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Testing the correctness of the sequential algorithm for simulating
Gaussian random fields

Abstract The sequential algorithm is widely used to
simulate Gaussian random fields. However, a rigorous
application of this algorithm is impractical and some
simplifications are required, in particular a moving
neighborhood has to be defined. To examine the effect
of such restriction on the quality of the realizations, a
reference case is presented and several parameters are
reviewed, mainly the histogram, variogram, indicator
variograms, as well as the ergodic fluctuations in the
first and second-order statistics. The study concludes
that, even in a favorable case where the simulated
domain is large with respect to the range of the
model, the realizations may poorly reproduce the sec-
ond-order statistics and be inconsistent with the
stationarity and ergodicity assumptions. Practical tips
such as the ‘multiple-grid strategy’ do not overcome
these impediments. Finally, extending the original
algorithm by using an ordinary kriging should be
avoided, unless an intrinsic random function model is
sought after.
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1 Introduction

Geostatistical simulation is currently used in various
application domains, e.g. groundwater hydrology,
petroleum reservoir characterization, ore reserve evalu-
ation, environmental and soil sciences. It constitutes a
helpful tool for risk assessment and for decision-making
as it allows assessing the uncertainty on the unsampled

values of the regionalized variable under study, viewed
as a realization of a random field with a specific spatial
distribution.

The sequential algorithm is one of the most wide-
spread techniques for simulating Gaussian random fields
(Ripley, 1987, p 106; Deutsch and Journel, 1992, p 141;
Gómez–Hernández and Journel, 1993). However, its
practical implementation requires several simplifica-
tions, but so far their effects on the accuracy of the
algorithm remain unknown to a great extent. Although
not exhaustive, this work aims at highlighting and
explaining some limitations of the sequential algorithm.
Except for its last section, it considers a stationary
framework and uses simple kriging, i.e. kriging with a
known mean.

2 The model and the algorithm

2.1 Gaussian random fields

A random function {Y(x), x � Rd} is said to be multig-
aussian if every linear combination of its values has a
normal distribution. In particular, the prior distribution
of every value is normal, but this is not a sufficient
condition. Such random function, also called Gaussian
random field, is fully determined by its moments of first
and second orders (mean and covariance or variogram).
In the following, these are assumed to be stationary, i.e.
shift invariant. Without loss of generality, the mean can
be set to zero and the variance to one, so that the spatial
distribution is characterized by the variogram or,
equivalently, the correlogram.

A key property of Gaussian random fields is that
posterior (conditional) distributions are still Gaussian-
shaped. More precisely, the distribution of Y(x) condi-
tional to a set of hard data is Gaussian with mean the
simple kriging of Y(x) from the dataset and variance the
simple kriging variance (Chilès and Delfiner, 1999,
p 381). Such property is the foundation of the sequential
Gaussian algorithm.
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2.2 The sequential Gaussian algorithm

Assume that a Gaussian random field has to be simu-
lated at locations {x1,...,xn}. The simulation is per-
formed as follows:

1. draw a normal value U1 with zero mean and unit
variance, and put Y(x1) = U1;

2. for each i � {2,...,n}, put

Y ðxiÞ ¼ Y SKðxiÞ þ rSKðxiÞUi ð1Þ

where YSK(xi) is the simple kriging of Y(xi) from
{Y(x1),...,Y(xi–1)}, rSK(xi) is the corresponding kri-
ging standard deviation, and Ui is a standard normal
random variable independent of {U1,...,Ui–1}.

At each step, the simulated value is incorporated in
the dataset used for the kriging in every subsequent step:
this is the ‘‘sequential’’ paradigm. Such description is
perfectly sound as it relies on a recursive application of
Bayes’ identity (Chilès and Delfiner, 1999, p 463).

2.3 Pros and cons of the sequential algorithm

The sequential Gaussian algorithm is conceptually very
simple and straightforward. One of its main advantages
is the direct conditioning of the simulations to a set of
hard data: it only requires considering these data as if
they were previously simulated values. Another advan-
tage is the possibility to refine an existing simulation, i.e.
to increase its resolution.

However, several drawbacks are inherent to the
sequential paradigm. The first one deals with random
fields whose variogram is smooth near the origin, like a
Gaussian model: such variogram may entail a quasi–
singularity in the kriging system whenever a fine-scale
simulation is sought after (Lantuéjoul, 1994, p 148). This
problem can be avoided by performing the simulation in
two steps: first a non-conditional simulation, then a
conditioning kriging. Indeed, the first step does not need
to resort to a kriging and its ill-conditioned matrices: for
instance, the spectral method (Shinozuka and Jan, 1972;
Lantuéjoul, 2002, p 192) is suited to the simulation of a
Gaussian variogram over a continuous domain. Con-
cerning the second step, the kriging matrix only involves
the original data, not the simulated nodes, so there is no
singularity problem either unless the data themselves are
close together.

