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Abstract
This article deals with the numerical approximation of Navier–Stokes equations in a domain with moving

boundaries. Using the arbitrary Lagrangian–Eulerian (ALE) method we transform the problem from a moving domain

to a fixed reference domain through an artificial domain velocity. Then, we apply the characteristic method to solve the

Navier–Stokes equation in the fixed domain. Suitable boundary conditions are used for the interfaces. Three examples

are provided to show the efficiency of the present method.

Keywords: Free boundary problems; ALE method; Method of characteristics; Finite element method
1. Introduction

Numerical simulation of two-dimensional viscous incompressible fluid with free boundaries is getting
more attention for the past few decades; these types of problems arise frequently in several important

industrial applications, such as melting and solidification, crystal growth, glass and metal forming pro-

cesses, etc. In particular, modeling of mould filling during the casting of metals into moulds is an example

for the present situation where the domain of interest has an unknown boundary in the beginning of the

analysis.

Applications of the finite element method (FEM) to hydro-structural problems have been studied by

Belytschko and Kennedy [1], and Donea et al. [4]. In these studies, a purely Lagrangian method was
employed for the kinematical description of the fluid domain. The Lagrangian description, that is, the
association of the state variables to the fluid particles is very convenient when the geometry of the domain
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changes. One can write the equations of motion with respect to a reference set which is in a bijec-
tive correspondence with the fluid particles. More precisely, in this formulation, the coordinate sys-

tem moves with the fluid. The Lagrangian method has several useful properties: (i) material interfaces

can be specifically delineated and precisely followed; (ii) free surface boundary conditions are easily

applied; and (iii) curved rigid boundaries of any arbitrary shape can be treated. Whereas the main draw-

back of this method is that it will face severe problems to deal with strong distortions in the computational

domain.

On the other hand, in the Eulerian formulation, the coordinate system is stationary, or moving in a

certain prescribed manner in order to take into account the continuously changing solution domain. The
grid movement is thus independent of the fluid particle movement. This results in the method being unable

to deal easily with fluids that undergo large distortions at the interface. The main disadvantages of the Euler

method are: (i) material interfaces lose their sharp definitions as the fluid moves through the mesh, so that

basic Eulerian calculations requires special logic for interfaces, which is very complicated and often leads to

inaccuracies; (ii) local regions of fine resolution are difficult to achieve. Several authors have used the

Eulerian approach for free boundary flows, to list a few, Hirt and Nichols [9] and Frederiksen and Watts

[7]. For more details about these approaches one may refer the articles by Donea et al. [5] and Navti et al.

[16].
An intermediate approach is the arbitrary Lagrangian–Eulerian (ALE) method, which will provide a

hybrid description not associated with the fluid particles and the laboratory coordinates. We associate the

description with a moving imaginary mesh which follows the fluid domain. Let us denote the velocity of

the domain by v. In the Eulerian approach this velocity is zero, whereas it is equal to the velocity of the
fluid particles in the Lagrangian approach. But in the ALE method, v is equal to neither zero nor the
velocity of the fluid particles, it varies smoothly and arbitrarily between both of them. This arbitrary mesh

velocity keeps the movement of the meshes under control according to the physical problem, and it de-

pends on the numerical simulation. More precisely, this method seems to be the Lagrangian description in
zones and directions where ‘small’ motion takes place, and the Eulerian description in zones and direc-

tions where it would not be possible for the mesh to follow the motion of the fluid. The important merits

of the method depends on the following: (i) it helps to keep the free surface, interfaces and solid

boundaries with its suitable boundary conditions by moving the boundary and interior nodes; therefore,

there is no need for re-meshing at every time step. A suitable choice of the domain velocity will minimize

the re-meshing process; (ii) one can avoid the projection errors, that is, in the re-meshing strategy, one has

to re-mesh the domain for each time step and project the numerical solution from the old mesh to the new

one, at this juncture one encounter the so-called projection error, in general, several unstable schemes
suffer a lot from the projection errors; and (iii) one can save some CPU time by avoiding the re-meshing

criterion.

In [15], Maury has introduced the characteristic ALE method for the unsteady 3D free surface flows.

Actually, he applied three times the characteristic method, (i) to define the ALE quantities and to establish

the first-order ALE formulation of the Navier–Stokes equations, (ii) to move the free surface, and (iii) to

take into account the convection term in the momentum equation. Further, he included a surface tension

term on the free surface, and presented a stability estimate for a general scheme. For the numeri-

cal applications, he treated the impinging of a Jet on a plane, that is, falling of a fluid on a horizontal
plane.

