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1. Introduction

We consider the problem of finding the exact and approximate occurrences of a two-
dimensional pattern of size m × m cells in a two-dimensional text of size n × n cells,
when all possible rotations of the pattern are allowed. This problem is often called rota-
tion invariant template matching in the signal processing literature. Template matching
has numerous important applications from science to multimedia, for example, in image
processing, content-based information retrieval from image databases, fingerprint process-
ing, optical character recognition, geographic information systems, processing of aerial
and astronomical images, and searching for known substructures (such as proteins) from
three-dimensional models of biological viruses, to name a few.

In many applications, “close enough” matches of the pattern are also accepted. To this
end, the user may specify a parameter k, such that matches that have at most k differences
with the pattern should be accepted.

The traditional approach to the problem [11] is to compute the cross correlation between
each text location and each rotation of the pattern template. This can be done reasonably
efficiently using the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K
is the number of rotations sampled. Typically, K is O(m) in the two-dimensional (2D) case,
and O(m3) in the 3D case, which makes the FFT approach very slow in practice. Other
approaches to the problem are reviewed in [37].

Recently, a different approach to template matching, called combinatorial template
matching, has emerged. The idea is to generalize well-studied string matching techniques.
String matching deals with the problem of searching for a 1D pattern on a 1D text, and the
aim is to generalize the problem to two and more dimensions.

Examples of combinatorial template matching algorithms are [24,10,3,29,9,35,36,28].
They address different search problems, from exact pattern matching to handling insertion
and deletion errors. However, they do not permit searching for the pattern in rotated form.
This was stated as a major open problem already in 1992 [2].

Rotation invariant template matching was first considered from a combinatorial point
of view in [20,22]. The first problem was to define what was to be considered a match.
If we consider the pattern and text as regular grids, then defining the notion of matching
becomes nontrivial when we rotate the pattern: since every pattern cell intersects several
text cells and vice versa, it is not clear what should match what. In [20,22], a simple model
is proposed such that (1) the geometric center of the pattern has to align with the center
of a text cell (this is called the center-to-center assumption); (2) the text cells involved
in the match are those whose geometric centers are covered by the pattern; (3) each text
cell involved in an occurrence should match the value of the pattern cell that covers its
center. An O(n2) average time algorithm was presented for this matching model. This
model will be called Exact in this paper. An O(m3n2) worst-case time algorithm for a
rather similar model was presented in [4], with a proof that this algorithm is worst-case
optimal.

An extension of the Exact matching model more suitable for gray level images states that
the value of each text cell involved in a match must be between the minimum and maximum
value of the 9 neighboring cells surrounding the corresponding pattern cell [22]. This model
is called MinMax. We are not aware of any previous algorithm for this model.
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The Exact model (in fact a 3D version) was extended in [23] such that there may be a
limited number k of mismatches between the pattern and its occurrence. Under this Mis-
matches model an O(k4n3) average time algorithm was obtained, as well as an O(k2n3)

average time algorithm for computing a lower bound on the distance. We show here that a
2D version of the same idea yields O(k3/2n2) average time for any 0�k < m2. For very
small k < �r2e−�r2/� (r = O(m) and � being the number of different pixel values), an
O(k1/2n2) average time algorithm was given in [14].

Finally, a more refined model [14,23] suitable for gray level images adds up the absolute
values of the differences in the gray levels of the pattern and text cells supposed to match, and
puts an upper limit k on this sum. Under this Accumulated model average time O((k/�)3/2n2)

was achieved, assuming that the cell values are uniformly distributed among � gray levels.
In this paper, we address all the above defined matching models. We (1) find tight lower

bounds for the average complexity of the search problem, for all the matching models
(worst-case complexity is already known); (2) show a technique to make all the algorithms
that follow optimal in the worst case, without affecting their average complexity; and (3)
consider each of the models in turn and develop optimal average-case search algorithms
for them. Therefore, we solve the search problem for all the matching models considered
in optimal worst- and average-case time simultaneously.

Our main technique is to extract linear strips from the pattern at every possible rotation,
and search for those strips simultaneously along some text rows, permitting or not mis-
matches. The use of optimal exact and approximate 1D multipattern search algorithms is
crucial to obtain optimality in our problem. Our space requirement and preprocessing time
are always polynomial in the pattern size.

All the algorithms considered up to now are sequential. This means that they can pre-
process the pattern but not the text. An alternative scenario is that the text (that is, the large
image) is known in advance and can be preprocessed to speed up searches later. This is
called indexed searching.

In this work we give the first algorithms for indexed searching. The data structure we use
is based on tries. Suffix trees for 2D texts have been considered, for example, in [25–27].
The idea of searching for a rotated pattern using a “suffix” array of spiral-like strings is
mentioned in [27], but only for rotations of multiples of 90◦. The problem is much more
complex if we want to allow any rotation.

Our search times are polylogarithmic for exact searching and sublinear 4 on average
when some conditions on the mismatch threshold are met. In most cases the index needs
O(n2) (that is, linear) space and it can be constructed in average time O(n2 log� n).

Table 1 shows our main achievements. All the results are on the average, using a prob-
abilistic model where � is the alphabet size and the cell values are uniformly and in-
dependently distributed over those � values. We have several different results for each
model. In particular, some algorithms are sequential and others are indexed. In the Mis-
matches and Accumulated models we call � = k/m2 (note that � < 1 for Mismatches
and � < � for Accumulated) and kH and kA denote the maximum k values up to where
some techniques work: kH = k/(1 − e/�) and kA = k/(�/(2e) − 1). Moreover, HH

� (�) =
−� log�(�) − (1 − �) log�(1 − �) and HA

� (�) = −� log�(�) + (1 + �) log�(1 + �).

4 Throughout this paper we speak of “sublinearity” to mean less than n2, which is the input size.
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Table 1
Simplified average sequential and indexed time complexities achieved under different models

Model Search time Type Comments/conditions

Exact n2 Seq Previous result
�(n2 log�(m)/m2) n2 log�(m)/m2 Seq Optimal

(log� n)5/2 Ind �m2/4�2 log� n

MinMax O(n2 log(m)/m2) Seq Optimal
�(n2 log(m)/m2) (log� n)3/2n2(1−log�(5/4)) Ind �m2/4�2 log� n

Mismatches n2k3/2 Seq Previous result, adapted by us
�(n2(k + log� m)/m2) n2k1/2 Seq Previous result

k < �r2e−�r2/�, r = O(m)

n2(k + log� m)/m2 Seq Optimal, � < (1/2)(1 − e/�)

(2 log� n)k+3/2�k Ind �m2/4�2 log� n > kH

n2(�+HH
� (�))m3k Ind m2 � max(kH , 2 log� n)

Accumulated n2(k/�)3/2 Seq Previous result, adapted by us
�(n2(k/� + log� m)/m2) n2(k/� + log m)/m2 Seq � < �/(4e). Optimal

except log� m�k� (�/e) log m

(k + 2 log� n)k+3/2n2 log� 2 Ind �m2/4�2 log� n > kA

n2(log� 2+HA
� (�))m3k Ind m2 � max(kA, 2 log� n)

We include the average time sequential lower bounds we have proved. All our sequential algorithms are worst-case
optimal.

The algorithms are easily generalized for handling large databases of images. That is,
we may store any number N of images in the index, and search for the query pattern
simultaneously in all the images. The time complexities remain the same, provided we
replace n2 by

∑N
i=1 n2

i , where the ith image is of size ni × ni . