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Abstract
An unsupervised neural network technique, Growing Cell Structures (GCS), was used to visualize geochemical differences
between sandstones of four different sedimentary provenance groups: P1 (mafic), P2 (intermediate), P3 (felsic), and P4

(recycled). Multidimensional data of four sandstone data sets comprising major elements, log-normalized major elements, trace

elements, and high field strength elements (HFSE) were projected into colored two-dimensional maps that can be visually and

quantitatively interpreted. The cluster structure and variable distributions produced show that each sedimentary provenance

group can be distinguished in the neural maps according to a unique combination of major or trace element concentrations. In

these terms, the distinguishing features of each provenance group are: P1—high Fe2O3t, TiO2, MgO, MnO, CaO, P2O5, Sc, V, Cr,

and Cu; P2—intermediate Fe2O3t, TiO2, MgO, MnO, CaO, Sc, V, and Cu; P3—intermediate to high K2O, intermediate SiO2 and

Al2O3, low Fe2O3t and TiO2, and intermediate to low Nb, Rb, and Th; P4—high SiO2, Y, Nb, Rb, Th, Ba, and Zr, coupled with

low Al2O3, CaO, Na2O, Fe2O3t, MgO, MnO, and TiO2. The elemental associations in P1, P2, and P3 reflect petrogenetic

evolution of first-cycle sources, whereas the associations in P4 are compatible with the combined effects of recycling,

weathering, and heavy mineral concentration.
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1. Introduction

1.1. Geochemical study of terrigenous sedimentary

rocks
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The geochemical composition of terrigenous sedi-

mentary rocks is a function of a complex interplay of

variables. Processes such as weathering, transport,

diagenesis, sorting, and heavy mineral concentration

(Johnsson, 1993; McLennan et al., 1993) may modify

compositions inherited from source. If the influence of
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these processes is minor, and if transport distances are

short, the compositions of first-cycle sandstones pre-

dominantly reflect the nature and proportion of their

detrital components and hence their provenance (e.g.,

Bhatia, 1983; Roser and Korsch, 1988). If intense

weathering or extensive recycling is involved, the

composition of derived sediments may be severely

modified from that of their original source terranes.

However, in these cases, distinctive geochemical

signatures of the processes involved may in turn be

imparted to the sediments (Nesbitt and Young, 1984;

McLennan et al., 1993).

Major and trace element geochemistry provides

clues to both provenance type and tectonic setting,

and much effort has been directed at determining

which elements are the more discriminating. However,

the large number of variables involved can hamper

clear visualization and interpretation of the geochem-

ical information as a whole. Most of the pioneering

work that deals with provenance analysis of multi-

dimensional major and trace element geochemical data

sets was carried out using multiple discriminant anal-

ysis (MDA; Bhatia, 1983; Roser and Korsch, 1988) or

principal component analysis (PCA; Bhatia and

Crook, 1986). Both are multivariable statistical tech-

niques that are used to visualize first-order differences

between groups of samples. MDA is a ‘‘supervised’’

technique that will not distinguish ‘‘natural’’ groups

within sets of data, as it relies upon prior knowledge of

the groupings (Le Maitre, 1982). In contrast, PCA can

distinguish between natural groups without prior

assumptions. However, being a type of linear fitting,

non-linear relations between samples or variables are

rejected.

In this study, we use Growing Cell Structures or

GCS (Fritzke, 1996), a specific type of artificial neural

network, to visualize geochemical differences between

four first-order sedimentary provenance categories of

terrigenous sedimentary rocks: P1 (mafic), P2 (inter-

mediate), P3 (felsic), and P4 (recycled), as defined by

Roser and Korsch (1988).

1.2. Artificial neural networks, self-organizing maps

(SOM), and GCS

The basic task of any artificial neural network is to

learn how to map real observations into classes in a

decision space, using a given decision or neural rule.
This mapping has different names in different con-

texts. Those most often used include pattern recogni-

tion, pattern classification, or simply classification.

The adaptive process of ‘‘teaching’’ a given mapping

to a neural network is known as training, and the set of

data used for training purposes is known as a training

set. In contrast, those data used for testing the perfor-

mance of the neural network after training is complet-

ed is known as a test set. If such training is carried out

using as a training set in which the classification of the

observations (samples or features) is known, the train-

ing process is known as ‘‘supervised’’ learning. During

supervised learning, the parameters of the neural

network (synaptic weights or connections) are adap-

tively adjusted in response to successive presentations

of the training set. The learning process proceeds in

this way: (i) a sample is introduced into the neural

network under training; (ii) the neural network produ-

ces an answer or decision, i.e., assigns a class to the

sample; (iii) an error signal is generated by comparing

the decision of the network to the actual class of the

sample; (iv) this error signal is used for adapting the

parameters of the neural network; (v) this process is

repeated using many examples until stable values for

the network parameters are attained (i.e., the neural

network has learnt). In contrast, ‘‘unsupervised’’ learn-

ing is carried out without using any a priori classifi-

cation of the samples. In this case, the parameters of

the neural network are adjusted taking into account

measures among the samples, such as distances. When

unsupervised learning is employed, terms such as

clustering, self-organizing, self-discovering or self-

learning are used, rather than classification. The sam-

ples or features to be self-organized are normally

multidimensional observations. For this reason, they

are considered as vectors (input or feature vectors) and

vector notation is employed (e.g., distance, cluster, and

input space).

Kohonen’s SOM (Kohonen, 1995) constitute a very

well-known and widely used neural network model

which employs unsupervised learning. SOM adapts to

the training data (input vectors) in a way such that a

high-dimensional input space is projected onto a two-

dimensional rectangular array of interconnected units.

This two-dimensional array is known as a feature map,

and the arrangement of its units (connected by edges)

is known as map topology. The feature map is a

topology-preserving map (Kohonen, 1995), i.e., simi-



Table 1

Provenance groups, sample suites, and sources

Group Nme Nte Sample suite Source

P1* 35 31 Maitai Terrane (New Zealand) Roser and Korsch (1988);

Roser (unpublished data)y

P1 33 Solomons Islands–Woodlark

Basin seafloor sediments

Crook et al. (1984)

P1* 23 24 Izu–Bonin island arc (Japan) Gill et al. (1994)y

P1* 20 19 Brook St. Terrane (N.Z.) Roser (unpublished data)y

P1 9 Baldwin Formation–Tamworth

Group (Australia)

Chappell (1968); Bhatia (1985)

P1 6 Oceanic Island Arc sandstone

averages

Bhatia (1983)

P1* 6 6 Kays Creek Formation, Caples

Terrane (N.Z.)

Roser et al. (1993)y

Sub-total 132 80

% 15.2 12.8

P2* 46 46 Tuapeka Group (N.Z.) Roser et al. (1993)y

P2* 35 34 North Range Group, Murihiku

Terrane (N.Z.)

Roser et al. (2000a, 2002) y

P2* 31 26 Waipapa Terrane (New Zealand) Roser and Korsch (1988);

Palmer et al. (1995)y

P2 22 Uyak Complex (Kodiak Island,

Alaska)

Connelly (1978)

P2* 24 24 Upper Peak and Bold Peak Fmtns,

Caples Terrane (N.Z.)

Roser et al. (1993)y

P2 9 Hill End Suite (Australia) Bhatia (1985)

P2 6 Continental Island Arc

sandstone averages

Bhatia (1983)

P2 4 Baldwin Formation (Australia) Chappell (1968)

Sub-total 177 130

% 20.4 20.7

P3* 256 241 Torlesse Terrane (Rakaia and

Pahau terranes, N.Z.)

Roser et al. (1995a)y

P3* 30 29 Kaihikuan–Warepan Murihiku

Terrane (N.Z.)

Roser et al. (2000a, 2002) y

P3 22 St. Ynez Mts. (California, USA) Van de Kamp et al. (1976)

P3 17 Shimanto Belt (Shikoku, Japan) Shinjoe (1995)y

P3 14 Franciscan Complex (California, USA) Bailey et al. (1964)

P3 9 Holocene Sands (Salton Basin,

California, USA)

Van de Kamp et al. (1976)

P3 7 Hodgkinson Basin (Australia) Bhatia (1985)

Sub-total 355 270

% 40.9 43.1

P4* 82 77 Buller Terrane (N. Z.) Roser et al. (1995b, 1996) y

P4* 43 43 Tanabe Group (Honshu, Japan) Roser et al. (2000b)y

P4 20 Horton Group (Nova Scotia, Canada) Murphy (2000)y

P4* 14 13 Snowy Mountains (Australia) Wyborn and Chappell (1983)

P4* 14 14 Takaka Terrane (N. Z.) Roser et al. (1995b, 1996) y

P4 13 Libby Creek Group (Wyoming, USA) Crichton and Condie (1993)y

P4 10 Bendigo–Cookman Suite (Australia) Bhatia (1983, 1985)

P4 8 Pongola Supergroup (South Africa) Wronkiewicz and Condie (1987)y

(continued on next page)
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Table 1 (continued )

Group Nme Nte Sample suite Source

Sub-total 204 147

% 23.5 23.4

Total 868 627

Number of analyses (Nme) refers to the major element data set (Sn= 868). Number of analyses (Nte) refers to the trace element data set

(Sn= 627) drawn from the astered sample suites, excluding a small number of samples with highly anomalous abundances or missing values for

single elements.

*Trace element data sources.
y Analyses drawn from literature and unpublished data, not used in Roser and Korsch (1988).
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lar input vectors correspond to units of the feature map

that are close to each other. Hence, the underlying

structure of the high-dimensional input space is main-

tained and can be discovered by exploring the two-

dimensional feature map. As similar input vectors

group into subsets called clusters, the cluster structure

of the input space also appears in the two-dimensional

feature map. One limitation of SOM is that its map

structure must be specified in advance. This is gener-

ally not possible in an optimal way, since a necessary

piece of information, the probability distribution of the

input vectors, is usually not available.

GCS is an extension and development of SOM,

whose map can be described as a two-dimensional

array of interconnected units organized in the form of

triangles. In contrast to SOM feature maps, GCS map

topology is not fixed, but is generated gradually

during an incremental learning process which assumes

no prior knowledge of group affiliation. Starting from

an initial topology of three units organized as one two-

dimensional triangle, GCS adapts the overall map

structure by inserting new units into those regions

that represent large portions of the input data (Fritzke,

1994). The topology is thus determined by the prob-

lem being examined.

In this study, we used GCS to project large multi-

dimensional geochemical data sets into two-dimen-

sional representations or feature maps where the

information most relevant to the clustering task is

discovered through visual inspection.
Fig. 1. Visualization of posterior probabilities and input variable distribut

element data set. (a) Provenance-related unit distribution over the GCS m

visualizations of the posterior probability distributions. Four clusters have

Each cluster is associated with a specific sedimentary provenance group

probability values are shown by the color axes at right. (d) Two-dimensional

of each variable can easily be compared visually with that of the posterior

rock concentrations (wt.% oxide).
2. Methods

We have used literature-derived data sets, mostly of

ancient sedimentary successions (Table 1) to examine

geochemical patterns in sandstones of different sedi-

mentary provenance types. These include data from

different geographic regions and of differing age. The

data sets thus incorporate both spatial and temporal

diversity.

Four data sets were constructed using selected

sandstone analyses. The sandstones suites chosen

have well-established provenance type, not deter-

mined solely by geochemical means, and metamor-

phic grade lower than upper greenschist to lower

amphibolite facies.

The data sets are:

(1) Major elements: comprising 868 sandstone anal-

yses with concentration data (wt.%) for the 10

major and minor oxides (SiO2, TiO2, Al2O3, K2O,

Na2O, CaO, Fe2O3t, MgO, MnO and P2O5)

conventionally analyzed.

(2) Log-normalized major elements: comprising log-

normalized values of concentration data for 827

samples drawn from the first data set. Analyses

which had zero values for any variables were

dropped, and the remaining data then normalized.

The aim of this was to remove closure, and thus

test the effect of closure in the analysis of the first

data set.
ions for a 17-unit GCS network trained on 868 cases for the major

ap structure. (b, c) Three-dimensional (b) and two-dimensional (c)

been modeled by the network, with clear separation between each.

(P1 to P4). For the two-dimensional visualizations (c) the posterior

visualizations of the distributions of the input variables. Distributions

probabilities, and with each other. The scales at right indicate whole
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(3) Trace elements: comprising 627 analyses with

concentration data (ppm) for 11 trace elements (Y,

Nb, Rb, Th, Ba, Zr, V, Sc, Ce, Cr and Sr) in all
samples. A second analysis was also carried out on

this data set adding La and Cu to test the effect of

additional elements.



Table 2

Provenance related cluster distributions of the analyzed data sets

Cluster N % P1 % P2 % P3 % P4

Major elements

P1 7 64 12 1 1

P2 3 17 68 7 1

P3 3 2 17 85 0

P4 4 17 3 8 97

Total 17 100 100 100 100

Log-normalized major elements

P1 3 79 21 0 0

P2 2 20 50 2 0

P3 3 1 26 95 11

P4 6 0 4 4 89

Total 14 100 100 100 100

Trace elements

P1 4 75 8 0 0

P2 3 24 76 2 5

P3 2 1 15 79 6

P4 5 0 2 19 88

Total 14 100 100 100 100

HFSE

P1 4 91 19 0 0

P2 3 8 70 1 1

P3 2 0 10 80 12

P4 7 1 1 19 87

Total 16 100 100 100 100

For each data set, percentage values (% P) refer to the percentage of

training samples of each provenance group that were assigned to

each provenance-related cluster, as defined by their respective map

units (Figs. 1a, 2a, 3a, and 4a).

N = number of cluster assigned units.
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(4) High field strength elements (HFSE): This data

set is a subset of the trace element set, restricted

to HFSE. It comprises 627 analyses with concen-

tration data (ppm) for six trace elements (Y, Nb,

Th, Zr, Sc, Ce) in all samples. The aim of this

data set was to test if results were improved by

removal of potentially mobile elements (Rb, Ba,

V, Cr, and Sr).

The sandstones in each data set were classified into

one of the four first-order provenance groups defined

by Roser and Korsch (1988). These are: P1 (mafic)—

first-cycle basaltic and lesser andesitic detritus; P2

(intermediate)—dominantly andesitic detritus; P3 (fel-

sic)—felsic plutonic and volcanic detritus; and P4

(recycled)—mature polycyclic quartzose detritus.

Many of the sample suites employed were used by

Roser and Korsch (1988) to define their classification

scheme and to test their discriminant functions. They

are therefore already classified according to this

scheme. These data were supplemented with newer

analyses drawn from the literature, along with some

unpublished data (Table 1). Each of these suites were

also classified into provenance groups on the basis of

their discriminant function scores, and the analyses

tagged with their group affiliation. To allow direct

comparison between samples, all major element anal-

yses were normalized to 100% loss-on-ignition free.

The same normalization factors were applied to the

trace element data.

All four data sets include sandstones of each

provenance group, although the samples are not evenly

distributed between groups. In the major element data

set, 41% of the samples are from the P3 group, 24%

from P4; and P1 and P2 comprise 15 and 20%,

respectively (Table 1). The log-normalized data set

has similar proportions (P3 42%; P4 21%; P1 21%; P2

16%). In the trace and HFSE data sets, 43% are from

the P3 group, whereas P4, P2, and P1 comprise 23%,

21%, and 13%, respectively.

Each sandstone data set was analyzed using the

GCS algorithm. The calculations were made using the

GCSVIS software (Walker et al., 1999) which, for each

provenance group, converts the frequency of data

samples assigned to each GCS map unit (prior prob-

ability), into a prediction for a new sample associated

to each GCS map unit (posterior probability). In the

context of pattern recognition, the prior probability
corresponds to the probability of occurrence of a given

class, and thus reflects a priori knowledge. The poste-

rior probability corresponds to the probability of a

class given an observation. The posterior probabilities

of the different provenance groups are then displayed

on color maps, which are lain over the final GCS map

structure (e.g., Fig. 1c). Alternatively, to generate a

three-dimensional visualization, the posterior proba-

bilities can be displayed as altitudes, i.e., z-axis values,

ranging between 0 and 1 (e.g., Fig. 1b). Average values

for individual input variables at each GCS map unit,

can also be displayed on color maps and overlain on

the final GCS structure, allowing simple visual com-

parison with the posterior probability color maps. (e.g.,

Fig. 1d). Those input variables whose color map

distributions are similar to the posterior probability



Table 3

Characteristic elemental concentrations in each provenance group

(P1–P4), for each of the analyzed data sets

Cluster P1 P2 P3 P4

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Major elements (wt.%)

SiO2 54.86 2.84 63.03 3.30 72.54 2.47 80.44 8.05

TiO2 0.94 0.23 0.92 0.19 0.50 0.10 0.47 0.26

Al2O3 17.28 1.93 16.47 1.02 14.13 1.13 10.24 4.01

Fe2O3t 9.93 1.55 7.22 1.30 3.50 0.85 3.15 1.91

MnO 0.20 0.12 0.12 0.04 0.05 0.02 0.04 0.04

MgO 5.20 2.17 2.81 0.71 1.25 0.42 1.31 0.93

CaO 7.01 2.78 3.16 1.14 1.58 0.71 0.74 1.02

Na2O 3.29 0.93 4.52 0.80 3.79 0.63 1.16 0.76

K2O 1.10 0.65 1.58 0.61 2.65 0.64 2.34 1.09

P2O5 0.21 0.14 0.17 0.05 0.11 0.04 0.11 0.08

N 84 121 300 198

Log-normalized major elements (wt.%)

SiO2 54.64 2.72 63.19 2.80 72.40 2.95 78.88 7.76

TiO2 0.95 0.23 0.89 0.16 0.50 0.11 0.53 0.24

Al2O3 17.23 1.95 16.54 1.41 14.03 1.40 10.89 3.93

Fe2O3t 10.08 1.41 7.18 1.01 3.55 0.90 3.57 1.87

MnO 0.20 0.12 0.12 0.05 0.05 0.03 0.05 0.08

MgO 5.37 2.07 2.75 0.63 1.27 0.45 1.54 0.92

CaO 6.98 2.81 3.28 1.12 1.81 1.30 0.79 1.09

Na2O 3.34 0.98 4.27 0.77 3.70 0.68 1.21 0.71

K2O 1.03 0.59 1.60 0.71 2.65 0.68 2.43 1.04

P2O5 0.20 0.13 0.18 0.05 0.11 0.03 0.13 0.09

N 102 87 330 154

Trace elements (ppm)

Ba 150.0 121.2 322.2 129.5 606.8 126.1 466.6 152.7

Cr 74.2 56.4 43.4 17.0 32.9 9.6 57.1 28.8

Nb 1.8 1.4 5.2 1.2 8.2 1.3 10.4 4.2

Rb 16.7 15.4 45.8 19.8 92.0 18.0 121.8 45.8

Sc 31.9 7.3 18.8 4.2 8.3 2.1 8.6 4.3

Sr 333.8 216.7 263.8 141.1 342.7 120.8 85.8 47.4

Th 1.6 1.1 5.7 1.8 10.9 1.6 13.3 4.2

V 315.5 87.8 182.3 48.5 73.6 20.4 61.6 29.1

Y 20.0 4.8 26.2 4.6 20.2 3.1 29.2 11.7

Zr 73.8 29.3 162.7 20.2 189.6 31.2 229.7 115.2

Ce 13.5 7.0 34.1 7.5 52.7 8.5 61.3 22.8

N 60 99 213 130

HFSE (ppm)

Nb 2.0 1.4 5.7 1.3 8.1 1.3 9.9 4.8

Sc 29.7 8.4 17.8 3.8 8.1 1.9 8.1 4.8

Th 1.9 1.2 6.6 1.9 10.8 1.7 12.8 5.1

Y 19.8 4.6 26.8 4.5 20.0 3.1 28.8 14.0

Zr 78.4 29.3 169.5 20.6 193.7 44.7 222.9 86.8

Ce 14.2 6.8 37.4 7.4 51.8 7.7 60.7 26.7

N 73 91 229 102
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color map distribution of a particular provenance

group (e.g., Fe2O3t and P1 color map distributions in

Fig. 1) are highly likely to be significant discriminat-

ing elements for that provenance group (Walker et al.,

1999). Similarly, if two or more input variables have

similar color map distributions (e.g., Th, Nb, and Ce

color map distributions in Fig. 4), a close correlation

exists between them.

A provenance group or class can be assigned to

each unit of the final GCS map (e.g., Fig 1a). The

percentage of samples assigned to each unit of the

final GCS map can be computed for each provenance

group (P1 to P4) using the prior probability informa-

tion. The provenance group or class assigned to each

map unit is that with the greatest percentage. If the

difference between the greatest and the next largest

percentage is small ( < 10%), group assignment is

determined using topological criteria, i.e., the classes

assigned to the surrounding map units. This prove-

nance group assignment allows estimation of the

percentage of training samples of each provenance

group assigned to each cluster, as the percentage of

samples assigned to the respective map units (Table

2). It also enables, for each of the analyzed data sets,

computation of the average concentrations of those

samples correctly assigned to their provenance clus-

ters (Table 3), and of the average values of selected

geochemical parameters commonly used for prove-

nance discrimination (Table 4).
3. Results

GCS analysis of the data sets resulted in four

distinct network topologies or maps (Figs. 1, 2, 3,

and 4). For the major element, trace element, and

HFSE data sets, the GCS network modeled the prob-

lem as four clusters, which appear in the color maps as

four distinct areas with high posterior probabilities

(Figs. 1c, 3c, and 4c), respectively). The GCS network

associated each of these areas with a specific sedimen-
Note to Table 3:

Means and standard deviations (Sd.) are expressed in weight percent

(wt.%) for the major and log-normalized data sets, and parts per

million (ppm) for the trace and HFSE data sets. For each provenance

group, N refers to the number of correctly assigned training samples

used for calculation of the mean and the standard deviation.



Table 4

Examples of distinctive geochemical parameters for the provenance groups (P1–P4)

Cluster P1 (mean) P2 (mean) P3 (mean) P4 (mean)

Major elements (wt.%)

Fe2O3t +MgO 15.13 10.03 4.74 4.47

SiO2/Al2O3 3.17 3.83 5.13 7.85

K2O/Na2O 0.33 0.35 0.70 2.03

Al2O3/(CaO+Na2O) 1.68 2.15 2.63 5.39

N 84 121 300 198

Trace elements (ppm)

Th/Sc 0.05 0.30 1.32 1.54

Zr/Th 44.87 28.78 17.40 17.30

K/Th (Major elements) 5524.98 2323.42 2017.92 1465.04

K/Th (Log-n Major elements) 5175.63 2344.92 2019.12 1517.52

Ti/Zr (Major elements) 26 10 6 3

Ti/Zr (Log-n Major elements) 77 33 16 14

N 60 99 213 130

HFSE (ppm)

Th/Sc 0.06 0.37 1.33 1.57

Zr/Th 41.19 25.79 17.87 17.46

K/Th (Major elements) 4774.46 1998.81 2027.57 1523.88

K/Th (Log-n Major elements) 4472.56 2017.31 2028.78 1578.47

Ti/Zr (Major elements) 24 9 6 3

Ti/Zr (Log-n Major elements) 24 9 6 4

N 73 91 229 102

For each provenance group, N refers to the number of correctly assigned training samples used for calculation of the mean value.
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tary provenance group (P1 to P4). For the log-normal-

ized data set, five clusters appear (Fig. 2c). Three are

associated with a specific sedimentary provenance

group (P1 to P3), whereas the other two are associated

with P4 (P4a and P4b; Fig. 2b). For each data set, the

GCS color maps show also that a more refined

differentiation among sedimentary provenance groups

is possible, because visual comparison between the

input variable and provenance group map distributions

enables identification of individual input variables

(major or trace elements) with specific concentration

ranges in discrete provenance subregions. For exam-

ple, very high P2O5 concentrations appear in a subre-

gion of P1 (Fig. 1d); very high log-normalized K2O in

the P4 subregion (Fig. 2d); high Ba in P3 (Fig. 3d); and
Fig. 2. Visualization of posterior probabilities and input variable distribu

normalized data set (log-normalized values of the concentration data of the

map structure. (b, c) Three-dimensional and two-dimensional visualizatio

modeled by the network, with clear separation between each. Three clusters

P3), and the other two with P4 (P4a and P4b). For the two-dimensional vi

axes at right. (d) Two-dimensional visualizations of the input variable d

concentrations). Bracketed values to the right are corresponding concentr
very high Zr in P4 (Fig. 4d). There is no major overlap

between neighboring clusters. Instead, the transition

between them is sharp, indicating a clear decision

boundary (Walker et al., 1999). Inspection reveals that

all four GCS maps (Figs. 1, 2, 3, and 4) allow

visualization of the role of each input variable in the

overall separation of the provenance-related clusters.

3.1. Major element data set

High SiO2 values (>75 wt.%) are closely related to

P4, intermediate values (70–75) to P3, intermediate to

low values (60–68) to P2, and low values ( < 60) are

typical of P1 (Fig. 1). High K2O abundances (>2.5) are

closely related to P3 and P4, whereas intermediate to
tions for a 14-unit GCS network trained on 827 cases for the log-

first data set). (a) Provenance-related unit distribution over the GCS

ns of the posterior probability distributions. Five clusters have been

are associated with specific sedimentary provenance groups (P1, P2,

sualizations, the posterior probability values are shown by the color

istributions. The scales are logarithmic (log values of whole rock

ations in weight percent.
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low values (1.3–2.2) are related to P2 and a discrete

subregion of P1. High TiO2 concentrations (>0.9) are

also localized in discrete subregions of P1 and P2,

whereas relatively uniform low values (close to 0.6) are

associated with P3, with dispersion towards P4. High

values of Al2O3 (>15) are evenly distributed across

both P1 and P2, whereas homogeneous and moderately

high values (close to 14 wt.%) are closely related to P3.

Values in P4 are intermediate to low (< 12 wt.%) High

values of Na2O (>4 wt.%) are related to P2, whereas

low values (< 2 wt.%) are strongly associated with P4.

High Fe2O3t abundances (>8.5 wt.%) are closely relat-

ed to P1, whereas low values (< 3.5) are related to P4.

High values of CaO (>8 wt.%) and MgO (>6 wt.%) are

moderately correlated and, together with high values of

MnO (>0.5 wt.%) and P2O5 (>0.4 wt.%), are localized

in discrete subregions of P1.

3.2. Log-normalized data set

After conversion of the log-normalized values, the

results of the analysis of the log-n data set can be

expressed in terms of major element concentrations. A

feature of this analysis is the appearance of two clusters

(4a and 4b) in the P4 group (Fig. 2). High SiO2

concentrations (>74 wt.%) are again typical of P4

(P4b), intermediate values (68–74) are associated with

P3, intermediate to low values (59–66 wt.%) are

related to P2, and low values (< 59 wt.%) are charac-

teristic of P1. Very high K2O values (>2.7 wt.%) are

typical of P4a, intermediate to high K2O abundances

(1.8–2.7 wt.%) are associated with P3, intermediate to

low values (1.0–1.6 wt.%) are related to P2, and very

low values (< 1.0) are related to P1 and P4b. High

values of Al2O3 (>15 wt.%) are evenly distributed

across both P1 and P2, and intermediate to moderately

high Al2O3 abundances (11–14) extend into P3 and

P4a, whereas low values (< 9 wt.%) are typical of P4b.

Intermediate to high Na2O abundances (2.0–3.6 wt.%)

are distributed across P1, P2 and P3, although the

greatest concentrations (>3.6 wt.%) occur in P2. Low
Fig. 3. Visualization of posterior probabilities and input variable distribu

element data set. (a) Provenance-related unit distribution over the GC

visualizations of the posterior probability distributions. As for Fig. 1, the net

with a specific sedimentary provenance group (P1 to P4). A weak P4

visualizations, the posterior probability values are shown by the color axe

distributions. Scales for the input variables are concentrations in ppm.
Na2O values (< 1.5 wt.%) are related to both P4a and

4b. TiO2, Fe2O3t, and MgO are closely correlated, and

high values (TiO2 >1.0 wt.%, Fe2O3t> 7.9, MgO> 4.0)

are related to P1, in contrast to the low values

(TiO2 < 0.5, Fe2O3t < 2.5, MgO< 0.8) characteristic of

P4b. Intermediate to high TiO2, Fe2O3t, and MgO

values (0.8–1.0, 5.6–7.9, and 2.0–3.6, respectively)

are associated with P2, whereas intermediate abundan-

ces (0.5–0.6, 2.5–5.0, and 0.8–2.0, respectively) are

associated with P3 and P4a. CaO and MnO are also

correlated. High values (CaO>5.0, MnO> 0.20) are

typical of P1, whereas low concentrations (CaO< 0.6

and MnO< 0.04) are characteristic of P4. Intermediate

to high CaO and MnO values (3.2–5.0 and 0.16–0.20,

respectively) are associated with P2, whereas interme-

diate to low abundances (0.6–2.5 and 0.04–0.08,

respectively) are related to P3. Very high P2O5 abun-

dances (>0.20) are localized in a discrete subregion of

P2, with some dispersion of uniformly high values

(close to 0.16) towards P1 and the rest of P2. Low P2O5

values (< 0.06) are related to P4b.