Our principal goal in this paper is to provide the underlying idea of the ALE method in a precise way by

explaining the fundamentals in the 2D case and apply to a wide variety of free boundary problems to check

the accuracy of the method comparing its results with other existing methods. We assume that the domain

has a fixed topology and no interior boundary curve can appear or disappear during the simulation. By

introducing the domain velocity v, we transform the problem from the moving domain to a fixed reference
domain with suitable change of variables. The numerical solution of the problem is splitted into two steps.
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We solve first a fixed domain problem, after applying a suitable change of variable. Then, we modify the
domain according to v and transport the solution to the newly modified domain. The transformed equation
in the fixed domain can be solved by various ways. Here, we apply the characteristic method introduced

in [17].

Pironneau [17] presented an algorithm for the numerical solution of diffusion or convection dominated

equations which is a combination of the method of characteristics with the finite element method and

applied it to the Navier–Stokes equations. In general, this method looks like one does one step of transport

plus one step of diffusion (or projection) but the mathematics show that it is also an implicit time dis-

cretization of the partial differential equation (PDE) in Lagrangian form. To solve the Navier–Stokes
equation in the fixed domain, we apply the characteristic method which transforms the non-linear Navier–

Stokes equation to a linear Stokes-like equation. Finite element method is used to solve the Stokes-like

equation. In particular, we use the piecewise linear finite element functions ðP1Þ on triangles for the
pressure and P1-IsoP2 functions for the velocity. Again using the change of variables, we transform the

solution from the reference domain to the original moving domain.

To show the efficiency and accuracy, the present method is applied to three model problems, namely the

propagation of a solitary wave, broken dam problem and movement of an air bubble in a fluid. The first

problem was studied by several researchers, which include Hansbo [8], Laitone [12], Navti et al. [16], and
Ramaswamy and Kawahara [18]. By a proper choice of the mesh velocity the ALE method is able to follow

the wave motion between the left and right vertical walls for an arbitrary time, without having distortion of

meshes or triangles, and produces good approximations for the run-up height and maximum pressure with

the earlier results. For the broken dam problem, the right side wall and the upper surface are free

boundaries, the outputs produced by the present method coincides with the earlier computational and

experimental results. Further, these two examples are solved by the computational fluid dynamics software

Fluent for further comparison. In the third example, we are simulating the movement of an air bubble in a

viscous incompressible fluid. Here, the bubble boundary and the upper surface are free surfaces, the ALE
method preserves the interface conditions, and move the bubble for a while without having any problem in

the meshes. For each example, the simulation continues as long as there is no need of re-meshing and stops

when the quality of the triangles is poor.

From the simulations presented in Section 3, one can understand the merits of the present method, like,

applicability, efficiency and accuracy. Further, the ALE method preserves the interface conditions and

avoids partially the need of re-meshing the domain for each time step. If the quality of the triangles become

poor, then one can re-mesh the domain before proceeding the simulation. By this infrequent re-meshing, we

hope that the mesh distortions may be held down enough to permit the problem to run satisfactorily for a
long time. This helps us to save CPU time and avoid the projection errors. The present method can be

applied to a wide range of problems arising in engineering and applied areas, by this way it is clear that the

ALE method will be generalized.

Before concluding the introduction, we cite some of the earlier works in this area. In [8], Hansbo

introduced the characteristic streamline diffusion method for the time dependent incompressible Navier–

Stokes equations. The method is based on space–time elements, discontinuous in time and continuous in

space, which is closely related to the ALE method. Hughes et al. [10] used the Lagrangian–Eulerian finite

element method for free incompressible viscous flows. S€uli provided optimal error estimates for the
Lagrange–Galerkin mixed finite element approximation of the Navier–Stokes equations in a velocity/

pressure formulation in [19]. Douglas and Russell [6] presented a numerical method for convection–

dominated diffusion problems which is a combination of characteristics with finite difference and finite

element methods.

The rest of the paper is organized as follows. The continuous model, and its corresponding numerical

method are described in Section 2. To show the applicability of the present method some numerical sim-

ulations are provided in Section 3. Section 4 presents the conclusions.
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2. Mathematical description of the method

In this section, we will give the underlying idea of the present method together with a detailed description

of the continuous model and then the numerical formulations for the approximations. Here, we consider

the Navier–Stokes equation in a moving domain XðtÞ � ½s; T � (a short name for
S

t2½s;T � XðtÞ � ftg, which
many authors refers to as a non-cylindrical domain). As a first step, we build a domain velocity and

transform the equation from the moving domain to a fixed reference domain XðsÞ � ½s; T � with an addi-
tional term corresponding to this artificial velocity.

2.1. Domain velocity

In the present case, we have the moving domain, that is, the geometrical shape of the domain depends on

time ( Fig. 1). The principal idea behind to build the domain velocity is to associate the moving domain to a

fixed reference domain. More precisely, we need a bijection between the reference and moving domains.