A second drawback concerns the growing computa-
tional requirements needed to perform the sequential
simulation: the kriging system increases as the simula-
tion proceeds, since it involves not only the initial data
but also all the previously simulated values (Eq. 1). If
many locations are considered, simplifications are nec-
essary to speed up the algorithm. In practice, the con-
ditioning values retained at each step (initial
data + previously simulated values) are only the near-
est to the node being simulated. Further values are
deemed not relevant as their influence is screened by the

closest ones (Deutsch and Journel, 1992, p 124). In other
words, a moving neighborhood is defined and a pre-
specified maximum number of conditioning values is
searched within this neighborhood, whereas the theo-
retical approach requires using a unique neighborhood.
In general, the screening effect of the closest values is
partial, hence the moving neighborhood entails a loss of
accuracy.

Remarks

1. The ordering of the locations {x1,...,xn} in the formal
algorithm plays no role. However, in practice, it is
usually chosen at random among all the possible se-
quences. Such ‘‘randomization’’ of the visiting se-
quence aims at avoiding artifacts in the realizations
(Deutsch and Journel, 1992, p 125): indeed, a regular
(for instance, row-wise) sequence may propagate a
flaw or anomaly caused by the neighborhood
restriction.

2. As the sequence changes from one realization to an-
other, the kriging configurations are not repeated and
no simplification can be made, hence the algorithmic
implementation is quite slow (one kriging is required
per realization).

2.4 How can a simulation algorithm be validated?

We now tackle the fundamental question of validating a
simulation algorithm. A first idea is to compare the re-
gional histogram and variogram of a set of non-condi-
tional realizations with the marginal distribution and
variogram of the random function model to simulate.
However, since the simulated domain is always boun-
ded, fluctuations will be observed between the realiza-
tion statistics and the model statistics (Matheron, 1989a,
p 78). Accordingly, the fact that the regional histogram
or variogram of a realization does not match the theo-
retical model does not necessarily imply that the simu-
lation algorithm does not work properly. The
comparison with the model can only be made after
averaging the regional statistics over a large number of
realizations.

Contrarily to what many users may believe, checking
that the marginal distribution and the variogram are
well reproduced on average is not enough. Indeed, there
exist many random function models with the same
marginal distribution and same variogram, e.g. a
Gaussian random field with an exponential variogram
and a Poisson tessellation with Gaussian marginal. The
differences between these models can be seen by exam-
ining other parameters of the spatial distribution, such
as indicator variograms or moments of greater order
(multiple-point statistics).

Another fundamental aspect for controlling the
quality of a simulation algorithm is the analysis of the
aforementioned fluctuations of the realization statistics.
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For instance, the dispersion of the regional variogram
around the theoretical model (fluctuation variance) de-
pends on the spatial distribution of the random function,
in this case the multigaussian distribution (Matheron,
1989a, p 81). Although this feature is hardly docu-
mented and often misunderstood in the geostatistical
literature, it constitutes a powerful tool to validate a
simulation algorithm referred to a given spatial distri-
bution model: one can check whether the observed
fluctuations are reasonably consistent with the ones ex-
pected in the theoretical model. In this respect, Lant-
uéjoul (1994, p 163) warned against simulation
algorithms that produce regional variograms in a
bounded domain without fluctuations.

In the following sections, the properties and limita-
tions of the sequential Gaussian algorithm are studied
through an example, which is deemed to constitute a
‘‘reference’’ case. We resort to numerical experiments
because the complexity of the problem considerably in-
creases as soon as a few locations are simulated, so that
a detailed error analysis is beyond reach. We will
examine the quality of reproduction of the histogram,
variogram and indicator variograms (the analysis of
multiple-point statistics is left aside), then we will turn to
the study of the fluctuations in the first and second-order
statistics.

3 Reproduction of marginal and bivariate distributions

In a two-dimensional domain V of size 1024 · 1024, a
set of 200 non-conditional simulations is drawn, using a
kriging neighborhood containing a maximum of 20
conditioning values. The variogram model is a nugget
effect with sill 0.1 plus an isotropic spherical model with
range 50 and sill 0.9; this is a very favorable situation
since the range is smaller than one twentieth of the do-
main length. To preclude misinterpretations of the re-
sults, this example considers neither an initial dataset
nor a histogram transformation.

3.1 Marginal distribution

Even if a moving neighborhood is used in the sequential
algorithm, Eq. (1) ensures that each simulated value a)
has a zero expectation, b) has a unit variance because of
the orthogonality property of simple kriging (Chilès and
Delfiner, 1999, p 162) and, c) is normally-distributed as a
weighted sum of independent Gaussian random vari-
ables. Consequently, on average over all the realizations,
the sequential algorithm reproduces the marginal dis-
tribution (Fig. 1).

3.2 Variogram and covariance

Figure 2 plots the simulated regional variograms along
the first axis direction, together with the theoretical

model. We notice that, on average, the sequential
Gaussian algorithm provides a biased variogram and
increases the range with respect to the underlying model.
The bias is not negligible: the apparent range is close to
63 instead of 50, which means it is overvalued by 25%.
Such overestimation of the range can be observed in
other references (Deutsch and Journel, 1992, p 128;
Tran, 1994, p 1165; Yao, 2004, p 501).