3.3. Trace element data set

Trace element concentrations (ppm) also show

distinct groupings (Fig. 3). Highest Y abundances

(>32 ppm) are associated with P4, intermediate values

(20–26) with P2 and P3, and low values (< 20) with

P1. Very high Zr values (>260) are localized in discrete

subregions of P3 near the P4–P3 boundary, with

considerable dispersion of high values (220–260)

towards P4. Intermediate Zr abundances (120–160)

are typical of P2, and low values (< 120) are related to

P1. High Ba values (>550) are localized in discrete

subregions of P3 and P4, whereas very low values

(< 250) are associated with P1. Highest abundances of

Sr (>450) occur in a discrete subregion of P2 adjacent

to the P1–P2 boundary, with considerable dispersion

of high to intermediate values (300–450) towards both

regions. Very low concentrations (< 110 ppm) are

associated with P4.
tions for a 14-unit GCS network trained on 627 cases for the trace

S map structure. (b, c) Three-dimensional and two-dimensional

work has modeled the problem as four main clusters, each associated

subcluster appears between P3 and P2. For the two-dimensional

s at right. (d) Two-dimensional visualizations of the input variable



Fig. 4. Visualization of posterior probabilities and input variable distributions for a 16-unit GCS network trained on 627 cases for the HFSE data

set. (a) Provenance-related unit distribution over the GCS map structure. (b, c) Three-dimensional and two-dimensional visualizations of the

posterior probability distributions. The network has again modeled the problem as four clearly separated main clusters, and a weak P4

subcluster. For the two-dimensional visualizations, the posterior probability values are shown by the color axes at right. (d) Two-dimensional

visualizations of the input variable distributions. Scales for the input variables are concentrations in ppm.
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Nb, Rb, Th, and Ce are highly correlated. High

values of all four elements (Nb >11 ppm, Rb >130,

Th>13, Ce > 62) are closely associated with P4, in
contrast to the low values (Nb < 4, Rb < 40, Th < 4,

Ce < 26) characteristic of P1. Abundances in P3 and P2

are intermediate. Vand Sc are also strongly correlated,
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and very high (V>260, Sc >26) and high (V>170,

Sc >17) values are related to P1 and P2, respectively,

in contrast to low values in P3 and P4. Highest Cr

values (>90 ppm) are localized in a discrete subregion

of P1. Somewhat anomalously, intermediate values

(55–80) occur in both P4 and P1, whereas low values

(< 50) intervene in P2, P3, and in a discrete subregion

of P1.

3.4. HFSE data set

The results of the analysis of the HFSE data set (Fig.

4) are in general agreement with the above results. High

Y abundances (>32 ppm) are closely related to P4,

intermediate to low values (25–30) to P2, and low

values (< 23) to P3 and P1. Very high Zr concentrations

(>260) are localized in a discrete subregion of P4, and

in a discrete subregion near the P4–P3 boundary, with

considerable dispersion of high values (220–260)

towards both P3 and P4. Intermediate to low Zr values

(140–190) are associated with P2, whereas low values

(< 120) characterize P1. Nb, Th, and Ce are again

closely correlated, with highest values (Nb >12,

Th >15, Ce >70) in P4, and lowest values (Nb < 3,

Th < 4, Ce < 20) in P1. High to very high Sc abundan-

ces (Sc >26) and intermediate to high Sc values (17–

22) are associatedwith P1 and P2, respectively, and low

values ( < 15) with P3 and P4.
4. Discussion

Although the whole rock analyses used here were

classified into provenance groups according to petro-

graphic or geologic evidence, a priori knowledge was

not used during the unsupervised training of the GCS

or in determining its structure. Only after GCS deter-

mined the final structure was the class information

tagged to each analysis used to distinguish the poste-

rior probability distribution of each provenance group.

Therefore, clustering or separation appears in the

trained network as a natural characteristic of the

samples of all four data sets analyzed.

The numerical results for the major element data set

(Table 2) show that P3 and P4 are the best-defined

clusters (highest percentages of correctly assigned

samples), with minor dispersion of P3 towards P4

and P2. The poorer definition (lower percentages of
correctly assigned samples) of the P1 and P2 clusters is

mainly due to the relatively larger dispersion between

these two groups, coupled with dispersion of P2

towards P3 and dispersion of P1 towards P4.

The marked differences in the color map distribu-

tions of TiO2,MgO,MnO, CaO, and P2O5, between the

major element and log-normalized data sets (Figs. 1

and 2) show that the analysis of the major element data

set is affected by the closure of the data. Compared to

the major element data set, Fe2O3t, TiO2, MgO, MnO,

and CaO in the log-normalized data set are more

continuously distributed in their respective color maps,

and display a higher inter-element correlation. This

pattern is more consistent with the expected behavior of

these variables as suggested by previous studies (Bha-

tia, 1983; Taylor and McLennan, 1985; Roser and

Korsch, 1988). Therefore, removing the closure of

the major element data set resulted in a general im-

provement in the results of the GCS analysis.

Compared to the major element data set, cluster

definition in the log-normalized data set increases for

P1 and P3, and decreases for P2 and P4 (Table 2).

Particularly relevant is the lack of P1 dispersion

towards P4, whereas poorer definition of the P2 cluster

is mainly due to increased dispersion of P2 towards P1

and P3. Examination of the P4 data distribution

reveals that the P4a subcluster contains a large pro-

portion of the Buller and Snowy Mountains data (94%

and 57%, respectively; Fig. 2). Conversely, the P4b

subcluster contains high proportions of the Tanabe and

Takaka terrane data (92% and 58%, respectively).