We assume that, there exist, for each s 2 ½0; T �, a transformation

ws : XðsÞ � ½s; T � ! eX ¼
[

t2½0;T �
XðtÞ

ðxs; tÞ7!xt ¼ wsðxs; tÞ

such that

• For each t 2 ½s; T �, the mapping wsð�; tÞ : XðsÞ ! XðtÞ is a one-to-one correspondence. Thus
XðtÞ ¼ fwsðxs; tÞjxs 2 XðsÞg.

• wsð�; sÞ ¼ idð�Þ.

Let XðsÞ be our reference domain. Its points will be denoted by xs, and the points of the moving domain

at a later time t will be denoted by xt. In particular, with this correspondence it is possible to associate a
trajectory to each point xs of the domain at time s according to

X ðtÞ ¼ wsðxs; tÞ:
We define the domain velocity v as the velocity of X ðtÞ, i.e.,

vðxs; tÞ :¼ X 0ðtÞ ¼ o

ot
wsðxs; tÞ:

From this, we can obtain

wsðxs; tÞ � wsðxs; sÞ
t � s

¼ vðxs; sÞ þ Oðt � sÞ:
Fig. 1. The moving domain.
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From this expression, omitting the error term Oðt � sÞ we obtain easily a linear affine approximation for ws,

which we will denote by /s:

/sðxs; tÞ ¼ xs þ ðt � sÞvðxs; sÞ: ð2:1Þ
2.2. Determination of domain velocity

In order to obtain a possible domain velocity, we note that for a first order approximation, we only need

v ¼ vðxs; sÞ, the velocity at time s. Moreover, as this velocity can be chosen independently of the fluid
particles velocity, it is clear that we are only constrained to verify some compatibility conditions between

the fluid velocity and the domain velocity on the boundary oXðsÞ (Fig. 2). For the interior points, we can
choose any smooth interior extension of the prescribed velocity on the boundary. This choice should take

account of the simplicity of the computation, the smoothness of the resulting velocity field v and the in-
vertibility of the transformation /sð�; tÞ.
For the two-dimensional case, one can write the fluid and domain velocities on the boundary oXðsÞ,

respectively, as

u ¼ ðu � bnÞbn þ ðu �btÞbt;
v ¼ ðv � bnÞbn þ ðv �btÞbt;

�
ð2:2Þ

where bn and bt denote, respectively, the unit outward normal and tangential vectors to the boundary.
To maintain the equality between the fluid domain and the geometric domain, one should take the

following compatibility condition on the boundary

ðv � bnÞbn ¼ ðu � bnÞbn: ð2:3Þ
One can assign any arbitrary value for the tangential component in v. If the flow on the boundary is

dominated by the tangential velocity, then this degree of freedom allows to obtain a very small mesh

velocity. This will not be the case for a Lagrangian method which uses the fluid velocity as the mesh

velocity, producing large mesh deformation even if the geometry suffers slight deformations. For simplicity,

we may take ðv �btÞ ¼ 0. In some special situations this choice does not give an appropriate domain velocity.
In that case, one has to assign a suitable value for the tangential component. In particular, it depends on the

problem to be solved; for the numerical examples given in Section 3, we take different type of boundary

conditions for the determination of the domain velocity.
Fig. 2. The boundary velocity.
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For the interior points of the domain, the smooth extension of the boundary mesh velocity will be
obtained as the solution of the following elliptic problem

�Dv ¼ 0 in XðsÞ
v ¼ ðu � bnÞbn on oXðsÞ:

�
ð2:4Þ

One has to solve two elliptic equation (2.4) at each time step to obtain the mesh velocity for the interior

points. In fact, we are not solving this Laplace equation, instead we determine the mesh velocity at each

vertex by taking the average of its neighboring vertices, which is simpler.

Remark 2.1. This is not the well-known Laplacian mesh smoothing, here the aim is not to improve the

mesh quality, but to extend the mesh velocity on the boundary to the interior points. If the boundary
velocity is zero, the Laplacian problem gives the zero velocity solution. Then, even if the quality of the mesh

is poor, in this case nothing will happen to it. If one encounters some problems with the triangles, then we

suggest to use the optimization based smoothing ideas given in Canann et al. [2]. Also one can use the

Winslow smoothing technique [20]. For more details, we suggest the reader to refer the book by Knupp and

Steinberg [11].

From Eq. (2.1), it is evident that the invertibility of /sð�; tÞ depends on the domain velocity v. Let us
examine the required conditions for the existence of /�1

s ð�; tÞ, the inverse function of /sð�; tÞ for a fixed t.
The gradient of the transformation given in (2.1) is

rxs/sðxs; tÞ ¼ I þ ðt � sÞrxsvðxs; sÞ:

To ensure the local invertibility of /s, we apply the inverse function theorem. In order to apply this

theorem, we assume the following two conditions:

• vðxs; tÞ 2 C1ðXðsÞÞ
• kðt � sÞrxsvðxs; tÞk < 1

where k � k denotes any matrix norm.
From the second condition, we have

jt � sj < 1

supxs2 XðsÞ krxsvðxs; sÞk
ð2:5Þ

which gives a bound for the time step.