How can the bias in the variogram be explained?
At first sight, using a moving neighborhood should
entail a loss of correlation at large scale, since the
distant conditioning data are discarded. Paradoxically
the opposite situation takes place, which can be
illustrated on a simple example. Consider the config-
uration shown in Fig. 3, where the locations are
numbered according to the visiting sequence, and as-
sume that the moving neighborhood only includes the
closest node (i.e. its radius is greater than l but
smaller than L).

Let q(h) be the theoretical covariance. The simulated
values can be written as follows (Eq. 1):

Y ðx1Þ ¼ U1

Y ðx2Þ ¼ qðx2�x1ÞY ðx1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�qðx2�x1Þ2
q

U2

Y ðx3Þ ¼ qðx3�x2ÞY ðx2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�qðx3�x2Þ2
q

U3
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where {U1, U2, U3} are independent Gaussian variables
with zero mean and unit variance. Consequently, the

Fig. 1 Quantile-quantile plots between a standard normal
distribution and the simulated distributions, the first bisector
indicates a perfect coincidence between the compared distri-
butions
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covariance between Y(x1) and Y(x3) is not the expected
one:

cov½Y ðx1Þ; Y ðx3Þ� ¼ qðx3 � x2Þqðx2 � x1Þ
6¼ qðx3 � x1Þ ð3Þ

For instance, in the case of a spherical model with a 10%
relative nugget effect, if L is equal to the range and l is
half the range (aligned locations), this covariance is
0.079 instead of zero. The argument that the nearby data
screen out the farthest away data is misleading: omitting
the latter creates a ‘‘relay effect’’ (Rivoirard, 1984), and
increases the range of the simulated covariance with
respect to the theoretical model.

Eq. (3) shows that the theoretical covariance cannot
be reproduced exactly unless this covariance is a) a pure
nugget effect or, b) an exponential model in a one-
dimensional space. The latter case is not surprising, since
the exponential covariance produces a perfect screening
effect (Chilès and Delfiner, 1999, p 202): the kriging
weights are equal to zero except for the data adjacent to
the location being considered. A generalization can be
obtained by simulating aligned and regularly spaced
locations row-wise and by restricting the conditioning
values to the p previous nodes. This procedure provides

an exact simulation of an auto-regressive model of order
p over a regular 1D grid; its covariance is a mixture of
exponential models and dampened sinusoids (Boulan-
ger, 1990, p 18).

3.3 Indicator variograms and madogram

Because the distribution of a bigaussian pair
{Y(x + h),Y(x)} is symmetric, the indicator variogram
associated with a threshold y is equal to:

cIðh; yÞ ¼ Prob½Y ðxþ hÞ � y; Y ðxÞ < y� ð4Þ
This probability can be expressed as a function of the
covariance q(h); for practical calculations, it can be ex-
panded into powers of q(h) (Chilès and Delfiner, 1999, p
399). A related tool is the madogram or first order vari-
ogram, which is the sum of all the indicator variograms
(Matheron, 1989b, p 30):

c1ðhÞ ¼
1

2
EfjY ðxþ hÞ � Y ðxÞjg ¼

Z

þ1

�1

cIðh; yÞdy ð5Þ

In case of a Gaussian random field, the madogram is
proportional to the square root of the variogram
(Matheron, 1989b, p 31):

c1ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qðhÞ
p

r

ð6Þ

Figure 4 plots the indicator variograms related to the
quartiles of the marginal distribution as well as the
madogram. We observe that the range is always greater
than the theoretical value; the explanation is similar to
the one given in the variogram analysis. Since the
marginal distribution is already Gaussian, no simple

Fig. 2 Simulated variograms
and theoretical model (neigh-
borhood containing 20 con-
ditioning values)

Fig. 3 The locations to simulate are the vertices of an isosceles
triangle
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correction can distort the simulated bivariate distribu-
tions into the expected bigaussian distributions.

3.4 Conditions to reproduce the covariance

From a theoretical point of view, the covariance between
two simulated values {Y(xi),Y(xj)} and therefore their
joint distribution are correctly reproduced if the fol-
lowing two conditions are fulfilled: a) the simulation of
the ‘‘latest’’ value in the sequence, say Y(xj), uses the
other value Y(xi) in the kriging system (Eq. 1), and b) the
covariances between all the pairs of values used in this
system are consistent with the theoretical model q(h).
Indeed, because of Eq. (1), one has:

cov½Y ðxjÞ; Y ðxiÞ� ¼
X

k2K

kSK
k cov½Y ðxkÞ; Y ðxiÞ� ð7Þ

where K stands for the indices of the values used when
kriging Y(xj) and fkSK

k ; k 2 Kg for the associated simple
kriging weights. Under condition b), this equality
becomes

cov½Y ðxjÞ; Y ðxiÞ� ¼
X

k2K

kSK
k qðxk � xiÞ ð8Þ

which matches q(xj ) xi) due to the simple kriging
equations, provided that i ˛ K (condition a). In partic-
ular, the simulated covariance between Y(xi) and Y(xj)
will differ from the model if Y(xi) is discarded due to the
moving neighborhood restriction. In the example under
study, n ¼ 1,048,576 values are simulated, each of them
from 20 conditioning values. Consequently, the number
of pairs that fulfill condition a) is about 20 · n, whereas
the total number of pairs is n · (n ) 1) / 2: less than
0.004% of the pairs do really reproduce the model

Fig. 4 Quartile indicator
variograms and madogram
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covariance! To increase this percentage to 10%, one
would need to use more than 50,000 conditioning values
in the search neighborhood; for practical applications,
this number is clearly beyond reach.