Inspection of the P3 and P4 data shows that average

TiO2, Fe2O3t, and MgO concentrations in the Buller

(0.65, 4.91, 2.35 wt.%, respectively) and Snowy

Mountains (0.54, 3.25, 1.35 wt.%) data sets are

appreciably greater than those of the Tanabe (0.25,

1.79, 0.63 wt.%) and Takaka (0.41, 2.16, 0.74 wt.%)

data sets. The Buller and Snowy Mountains averages

lie closer to the respective averages of the P3 Murihiku

(0.61, 3.47, 1.09 wt.%), Rakaia (0.51, 3.62, 1.33

wt.%), and Pahau (0.47, 3.43, 1.12 wt.%) data sets.

Hence, TiO2, Fe2O3t, and MgO concentrations seem to

be relevant factors responsible for the dispersion of the

Buller and Snowy Mountains data towards P3 and the

resulting split in the P4 cluster.

Table 2 shows that, considered as a whole, cluster

definition in the trace element data set is better than

that of the major element and log-normalized data sets.
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However, similar to the log-normalized data set, a

weak P4 subcluster appears between the P2 and P3

clusters (Fig. 3a,b,c). Inspection of the data distribu-

tion shows that the majority (93%) of the P4 data

assigned to this subcluster belongs to the Tanabe

Group data set. Only a small percentage (19%) of

the Tanabe Group data is correctly assigned to the

main P4 cluster, whereas 60% is assigned to the P4

subcluster, with moderate to high dispersion towards

P3 (19%) and P1 (2%).

Two changes in the combination of variables in the

trace element data set enabled analysis of the roles of La

and Cu. When La was added to the original variable

selection and Sr rejected, a clearer discrimination

between the sedimentary provenance clusters was

attained. As should be expected from their geochemical

coherence, La and Ce had almost the same distribution,

with high La values (>32) related to P4, intermediate

values (20–32) related to P3, and low values (< 20)

related to P2 and P1. On the contrary, when Cu was

added and Ce removed from the original variable

selection, the four provenance clusters became less

defined, although they were still distinguishable. Cu

was moderately correlated with V and Sc, with inter-

mediate to high Cu values (>110) associated with P1,

and low values (< 60) associated with P3.

Compared to the trace element data set, the HFSE

analysis shows a marked improvement in definition of

the P1 cluster, with a high percentage (91%) of cor-

rectly assigned samples (Table 2). Dispersion of P2

towards P1 increases and the dispersion of P4 towards

P2 decreases. As for the trace element data set, the

distribution of the P4-related units (Fig. 4a) suggests
Table 5

Average concentrations (ppm) of several trace elements in P3 and

P4 data sets compared to the average upper continental crust values

of McLennan (2001)

Suite Grp Sc Cr Th Nb Ce Y Zr

Snowy

Mountains

P4 7 55 12 10 55 27 269

Buller P4 11 71 14 13 72 36 229

Takaka P4 11 55 14 13 28 26 226

Tanabe P4 4 24 9 5 35 15 174

UCC – 13.6 83 10.7 12 64 22 190

Rakaia P3 8 33 11 9 55 21 192

Pahau P3 8 25 10 7 48 20 203

Murihiku P3 11 27 11 8 53 22 204
dispersion of P4 data towards P3. Examination of the

data distribution reveals significant dispersion (32%) of

the Tanabe Group data towards P3. The remainder

(68%) of the Tanabe Group data are assigned to the

two units that define the P4 subcluster located between

the P2 and P3 clusters (Fig. 4a,b,c). Although less than

for the trace element data set, a significant percentage

(76%) of the P4 data assigned to these latter P4 units

belongs to the Tanabe Group data set.

Examination of the individual P4 data shows that

the average Sc, Cr, Th, Nb, Ce, Y, and Zr abundances

of the Snowy Mountains, Buller, and Takaka data sets

(Table 5) are similar to or are greater than those of the

average upper continental crust (UCC) values of

McLennan (2001). In contrast, except for Ce in the

Takaka set, average concentrations for all six elements

in the P4 Tanabe data set are significantly less than

those in the above suites and in UCC (Table 5). The

Tanabe averages lie close much closer to those of the

P3 Rakaia, Pahau, and Murihiku data sets, in which

abundances of all elements are lower than or equal to

UCC composition. Therefore, for the trace and the

HFS element data sets, the Sc, Cr, Th, Nb, Ce, Y, and

Zr concentrations appears to control the dispersion of

the Tanabe Group data towards P3, and the concen-

tration of Tanabe samples in the P4 subcluster located

between the P2 and P3 clusters. This dispersion is

likely to be a product of the depositional environment

and provenance of the Tanabe Group, which was

deposited in a Miocene forearc basin in the Shimanto

accretionary complex of Southwest Japan. Conglom-

erates in the lower Tanabe Group contain clasts de-

rived from older Shimanto rocks (Tanabe Research

Group, 1985, 1992, 1993), establishing its recycled

nature. However, the bulk chemical composition of the

Tanabe Group differs little from its Shimanto protolith

(Roser et al., 2000b), suggesting that in this case,

recycling has not produced the chemistry characteristic

of the P4 group.

The success of the GCS technique in capturing the

sedimentary provenance cluster structure and the cor-

relations of the geochemical variables can be judged

by comparison with previous numerical estimates.

Being a non-linear approach, the results of the GCS

analysis can only be compared indirectly with linear

numerical measures. In terms of associations of ele-

ments, the observed GCS visual correlations agree

with published correlation coefficients between trace
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and major elements of five eastern Australian Paleo-

zoic graywacke suites deposited in differing tectonic

settings (Bhatia and Crook, 1986). Provenances of

these suites range from andesite to older metasedi-

mentary rocks, or in the terminology of this study,

from P1 to P4. The groupings of the geochemical

variables which best discriminate between each prov-

enance group as identified here are also consistent with

the results of previous studies (Bhatia, 1983; Bhatia

and Crook, 1986; Taylor and McLennan, 1985). The

range of average P1–P3 Th/Sc ratios in the trace and

HFSE data sets (Table 4) is consistent with that of Th/

Sc ratios (< 0.01 to 1.8) reported for modern turbidites

from active margin tectonic settings (McLennan et al.,

1990). Systematic increase in Ce, Th, Nb contents and

K2O/Na2O, SiO2/Al2O3, and Al2O3/(CaO +Na2O) ra-

tios from P1 to P4 and systematic decrease in V, Sc,

Fe2O3t +MgO, K/Th, and Ti/Zr (Tables 3 and 4) are

also in general agreement with the results of previous

studies (Bhatia, 1983; Bhatia and Crook, 1986; Roser

and Korsch, 1988).