The detailed method is given via the following algorithm.

Algorithm. To start the procedure, we assume that the fluid velocity uðx; tÞ and the pressure pðx; tÞ are
known at the time step t ¼ tn, and we denote them, respectively, as un; pn and the domain by Xn ¼ XðtnÞ.

Step 1. Domain velocity: Obtain the domain velocity vn, for example, by solving the elliptic problem given
in (2.4). With this velocity field it is possible to define the transformation /tnð�; tnþ1Þ as defined in
Eq.(2.1), which is the linearization of the one to one correspondence between XðtnÞ and Xðtnþ1Þ.

Step 2. Fluid velocity and pressure in the reference domain: With the newly obtained domain correspondence
/tn pose the problem of finding unþ1; pnþ1 at time tnþ1 on the reference domain XðtnÞ by using /tn as

the change of variables (the details are given in the following Section 2.3). Then, solve the Stokes-

like equation as given in Eqs. (2.24)–(2.28) numerically. Let us denote the obtained velocity and

pressure, respectively, by eunþ1; epnþ1.
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Step 3. Domain Xðtnþ1Þ: Obtain the new domain Xðtnþ1Þ. In fact, one obtain the triangulation for the do-
main Xðtnþ1Þ by transforming the vertices of the triangles in the domain XðtnÞ by using the trans-
formation /tnð�; tnþ1Þ. If P is a vertex, the transformed vertex will be /tnðP ; tnþ1Þ ¼ P þ DtvðP Þ.

Step 4. Fluid velocity and pressure in the new domain: In principle, if the computational program uses for the
vertices, a vertex, data structure with fields x, y, u, p, then it is simply correspond to update the

values of the vertex coordinates x, y, u, p.

Step 5. Next time step: If tnþ1 is less than the final time T , then n ¼ nþ 1 and go to Step 1.

2.3. Transformed equations

The transformation /s defines the change of variables between xt and xs. For each vector or scalar field

defined on XðsÞ, this transformation gives back a field defined on XðtÞ. The following diagram summarizes
this fact in the case of the velocity vector field

usð�; tÞ : XðsÞ ! RN

# /s " id
uð�; tÞ : XðtÞ ! RN

:

In general, with /s we can transform every function depending on xt 2 XðtÞ into a function depending
on xs 2 XðsÞ. Then, for any given function gðxt; tÞ we can apply this linearized change of variable and
define

gsðxs; tÞ ¼ gðwsðxs; tÞ; tÞ ¼ gðxs þ ðt � sÞvðxs; sÞ; tÞ:

From this expression, one can compute the partial derivatives of gsðxs; tÞ with respect to the spatial
variable ðxsÞk as

ogsðxs; tÞ
oðxsÞk

¼ ogðx; tÞ
oxj

o

oðxsÞk
fðxsÞj þ ðt � sÞvjðxs; sÞg ¼ ogðx; tÞ

oxj
dkj

�
þ ðt � sÞ ovj

oðxsÞk

�
¼ ogðx; tÞ

oxk
þ oðt � sÞ

ð2:6Þ

and with respect to the time variable t as

ogsðxs; tÞ
ot

¼ ogðx; tÞ
ot

þ v � rgðx; tÞ: ð2:7Þ

That is, from (2.6) and (2.7), we have, to the first order

ogðx; tÞ
oxk

¼ ogsðxs; tÞ
oðxsÞk

; ð2:8Þ

ogðx; tÞ
ot

¼ ogsðxs; tÞ
ot

� v � rgsðxs; tÞ: ð2:9Þ

This tells that the spatial partial derivatives are identical up to the first order, but the time derivative has an

additional term, namely v � rgðx; tÞ.
For example, divfs ¼ divf , r/s ¼ r/, since they include only the spatial derivatives. To make precise

notations for the domains, we take

B ¼
[

t2½0;T �
XðtÞ � ftg; R1 ¼

[
t2½0;T �

C1ðtÞ � ftg; and R2 ¼
[

t2½0;T �
C2ðtÞ � ftg; ð2:10Þ
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where C1ðtÞ and C2ðtÞ are, respectively, the portion of the boundary where the velocity and the normal stress
are prescribed.