For the pairs that do not fulfill the previous two
conditions, the simulated covariance (Eq. 7) depends on
the kriging configurations, hence on the visiting se-
quence and on the value locations, not only on their
separation distance. Put another way, the simulated
covariance and variogram are expected to be non-sta-
tionary. Now, one may argue that stationarity cannot be
falsified on the basis of a realization and what really
matters is that its ‘‘regional’’ variogram reproduces the
variogram model. This argument is legitimate when only
a single realization is available, but the principle of
simulation is to draw many realizations of the random

function. Therefore, the lack of stationarity is expected
to provoke inconsistencies when comparing the realiza-
tion properties with the model: in other words, the
realizations may give an inaccurate image of the
underlying spatial uncertainty. This point will be dis-
cussed in Sect. 4, when analyzing the concept of ergodic
fluctuations.

3.5 Multiple-grid simulation

To minimize the effect of the moving neighborhood
restriction, a ‘‘multiple-grid’’ strategy is often applied. It
consists in simulating a coarse grid first, then in refining
the simulation one or more times. Several authors

Fig. 4 (Contd.)
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(Deutsch and Journel, 1992, p 125; Gómez–Hernández
and Journel, 1993; Tran, 1994) argue that the coarse
simulation ensures the reproduction of the large-scale
variogram structure, whereas the successive refinements
account for the short-scale variability.

However, the drawbacks above mentioned will occur
when the grid mesh becomes smaller than the variogram
range (i.e. when the simple kriging weights are no longer
zero and a neighborhood restriction has to be applied):
problems are just ‘‘delayed’’ until the simulation is
refined to a small scale. As an illustration, let us construct
a new set of 200 realizations over V, using five refinement
grids. The number of nodes in the search neighborhood
and the variogram model are unchanged with respect to
the situation shown in Fig. 2. The sequential algorithm
still leads to an important bias in the variogram repro-
duction (Fig. 5). Actually, even with the multiple-grid
strategy, the number of pairs that reproduce the model
covariance is as in the case of a random visiting sequence
(see Sect. 3.4), so there is no reason to expect a great
improvement neither in the variogram reproduction nor
in the consistency of the realizations with the stationarity
and ergodicity assumptions.

A simple example may help to understand why the
bias does not disappear with the multiple-grid strategy.
Let {x1,. . ., x5} be aligned and regularly spaced loca-
tions and L be the distance between x1 and x5. Suppose
that a sequential simulation is performed with three
successive refinement grids: the edge locations {x1, x5}
are simulated first, then the midpoint x3, finally the
intermediate locations {x2, x4}; this procedure is known
as the random midpoint displacement method (Chilès,
1995, p 100). To simplify the calculations, let us assume
that each value is simulated from the two adjacent
values only (one on each side). For short, here we will
denote by {Y1,. . .,Y5} the set of simulated values.
Simple but tedious calculations based on Eq. (1) lead to
the following covariances:

covðY1;Y5Þ¼qðLÞ

covðY1;Y4Þ¼covðY2;Y5Þ¼
qðL4Þ½qðLÞþqðL2Þ�

1þqðL2Þ
covðY1;Y3Þ¼covðY3;Y5Þ¼qðL2Þ

covðY2;Y4Þ¼
q2ðL4Þ½qðLÞþ2qðL2Þþ1�

½1þqðL2Þ�
2

covðY1;Y2Þ¼covðY2;Y3Þ¼covðY3;Y4Þ¼covðY4;Y5Þ¼qðL4Þ
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:

ð9Þ
Therefore, in general, the simulated covariance is
incorrect for two lags:

• lag h ¼ L/2:
2
3 q
�

L
2

�

þ q2
�

L
4

� �

qðLÞ þ 2q
�

L
2

�

þ 1
�

3½1þ q
�

L
2

�

�2
is

obtained instead of q
�

L
2

�

• lag h ¼ 3L/4:
qðL4Þ½qðLÞ þ qðL2Þ�
½1þ qðL2Þ�

is obtained instead of

qð3L
4 Þ

The only exceptions are the pure nugget effect and the
exponential variogram, cases in which the simulation
produces exact results.

