u · ∇v + (1 + V+(x))uvdx.

We denote by ‖ · ‖ the norm in H associated with 〈·, ·〉 and by ‖ · ‖q the usual norm of
Lq(RN). For functions u in H we define the quadratic functional Qε as

Qε(u) = 1

2

∫ ∞

0

(
ε2|u′|2 + V (r)u2

)
rN−1dr. (7.1)

We will find critical points of Qε on the sphere S = {u ∈ H / ‖u‖p+1 = 1} using stan-
dard min-max theory for even functionals. Denoting by γ (A) the Krasnoselski genus of
the closed symmetric set A ⊂ S, we define

Ak = {A ⊂ S /A is closed and symmetric, γ (A) ≥ k}
and, given k ∈ N, we consider the min-max value

bk(ε) = inf
A∈Ak

sup
u∈A

Qε(u).

Since N ≥ 2, the Strauss Lemma guarantees the compact embedding of H in Lq(RN),
for 1 ≤ q < 2N/(N − 2) if N ≥ 3, and for q ≥ 1 if N = 2, see [22]. Thus we can
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apply Theorem 8.17 in [20] to obtain that each bk(ε) is a critical value of Qε on S and
that

lim
k→∞

bk(ε) = ∞. (7.2)

If vεk ∈ H is a critical point associated to bk(ε), then uεk = (2bk(ε))1/(p+1)vεk is a

solution of (1.2) with ck(ε) ≡ Jε(u
ε
k) = (p−1)

(p+1) bk(ε). These values satisfy the following
properties: 1) ck(ε) is a continuous function of ε, 2) If k ≤ � then ck(ε) ≤ c�(ε), and 3)
If ε ≤ ε′ then ck(ε) ≤ ck(ε

′).
These properties and the following lemma complete the proof of Theorem 1.1.

Lemma 7.1. The critical values ck(ε) satisfy:

1) limk→∞ ck(ε) = ∞ and
2) Given α > 0 and k ∈ N, there exists εk such that ck(εk) < α.

Proof. The proof of 1) is direct from (7.2). To prove 2) we consider a family of k functions
v1, v2, ..., vk ∈ H having compact supports, disjoint from each other. We define

Ak = {v =
k∑
i=1

αivi / ‖v‖p+1 = 1, α1, ..., αk ∈ R},

and we see that there is a constant Ck so that
∫ ∞

0
(|v′|2 + V (0)v2)rN−1dr ≤ Ck, for all v ∈ Ak.

Next we consider the setAεk = {vε / vε(x) = ε−N/(p+1)v(x/ε), v ∈ Ak}, which belongs
to Ak and whose elements vε ∈ Ak satisfy

Qε(vε) = εN(p−1)/(p+1)

2

∫ ∞

0

(
ε2|v′|2 + V (εr)v2

)
rN−1dr ≤ εN(p−1)/(p+1)Ck,

for small ε. From here 2) follows. ��

Acknowledgements. The authors thank the anonymous referee for comments and criticism that lead to an
improved version of our original paper. The second author wants to thank Salomé Martı́nez and Kazunaga
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