The mathematical formulation of the free boundary flow consists of the following Navier–Stokes system

of equations in the variable domain

ou
ot

þ ðu � rÞu� mDuþrp ¼ f in B; ð2:11Þ

divu ¼ 0 in B; ð2:12Þ

uðx; 0Þ ¼ u0ðxÞ in Xð0Þ; ð2:13Þ

uðx; tÞ ¼ wðx; tÞ on R1; ð2:14Þ

rðx; tÞ � bn ¼ gðx; tÞ on R2; ð2:15Þ

where uðx; tÞ; pðx; tÞ and f ðx; tÞ, respectively, denote the fluid velocity, pressure and the density of body
forces per unit mass, m is the kinematic viscosity coefficient, u0ðxÞ is the initial velocity, wðx; tÞ is the pre-
scribed velocity on the boundary, rðx; tÞ ¼ �pðx; tÞI þ mðruðx; tÞ þ rtuðx; tÞÞ is the stress tensor and gðx; tÞ
is the prescribed stress on the boundary.

We apply the change of variables to transform the Navier–Stokes system from a variable domain to a

fixed reference domain. The transformed Navier–Stokes equation according to the change of variables as

given in (2.8) and (2.9) yields

ous

ot
þ ððus � vÞ � rÞus � mDus þrps ¼ fs in XðsÞ � ½s; T �; ð2:16Þ

divus ¼ 0 in XðsÞ � ½s; T �; ð2:17Þ

usðxs; sÞ ¼ uðxs; sÞ in XðsÞ; ð2:18Þ

usðxs; tÞ ¼ wsðxs; tÞ on C1ðsÞ � ½s; T �; ð2:19Þ

rsðxs; tÞ � bn ¼ gsðxs; tÞ on C2ðsÞ � ½s; T �; ð2:20Þ

where C1ðsÞ [ C2ðsÞ ¼ oXðsÞ. The initial condition will be the solution at time t ¼ s, that is, uðxs; sÞ. One
can think of solving the variable domain problem by solving a sequence of fixed reference domain problems

each one on a time strip ½si; siþ1�. In this way, the solution at the previous time step becomes the initial
condition for the present problem.

Now, the modified equation is defined in a fixed domain and one can be intended to solve this problem

by any standard methods available in the literature. In our case, by applying the characteristic method

given in [17], we convert the Navier–Stokes equation to a Stokes-like equation and then solve it by the finite
element method.
2.4. The characteristic method

In the following, we describe the characteristic method which will be used to treat the non-linear term in

Eq. (2.16).

Suppose XwðsÞ is the solution of the following ordinary differential equation (which is a terminal-value
problem):
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dXwðsÞ
ds

¼ wðXwðsÞ; sÞ s 2 ðs; tÞ

XwðtÞ ¼ xs

;

8<: ð2:21Þ

where wðx; sÞ is a vector field defined on XðsÞ � ½s; t�.
If we define f ðsÞ :¼ gðXwðsÞ; sÞ, where g is a vector or scalar field defined on XðsÞ � ½s; t�, then its total

derivative becomes

f 0ðsÞ ¼ og
ot

þ w � rg: ð2:22Þ

One can compare the following term as given in the transformed Navier–Stokes equation (2.16)

ous

ot
þ ððus � vÞ � rÞus ð2:23Þ

with the right hand side of (2.22). This term can be viewed as the ‘‘material derivative’’ of us along the

trajectory defined by w ¼ us � v. After implementing the value of w in the ordinary differential equation
(2.21) and solving it numerically, we obtain XwðsÞ.
Now substitute the value of XwðsÞ in the ‘‘material derivative’’ as given in (2.23), we obtain the following

differential-difference term

ous

ot
þ ððus � vÞ � rÞus ¼

d

dt
usðXwðsÞ; sÞ �

usðXwðtÞ; tÞ � usðXwðsÞ; sÞ
Dt

¼ usðxs; tÞ
Dt

� usðXwðsÞ; sÞ
Dt

;

where Dt ¼ t � s.
In the previous expression the first term is an unknown which will be obtained as the solution of the

Stokes-like equation (2.24) given below, whereas the second term is computed from the numerical solution

of the ordinary differential equation (2.21). In practice, if we think of t as tnþ1 and s as tn, then
usðxs; tÞ ¼ usðxs; tnþ1Þ represents the unknown velocity field at the next time step but on a known point xs

and usðXwðsÞ; sÞ ¼ usðXwðtnÞ; tnÞ is the solution already computed but evaluated at the point XwðtnÞ ¼ XwðsÞ
obtained as solution of (2.21).

After incorporating the above modification in the transformed Navier–Stokes equation (2.19), one can

obtain the following steady-state Stokes-like equation

1

Dt
I



� mD

�
us þrps ¼ fs þ

usðXwðsÞ; sÞ
Dt

in XðsÞ � ½s; T �; ð2:24Þ

divus ¼ 0 in XðsÞ � ½s; T �; ð2:25Þ

usðxs; sÞ ¼ uðxs; sÞ in XðsÞ; ð2:26Þ

usðxs; tÞ ¼ wsðxs; tÞ on C1ðsÞ � ½s; T �; ð2:27Þ

rsðxs; tÞ � n ¼ gsðxs; tÞ on C2ðsÞ � ½s; T �: ð2:28Þ
3. Numerical examples

To show the accuracy and efficiency of the ALE method, we present three model problems here. We use

the finite element method to solve the Stokes-like equation (2.24)–(2.28). For the finite element basis
functions, we use piecewise linear functions ðP1Þ on triangles for the pressure and P1-IsoP2 functions for
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the velocity. The P1-IsoP2 function is a piecewise linear function on a triangulation obtained from the
original one, dividing each triangle into four sub-triangles. Fig. 3 shows both triangulations.