3.6 Sensitivity to the number of conditioning values

From the preceding statements, it appears that the only
way for improving the sequential algorithm is to better
design the kriging configurations or to increase the
number of conditioning values. So far, the kriging
neighborhood only contains 20 conditioning values and
one may wonder whether the quality of the realizations
would become acceptable with a larger number of val-
ues. To answer this question, a second set of realizations
are drawn (same variogram model and same domain)
with a kriging neighborhood containing up to 100 con-
ditioning values. As shown in Fig. 6, the bias in the

Fig. 5 Simulated variograms
obtained by applying a mul-
tiple-grid strategy
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simulated variogram is substantially smaller, but it does
not disappear (the apparent range is equal to 57, which
is not fully satisfactory). It is also worth mentioning that
the calculations are much more CPU-intensive than in
the case of 20 conditioning values and may become
prohibitive if more nodes have to be simulated or many
realizations are needed.

Henceforth, we will come back to the first set of
realizations, for which the kriging neighborhood con-
tains twenty conditioning values and no multiple-grid
strategy is applied, and test the correctness of the
sequential algorithm via the analysis of the so-called
ergodic fluctuations.

4 Ergodic fluctuations

A random function is ergodic in a parameter l if the
corresponding realization statistics l̂W calculated over a
subdomain W (also called ‘‘regional value over W’’)
converges to l when the size of W tends to infinity
(Chilès and Delfiner, 1999, p 19–21). This definition
makes sense only under the stationarity assumption, so
that l is shift invariant. The ergodic property makes
statistical inference possible from a single realization of
the random function.

In practice, one cannot make the size of W tend to
infinity, since W is necessarily included in the whole
simulated domain V whose area is finite. Therefore, a
discrepancy or ‘‘fluctuation’’ between the model
parameter l and the regional value l̂W is expected
(Matheron, 1989a, p 80). Now, l̂W itself can be ran-
domized by substituting the random function for the
regionalized variable in its definition, hence the fluctu-
ation is converted into a random variable. Its amplitude
can be characterized by a variance:

varðl̂W � lÞ ¼ varðl̂W Þ ð10Þ

In the following, two fluctuations are examined, asso-
ciated with the spatial average over an increasing set of
subdomains and the regional variogram respectively.

4.1 Spatial average over a set of subdomains

The spatial average of the random function over a do-
main W is a random variable, denoted by Y(W) here-
after, whose expected value is the theoretical mean and
whose variance is given by

var½Y ðW Þ� ¼ 1

jW j2
Z

W

Z

W
qðx� x0Þdxdx0 ð11Þ

where |W| stands for the area of W. Eq. (11) can be
simplified by introducing the integral range A of the
covariance model:

A ¼ 1

qð0Þ

Z

qðhÞ dh with; here; qð0Þ ¼ 1 ð12Þ

Provided that 0 < A < +1 and that |W| is much
greater than A, Eq. (11) reduces to (Matheron, 1989a,
p 84; Lantuéjoul, 1991, p 393):

var½Y ðW Þ� � A
jW j ð13Þ

In the example under study (spherical model with sill 0.9
and range 50 plus nugget effect with sill 0.1), the integral
range is (Lantuéjoul, 2002, p 243)

A ¼ 0:9� p� 502

5
¼ 1413:7 ð14Þ

Let us now define D2(W | V) as the dispersion variance
of W in the whole domain V:

D2ðW jV Þ ¼ 1

P
E
X

P

p¼1
½Y ðWpÞ � Y ðV Þ�2

( )

ð15Þ

Fig. 6 Simulated variograms
and theoretical model
(neighborhood containing
100 conditioning values)
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where {Wp, p ¼ 1,. . .,P} are subdomains with the same
shape, size and orientation asW, that form a partition of
V. In this particular case, the expectation can be esti-
mated by an average over the 200 available realizations.
By applying Krige’s relationship and Eq. (13), one ob-
tains (Matheron, 1989a, p 85; Lantuéjoul, 1991, p 394):

D2ðW jV Þ � A
1

jW j �
1

jV j

� �

ð16Þ

If V is much greater than W (say, |V| ‡ 10 |W|), this
identity reduces to:

D2ðW jV Þ � A
jW j ð17Þ

In log-log coordinates, the points plotting the dispersion
variance ofW inV as a function of the area |W| should be
asymptotically aligned with slope )1. In Fig. 7, two types
of subdomains are tested: squares and stripes of length
1024. In both cases, the results are slightly inconsistent
since the points cross the theoretical asymptote. This may
indicate that the realizations do not conform to a
stationary and ergodic model (slope greater than ) 1) or
that the integral range is not correctly reproduced, hence
the asymptote is shifted. By applying Eq. (16) to the
dispersion variance of the stripes with size 1024 · 128
(last point in Fig. 7), the integral range is found to be
1602.8, which overestimates the true value (Eq. 14).

4.2 Regional variogram

Let GV(h) be the probabilistic version of the regional
variogram over V and c(h) the theoretical model. For a

Gaussian random field, the fluctuation variance is
expressed as (Alfaro, 1979, p 29; Matheron, 1989a, p 81):

var½CV ðhÞ� ¼
1

2K2
h ð0Þ

Z

½cðuþ hÞ þ cðu� hÞ

� 2cðuÞ�2KhðuÞdu ð18Þ
where Kh(.) is the geometric covariogram of the inter-
section of V and V shifted by )h. Such formula is
independent of the algorithm used to construct the
realizations.