The results also support the suggestion of Roser

and Korsch (1988) that the chemistry of first-cycle

sandstones of the P1–P3 groups largely reflects that of

their source terranes, and that the P1–P3 succession

resembles a ‘‘differentiation’’ trend between average

mafic and felsic source compositions. The distinctive

elemental associations found in P1 (e.g., high TiO2,

Fe2O3t, CaO, MgO, V, Sc, and Cu; and low Ba and Zr)

are consistent with mafic parentage. Conversely, the

lesser TiO2, Fe2O3t, CaO, MgO, V, Sc, and Cu, and

greater SiO2, K2O, Zr, Nb, Rb, and Th abundances

identified in P3 are consistent with a felsic igneous

provenance. Equally, the pattern of high SiO2, Zr, Nb,

Rb, Th, and low Al2O3, CaO, Na2O, and Sr in P4 is

compatible with the modifying effects of weathering

and recycling, as feldspar and labile lithic fragments

are lost by progressive weathering and abrasion, and

quartz and resistant heavy minerals are concentrated

relative to the source.

The sharpness of the GCS map boundaries between

the four provenance groups (Figs. 1, 2, 3, and 4) are

likely influenced by the data set used as input. Intui-

tively, we would expect some gradation between P1,

P2, and P3 as a result of varying proportions of mafic,

intermediate, and felsic detritus in individual samples

and suites. Some overlap between P3 and P4 can also

be expected, since many P4 sandstones are derived
from felsic crystalline basement rocks. This and the

effects of recycling of preexisting sediments and vary-

ing intensity of source area weathering could also

produce more gradual transition between P3 and P4.

The latter is supported by the dispersion of part of the

P4 data towards P3, and their concentration in P4

subclusters located between the P2 and P3 clusters,

for the log-n, trace, and HFS element data sets.

Overlap between P3 and P4 was tested by redefin-

ing the Pahau terrane samples, classified as P3 in this

work, as P4. The Pahau terrane was largely derived

from cannibalistic reworking of the adjacent Rakaia

terrane (MacKinnon, 1983), plus a minor volcano-

genic component derived from more mafic inboard

terranes (Roser and Korsch, 1999). Geochemical indi-

ces reflect a shift towards the characters expected in

recycled sediments, although the change in some is

lessened by the volcanogenic component (Roser and

Korsch, 1999). The Pahau rocks can therefore be

regarded as representatives of the first stages of

large-scale recycling, similar to the Tanabe suite dis-

cussed above. After GCS analysis of the redefined data

set, four provenance clusters could still be distin-

guished. Although the relationships between P3, P2,

and P1 changed a little, the distinction between P3 and

P4 was less defined than in the original data set, with

greater dispersion of P4 towards areas of high proba-

bility for P3. The P3 cluster was also less defined, with

lower maximum probability than in the original data

set, and a P4 subcluster reflecting the Pahau data

appeared in the P3 cluster.

Addition of more data to this analysis could thus

reduce the separation between the groups, as suggested

by the gradations observed in the maps of the input

variables. However, we would expect the characteristic

elemental fingerprints observed in each group to be

maintained. Despite the above limitation, the GCS

maps provide useful information on the broad geo-

chemical differences between sedimentary provenance

types, as they highlight higher-order correlations and

allow visual perception of subtle inter-relations be-

tween variables. Examination of the proportions of

individual suites or subsets of the data assigned to

individual map units also provides a method for iden-

tifying provenance anomalies or homogeneity within

those groups. Although the clusters and elemental

associations described here could also be identified

on conventional variations diagrams, visual compar-
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isons are facilitated by the color maps, and subsets can

be readily identified, as in the case of the Tanabe data.

The application of our results to other sedimentary

successions is also supported by the broad geograph-

ical distribution and varied age of the sedimentary

successions analyzed, and because the GCS map to-

pology of both data sets broadly resembles the ‘‘natu-

ral’’ literature-derived affinities between sedimentary

provenance groups. The success of the analysis under-

taken here suggests that GCS is of wide application in

other branches of earth science, to identify natural

clusters or anomalies and to explore the relationships

between numeric variables in large data sets. After

training, the neural networks of the SOM type can be

used to recognize data that are similar to any of the

examples shown during the training phase. Therefore,

SOM neural networks trained with the analyzed sedi-

mentary data sets can be used to classify new data of

unknown sedimentary provenance type.
5. Conclusions

Our results show that significant geochemical dif-

ferences between sandstones of different provenance

can be visualized through GCS color maps. Their

multidimensional projection of both major and trace

element data resulted in ‘‘natural’’ separated clusters.

The P1, P2, and P3 provenance groups are associated

with three clearly separated clusters. The P4 prove-

nance group is also associated a with a separate cluster,

although it shows a marked tendency to be dispersed

towards P3. Compared to the major element data, GCS

analysis of the trace element data resulted in better-

defined clusters, especially when the analysis was

restricted to immobile HFSE. Both the visual and

numerical results show that a unique combination of

major and trace element concentrations characterize

each sedimentary provenance group. In that respect,

our results are similar to those of previous studies

(Bhatia, 1983; Taylor and McLennan, 1985; Bhatia

and Crook, 1986; Roser and Korsch, 1988). However,

GCS visualization has clear interpretative and analyt-

ical advantages over the linear numerical approach of

these works, because it takes into account higher-order

correlations and allows visual perception of the rela-

tionships between variables. Gross aspects of the

geochemical differences in the P1, P2, and P3 prove-
nance groups appear to be strongly related to geochem-

ical differences between their sources, whereas the

elemental associations identified in P4 are compatible

with the effects of weathering and recycling.
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