As pointed out earlier, to obtain the domain velocity we are not solving the Laplace equation given in

Eq. (2.4). Instead of that we compute the velocity at each vertex of the mesh as the average of its neigh-

boring vertices. The velocity for the boundary points will be fixed according to the fluid velocity on the

boundary, which depends on the particular problem. The problems are given below in detail.

3.1. Propagation of a solitary wave

The first model problem is the propagation of a solitary wave, which was used earlier for comparative

purposes by many authors including Hansbo [8], Navti et al. [16] and Ramaswamy and Kawahara [18]. We

use this example to test the present method and compare the outputs, like the maximum run-up height and

the corresponding time, and the maximum pressure with the available results in the literature. This model

consists of the motion of a viscous incompressible fluid in a tank with fixed walls on three sides (bottom and

two vertical walls). The upper surface is a free surface, the fluid moves freely. The gravitational force will

control the motion of the waves. Fig. 4 shows the model situation.

The mathematical formulation of the present example is described by the following Navier–Stokes
equations with initial and boundary conditions
(a) (b)

Fig. 3. P1 and P1-IsoP2 triangulations. (a) Triangles for pressure, (b) triangles for velocity.

Fig. 4. Wave propagation.
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ou
ot

þ ðu � rÞu� mDuþrp ¼ f in B;

divu ¼ 0 in B;

uðx; 0Þ ¼ u0ðxÞ in Xð0Þ;
uðx; tÞ ¼ 0 on Ch

1 � ½0; T �;
u1ðx; tÞ ¼ 0 on Cv

1 � ½0; T �;
ðrðx; tÞ � bnÞ2 ¼ 0 on Cv

1 � ½0; T �;
rðx; tÞ � bn ¼ 0 on R2;

where B and R2 are defined in (2.10) and Ch
1, C

v
1, respectively, denote the horizontal and vertical walls. The

time step used for the numerical simulation was t ¼ 0:05 s, fluid viscosity 1.0 kg/ms, and density 1.0 kg/m3.
A gravitational acceleration of magnitude 9.8 m/s2 acts vertically on the downward direction. The initial

conditions for this problem are taken from the approximations given by Laitone [12]. Theoretically, Lai-

tone’s formula holds for only an infinitely long channel. But the computations can be performed only in a

finite domain and the fluid at a distance from the wave crest is essentially still, it is desirable to define a finite

practical length of the solitary wave. More precisely, the initial conditions are given as

u1 ¼
ffiffiffiffiffiffi
gd

p H
d


 �
sech2

ffiffiffiffiffiffiffi
3H
4d3

r
x

 !
;

u2 ¼
ffiffiffiffiffi
3g
d

r
H
d


 �3=2
y sech2

ffiffiffiffiffiffiffi
3H
4d3

r
x

 !
tanh

ffiffiffiffiffiffiffi
3H
4d3

r
x

 !
;

g ¼ d þ H sech2
ffiffiffiffiffiffiffi
3H
4d3

r
x

 !
;

where g is the gravitational force, d ¼ 10;H ¼ 2, u1 and u2 are the velocities in the x and y directions and g
is the free surface elevation.

From the given boundary condition on R1, a natural question arises, what will happen in the points of
contact between the free surface and the vertical walls at P1 and P2 as shown in Fig. 4.More precisely, according
to the boundary condition on R1 the velocity is zero at P1 and P2, and the level of the liquid on the walls will
remain fixed. This is contrary to the common experience, which shows that the level changes according to the

motion of the fluid. So, we will use, as in [8,16], the slip boundary conditions for the vertical walls.

As mentioned earlier, there are several choices for the domain velocity. For this model, it seems that a good

choice for the domain velocity is to restrict it to a vertical velocity. In this way the triangles will maintain

basically its shape and the re-meshing process will be avoided. For the boundary conditions of the domain

velocity on the free surface we look for a vertical velocity whose normal component is equal to the normal

component of u, the fluid velocity. That is, find a such that v ¼ ðu � bnÞbn þ abt is a vertical vector. If be1 and be2 are
the unit vertical and horizontal vectors, respectively, then the condition becomes v � be1 ¼ 0, from this we obtain

v ¼ ðu � bnÞ bn� � be1 � bnbe1 �bt bt
�
: ð3:1Þ

On the bottom of the domain we take v ¼ 0.
The choice taken in Eq. (3.1) is allowed as long as the free surface does not become vertical, which means