Additionally, the distribution of GV(h) is approxi-
mately Gaussian. Indeed, in the case under study and for
the distances considered (0–80 m), the regional vario-
gram at each lag distance is the average of about
1,000,000 random variables with the same distribution
(squared differences between pairs of simulated values).
Although these random variables are not independent,
they are located in an area greater than 700 times the
integral range of the model covariance, hence a ‘‘mix-
ing’’ property can be reasonably stated and the central
limit theorem (Gordin, 1969) ensures that GV(h) is
approximately normally-distributed.

In words, for each lag h, the set of simulated vario-
grams shown in Fig. 2 must fulfill three conditions:

1) its average must match the theoretical variogram
model

2) its dispersion is ruled by Eq. (18)
3) its shape is approximately Gaussian.

The first condition has already been tested and demon-
strated a bias in the variogram reproduction. Here, we
focus on the other two conditions. Because of condition
3), for each lag distance, the empirical dispersion of the

Fig. 7 Average of the
empirical dispersion variances
versus the subdomain area;
the thick line represents the
theoretical asymptote
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200 simulated variograms should be proportional to a
chi-squared variable with 199 degrees of freedom, the
mean of which is equal to the theoretical fluctuation
variance (Eq. 18). Now, to assess whether the discrep-
ancy between the empirical dispersion of the simulated
variograms and the theoretical fluctuation variance is
acceptable or not, one can draw a confidence interval
(e.g. with a 95% confidence) around the latter (Fig. 8).

The observed empirical dispersion matches the ex-
pected variance only when the lag is smaller than 10. For
lags between 10 and 45, this dispersion lies outside the
95% confidence interval, which means that the fluctua-
tion is understated and that the set of realizations is not
consistent with a stationary and ergodic multigaussian
model: in fact, the defective property is stationarity.
Such underestimation of the fluctuation variance has
also been observed by Ortiz and Deutsch (2002, p 179).

5 On the use of ordinary kriging

A variant of the sequential Gaussian algorithm consists
in substituting an ordinary kriging for the simple kriging
in Eq. (1). Let us review the implications of this ap-
proach, depending on whether a stationary or an
intrinsic model is considered.

5.1 Stationary model with unknown mean

In linear geostatistics, ordinary kriging aims at esti-
mating the values of a stationary random function
whose mean is unknown and may differ from one region
of space to another. Following these statements, one
may use an ordinary kriging in the sequential algorithm
to reproduce a locally varying mean (Deutsch and

Journel, 1992, p 142). However, such approach prevents
an accurate reproduction of the second-order statistics,
as detailed hereafter.

Let {Y(x), x ˛ Rd} be a Gaussian stationary random
field with mean m, variance 1 and covariance q(h). Let us
suppose that a set of values {Y(x1),. . ., Y(xn–1)} is
available (say, an original dataset) and simulate a new
value Y(xn):

Y ðxnÞ ¼
X

n�1

k¼1
kOK

k Y ðxkÞ þ rOKðxnÞUn ð19Þ

In this equation, the superscript OK refers to ordinary
kriging. The kriging weights and variance satisfy the
following system, in which l is a Lagrange multiplier:

P

n�1

k¼1
kOK

k qðxk � x‘Þ þ l ¼ qðxn � x‘Þ8‘ 2 f1; . . . ; n� 1g

P

n�1

k¼1
kOK

k ¼ 1

r2
OKðxnÞ ¼ 1�

P

n�1

k¼1
kOK

k qðxn � xkÞ � l

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð20Þ
Now, the covariance between the new value and an
original datum Y(x‘) (with ‘ 2 f1; . . . ; n� 1g) is not the
expected one. The difference is equal to the Lagrange
multiplier introduced in Eq. (20):

cov½Y ðxnÞ; Y ðx‘Þ� ¼
X

n�1

k¼1
kOK

k cov½Y ðxkÞ; Y ðx‘Þ�

¼ qðxn � x‘Þ � l 6¼ qðxn � x‘Þ ð21Þ
Even if the simple kriging variance is used instead of the
ordinary kriging variance (Deutsch and Journel, 1992,
p 142), the previous equation is unchanged and the same

Fig. 8 Theoretical and
observed dispersions of the
regional variogram
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conclusion prevails. By resorting to the additivity rela-
tionship (Chilès and Delfiner, 1999, p 183), one can get
an alternative expression for Eq. (21) and explain what is
expected to happen. If fkSK

k ; k ¼ 1; . . . ; n� 1g stand for
the simple kriging weights of Y(xn), k

SK
m for the weight of

the mean m and mOK for the optimal estimation of this
mean, then:

cov½Y ðxnÞ; Y ðx‘Þ� ¼
X

n�1

k¼1
kSK

k cov½Y ðxkÞ; Y ðx‘Þ�

þ kSK
m cov½mOK ; Y ðx‘Þ�

¼ qðxn � x‘Þ þ kSK
m varðmOKÞ ð22Þ

hence (Eq. 21)

l ¼ �kSK
m varðmOKÞ ð23Þ

The last line of Eq. (22) stems from the kriging systems
associated with the simple kriging of Y(xn) and the or-
dinary kriging of m. Quite often, the weight of the mean
is positive (in simple kriging, the mean compensates a
lack of information when the data are not numerous or
are distant, thus it is positively weighted), hence the
Lagrange multiplier in Eqs. (20) and (21) is negative and
the covariance between the simulated value and the
former values is greater than the theoretical model:

in general; cov ½Y ðxnÞ; Y ðx‘Þ� > qðxn � x‘Þ ð24Þ
At the subsequent steps of the simulation, one will ob-
tain an equation similar to Eq. (22) with, this time,
cov[Y(xk),Y(xl)] ‡ q(xk ) xl) (Eq. 24). Therefore, if the
simple kriging weights are positive (which is a frequent
situation), the covariance of the simulated value with the
former ones will still be overestimated. We even see that
the deviation between the theoretical and simulated co-
variances may grow up when the simulation proceeds,
because the simulated values are re-used for the sub-
sequent steps.

The variance is not reproduced either. Indeed, be-
cause of Eqs. (19) and (20), one has:

var½Y ðxnÞ� ¼
X

n�1

k;‘¼1
kOK

k kOK
‘ qðxk � x‘Þ þ r2

OKðxnÞ

¼
X

n�1

‘¼1
kOK
‘ ½qðxn � x‘Þ � l� þ 1

�
X

n�1

k¼1
kOK

k qðxn � xkÞ � l

¼ 1� 2l ð25Þ

and this quantity is usually greater than one (as pre-
viously mentioned, l is often negative). In words, the
simulated values are expected to overstate the prior
unit variance. As an illustration, 200 realizations have
been drawn in a domain of size 1024 · 1024 where a
single datum (set to zero and located at the center of
the domain) is available, with the previous variogram
model (nugget + spherical with range 50) and neigh-
borhood (20 conditioning values). Most of the simu-
lated variograms (Fig. 9) cross the unit sill and
even seem to be unbounded, as if the simulated ran-
dom function had a greater (or even an infinite) var-
iance. Again, no simple procedure can correct this
situation.

5.2 Intrinsic model

The use of an ordinary kriging is relevant in case of an
intrinsic random function, i.e. when the variogram c(h)
does not reach a sill. Indeed, assume that a set of data
fY ðx1Þ; . . . ; Y ðxn�1Þg satisfy the intrinsic hypothesis:

Fig. 9 Simulated variograms
obtained by using an ordinary
kriging

411



8i; j 2 f1; . . . n� 1g; E½Y ðxiÞ � Y ðxjÞ� ¼ 0
var½Y ðxiÞ � Y ðxjÞ� ¼ 2cðxi � xjÞ

�

ð26Þ
The increments of the random function fulfill the sec-
ond-order stationarity hypothesis; their covariances can
be expressed in terms of the variogram model. Indeed,
let us put:

8i; j; k; ‘ 2 f1; . . . n� 1g;
Cik;j‘ ¼ cov½Y ðxiÞ � Y ðxkÞ; Y ðxjÞ � Y ðx‘Þ

ð27Þ

Using the bi-linearity of the covariance operator, it
comes:

2Cik;j‘¼Cik;jiþCik;jkþCik;i‘þCik;k‘

¼ðCij;jiþCjk;jiÞþCjk;ikþCi‘;ikþðCi‘;k‘þC‘k;k‘Þ
¼�Cji;jiþCjk;jkþCi‘;i‘�Ck‘;k‘

¼ cðxj�xkÞþ cðxi�x‘Þ� cðxi�xjÞ� cðx‘�xkÞ
ð28Þ

In brief, the knowledge of the variogram (variance of the
increments) is enough to characterize the covariance
between increments. As a consequence, the variance of
any linear combination whose weights add to zero can
be developed formally by substituting the opposite of the
variogram for the non-existent covariance (Chilès and
Delfiner, 1999, p 61): if fxi; i ¼ 1; . . . ; n� 1g is a set of
weights that add to zero, then

var
X

n�1

i¼1
xiY ðxiÞ

" #

¼ var
X

n�1

i¼1
xi½Y ðxiÞ � Y ðx1Þ�

( )

¼
X

n�1

i;j¼1
xixjCi1;j1

¼ �
X

n�1

i;j¼1
xixjcðxi � xjÞ ð29Þ

The kriging system of a new value Y(xn) (Eq. 20) be-
comes:

P

n�1

k¼1
kOK

k cðxk � x‘Þ � l ¼ cðxn � x‘Þ8‘ 2 f1; . . . ; n� 1g

P

n�1

k¼1
kOK

k ¼ 1

r2
OKðxnÞ ¼

P

n�1

k¼1
kOK

k cðxn � xkÞ � l

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð30Þ
In the sequential algorithm, Eq. (19) is unchanged. Let
us calculate the expectation and variance of the differ-
ence between Y(xn) and the data values, using Eqs. (26),
(29) and (30). For any ‘ 2 f1; . . . ; n� 1g, we have:

E½Y ðxnÞ � Y ðx‘Þ� ¼
X

n�1

k¼ 1

kOK
k E½Y ðxkÞ � Y ðx‘Þ� ¼ 0 ð31Þ

var½Y ðxnÞ�Y ðx‘Þ�

¼ 2
X

n�1

k¼1
kOK

k cðxk�x‘Þ�
X

n�1

k;p¼1
kOK

k kOK
p cðxk�xpÞþr2

OKðxnÞ

¼ 2½cðxn�x‘Þþl��
X

n�1

k¼1
kOK

k ½cðxn�xkÞþl�

þ
X

n�1

k¼1
kOK

k cðxn�xkÞ�l

" #

¼ 2cðxn�x‘Þ ð32Þ
Hence, the whole set {Y(x1),. . ., Y(xn)1),Y(xn)} still ful-
fills the intrinsic hypothesis (Eqs. 26 to 28).