that the motion of the free surface is not so strong. Also, we have tested the domain velocity on the free

surface equal to the fluid velocity and equal to the normal component of the fluid velocity, and obtained

very similar results, except that the mesh quality decreased rapidly.
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To compare the numerical results obtained from the ALE, we use the computational results given by
Hansbo [8], Navti et al. [16] and Ramaswamy and Kawahara [18]. In addition, we have performed the

numerical simulations by using Fluent. The run-up height, the time when the wave hits the right side wall

and the maximum pressure are presented in Table 1. From Laitone’s approximation, one can obtain the

run-up height as R ¼ 14:2. Table 1. gives a clear picture that how much accurate results have been obtained
from the ALE method. Further, we are able to continue the simulation for a long time, means that the wave

crest can move several times between the vertical walls, without facing any problems with the meshes. The

choice of the mesh velocity helps to preserve the triangulation of the first time for the entire simulation.

The triangulation of the domain at time t ¼ 0 is shown in Fig. 5. In Fig. 6, we presented the velocity
vector field at t ¼ 7:6 s, when the wave stop its motion to the right side and begin to move to the left side.
Further, Fig. 7 shows the velocity magnitude at some subsequent times.

Fig. 8 shows the plot of the run-up height versus time. The solid line denotes the data obtained from

Fluent, whereas the broken line represents the ALE output. This figure again highlights our claim that the

ALE method produces sharp approximate results.

3.2. Broken dam problem

In this example, a block of water is kept at rest in a cavity in the initial stage using a thin paper film. The

paper film was removed (instantaneously, at time t ¼ 0), the water spreads out under the influence of
gravity. This broken dam problem was studied numerically and experimentally in [8,13,14]. Hansbo [8] used

the characteristic streamline diffusion method and performed the numerical simulation with and without re-

meshing the domain, whereas in [13] the authors applied a splitting method for the time discretization, and

at each time step, they have solved two advection problems––one for the predicted velocity field and the

other for the volume fraction of liquid. The outputs of the present method are compared with the results

obtained in [8,13] and Fluent.
Table 1

Comparison table: height, time and pressure

Hansbo [8] Navti [16] Ramasamy [18] Fluent ALE

Height 14.4 13.4 14.48 14.19 14.27

Time 7.66 7.6 7.7 7.55 7.6

Press 132.2 – 130 – 131.66

Fig. 5. Triangulation of the domain at the initial time t ¼ 0 s.

Fig. 6. Detail of the velocity vector field when the wave reverse its motion at time t ¼ 7:6 s.
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Fig. 7. The velocity magnitude contours obtained at time t ¼ 0, 2, 4, 6, 8, 10 and 12 s.
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The following Navier–Stokes equations corresponding to the present model, are solved subject to the

initial and boundary conditions

ou
ot

þ ðu � rÞu� mDuþrp ¼ f in B;

divu ¼ 0 in B;

uðx; 0Þ ¼ u0ðxÞ in Xð0Þ;
u1ðx; tÞ ¼ 0 ðrðx; tÞ � bnÞ2 ¼ 0 on Cv

1 � ½0; T �;
u2ðx; tÞ ¼ 0 ðrðx; tÞ � bnÞ1 ¼ 0 on Ch

1 � ½0; T �;
rðx; tÞ � bn ¼ 0 on R2:

The initial stage of the dam and the triangulation of the domain at time t ¼ 0 are shown in Fig. 9.
The velocity and pressure contours obtained from the ALE method at various simulation times are

presented in Fig. 10. Apart from the comparisons with the results of Hansbo [8], Maronnier et al. [13], we

have performed the simulations by using Fluent. The dimensionless position x=L (where L is the initial
length of the dam) of the liquid front along the bottom of the cavity, versus the dimensionless time t

ffiffiffiffiffiffiffiffiffiffi
2g=L

p
is plotted in Fig. 11. The black dotted line, solid line and the dashed line, respectively, denote the data



Fig. 10. The contours obtained at time t ¼ 0:08, 0.12 and 0.16 s. (a) Pressure, (b) velocity magnitude.

Fig. 9. The Dam problem.
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Fig. 11. Broken dam problem: experimental (solid), ALE (dotted) and fluent (dashed).
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obtained from the ALE method, experimental and Fluent. One can notice the accuracy of the present

method from the three curves.

Here also, one can have different choices for the mesh velocity v as used in Section 3.1. The best result
was obtained for the choice of the mesh velocity which equals to the fluid velocity on the free boundary. In
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addition, we have a small problem with the mesh velocity to the upper right corner point, which causes a
fast degradation of the quality of the triangulation near to this point. To avoid this difficulty, we smoothen

the upper right corner.