Remarks

1. If the random variables {U1,. . ., Un} in Eq. (19) are
Gaussian, the spatial distribution is fully character-
ized by the variogram model and is independent of
the ordering of the locations {x1,. . ., xn}: the
sequential algorithm simulates an intrinsic random
function with Gaussian and stationary increments.

2. One original value at least is required at the beginning
of the simulation to solve the ordinary kriging sys-
tem. This was expectable, since an intrinsic random
function is defined up to an additive constant: the
initial value is needed to remove this indetermination.

3. Similarly, the sequential algorithm allows simulating
a generalized intrinsic random function by using an
intrinsic kriging instead of an ordinary kriging and a
generalized covariance instead of a variogram (Chilès
and Delfiner, 1999, p 252–265).

4. Like in the stationary case, the exactness of the
sequential algorithm is true only if a unique neigh-
borhood is used in the kriging steps. In general, the
moving neighborhood restriction entails an inaccu-
rate reproduction of the variogram. Let us come back
to the configuration shown in Fig. 3, where the first
value Y(x1) is an initial datum; the simulated values
can be written as follows:

Y ðx2Þ ¼ Y ðx1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cðx2 � x1Þ
p

U2

Y ðx3Þ ¼ Y ðx2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cðx3 � x2Þ
p

U3

�

ð33Þ

hence

var½Y ðx3Þ � Y ðx1Þ� ¼ 2cðx3 � x2Þ þ 2cðx2 � x1Þ
6¼ 2cðx3 � x1Þ ð34Þ

The only exception is the linear variogram in a one-
dimensional space. Due to the screening effect pro-
duced by this variogram, the simulation is exact as
soon as the adjacent values on each side of the node
being simulated are taken into account in the kriging
system. The random function model is a Brownian
motion (Chilès and Delfiner, 1999, p 507–510). This
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assertion is no longer correct in a multidimensional
space (Eq. 34), as mentioned by Chilès (1995, p 100).

6 Conclusions

Due to the moving neighborhood restriction, the
sequential Gaussian algorithm fails to reproduce several
basic properties of the underlying model:

• the second-order statistics such as the variogram or
the indicator variograms may be biased, especially
when they have a finite range;

• the realizations are not consistent with a stationary
and ergodic random function model.

The bias and inconsistencies are not negligible: the rea-
son is that each simulated value is used in the subsequent
steps, so the errors tend to spread when the simulation
proceeds. To overcome these impediments, the multiple-
grid concept is not a panacea, as it only postpones the
problems until the simulation is refined to a small scale.
A better solution consists in increasing the number of
conditioning values, but this approach quickly becomes
time-consuming and unworkable. Alternatively, one
may define an adequate neighborhood that minimizes
the error between the simulated and theoretical statis-
tics. Now, such task is quite difficult and impractical,
since this neighborhood depends on the variogram
model and the geometric configuration of the previously
simulated locations (Boulanger, 1990, p 29–46).

The distinction between the model and the algorithm
is sometimes confused. The model is the random func-
tion that is sought after, characterized by its spatial
distribution (in particular, its histogram, variogram and
indicator variograms). The algorithm is a way to obtain
realizations of the model; it may be traded for another
one if not suitable. In the multigaussian case, let us
mention the turning bands and the discrete spectral
methods as two alternatives to the sequential algorithm
(Matheron, 1973, p 461; Lantuéjoul, 1994; Chilès and
Delfiner, 1997). To this author’s opinion, such methods
present three advantages over the sequential algorithm:

1. The conditioning to a set of hard data can be per-
formed through a kriging step that only uses the
original data, not the simulated values. Hence, the
kriging system is far smaller and the CPU require-
ments substantially decrease with respect to the
sequential paradigm.

2. If the variogram is smooth near the origin and a fine-
scale simulation is sought after, the quasi-singularity
of the kriging matrix is avoided, unless the original
data are close together. Indeed, the conditioning
kriging does not involve the simulated locations, but
only the data locations (recall the discussion in Sect.
2.3).

3. Since the kriging configurations are unchanged from
one realization to another, the conditioning kriging

needs to be performed only once for all the realiza-
tions to reproduce the original data, whereas the
sequential algorithm has to achieve one kriging per
realization (unless the same visiting sequence is used,
which is commonly not advised). Again, this entails
an important gain in terms of CPU requirements.
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