3.3. Movement of a gas bubble in a fluid

The third example deals with the movement of an air bubble in a viscous incompressible fluid, where the

fluid is kept in a cavity with a free upper surface. Here, the upper surface as well as the path of the bubble

depend on time. Fig. 12(a) represents the model.
In the present case, the domain XðtÞ has been decomposed into the region occupied by the bubble XbðtÞ

with boundary CbðtÞ and the region occupied by the fluid denoted by XfðtÞ with the exterior boundary made
of two parts, namely C1 (walls) and C2ðtÞ (free surface). Thus, the domain of interest is given by
XfðtÞ ¼ XðtÞ n XbðtÞ, with the boundary CfðtÞ ¼ CbðtÞ [ C1 [ C2ðtÞ.
We assume that the bubble is filled with an ideal gas, therefore, we have

PbVb ¼ C;

where Pb is the internal pressure, Vb is the volume of the bubble and C is the constant arising from the ideal
gas law PV ¼ nRT .
The following Navier–Stokes equations with the initial and boundary conditions describe the mathe-

matical formulation of the present model

ou
ot

þ ðu � rÞu� mDuþrp ¼ f in XfðtÞ;

divu ¼ 0 in XfðtÞ;
rðx; tÞ � bn ¼ ðaj � PbÞ � bn on CbðtÞ;
uðx; tÞ ¼ 0 on C1;

rðx; tÞbn ¼ 0 on C2ðtÞ;
uðx; 0Þ ¼ 0 in Xfð0Þ;
PbðtÞVbðtÞ ¼ C;

VbðtÞ ¼
Z

XbðtÞ
1dx;
Fig. 12. Motion of a gas bubble in a fluid.
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where a is the surface tension coefficient, and j is the curvature of the boundary of the bubble. We took
a ¼ 0 in our numerical computations.
The triangulation of the domain at time t ¼ 0 is presented in Fig. 12(b). Here, we are not using the re-

meshing strategy to the domain throughout the numerical simulation. A good choice of the mesh velocity

helps to preserve the quality of the triangulation as long as possible. More precisely, we assign a mesh

velocity to the vertices on the bubble boundary which guarantees a uniform distribution of these vertices as
Fig. 13. The contours of pressure at time t ¼ 0:00, 0.03, 0.06 and 0.076 s (a), and velocity magnitude at time t ¼ 0:02, 0.04, 0.06 and
0.076 s (b).
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the bubble rises up. For this, at t ¼ 0, we compute the angle between the horizontal direction and the line
passing through the center of mass of the bubble and each vertex. Then at each time step we compute a

tangential velocity~vk for each vertex on the bubble boundary in such a way that choosing v ¼ ðu � bnÞbn þ~vk
preserves this angle. We have observed problems even with this new mesh velocity with the triangles near

the bubble. They start to accumulate on the top of the bubble after a few steps. To avoid this problem,

when computing an interior extension of the mesh velocity already defined on the boundary, we force the

vertices in the neighborhood of the boundary of the bubble to move faster than the vertices far from the

bubble. This was accomplished by computing a mesh velocity for each interior vertex as a weighted average

of the mesh velocity of its neighbors. The weight was chosen as a decreasing function of the vertex distance
to the bubble boundary. The distance is measured as the minimal number of intermediate vertices needed to

walk from the given vertex to the bubble boundary.

The time step has been taken as t ¼ 0:002. The contour of the pressure and the velocity magnitude are
presented in Fig. 13. From these figures one can justify the present method observing that the shape of the

bubble at different time steps is the expected one from the common experiences.
4. Conclusions

We have presented the ALE method in this article for the simulation of free boundary problems arising in

fluid dynamics. Introducing an artificial domain velocity we transform the moving boundary problem to a

fixed domain problem. This provides the possibilities to use the available software to solve the fixed domain

problem. Here, we have applied the characteristic method to transform the Navier–Stokes equations (de-

fined in the fixed domain) into a Stokes-like equation. Our choices for the mesh velocity help to avoid the re-

meshing up to certain time steps. For the wave example, the proposed choice of the mesh velocity preserves

the meshes of the initial time for the entire simulation, and avoids the re-meshing process for any arbitrary
time interval. In the other two examples, one can re-mesh the domain when the meshes started to distorted,

and continue the simulation for a long time. By this way, one can avoid the frequent re-meshing and as a

consequence, one can avoid the projection error, and save CPU time and memory. Finally, the proposed

method performs well and produces sharp approximations in comparison with the earlier experimental and

numerical results, and one can generalize it to several free boundary problems arising in practical applica-

tions. An interesting extension of the proposed method will be the usage of non-standard boundary con-

dition for the Navier–Stokes equation. More precisely, many engineering problem are stated in terms of

condition on the pressure instead of the normal stress. In Conca et al. [3] this non-standard boundary
condition is studied for fixed domain, and from here an extension to moving boundaries can be considered.
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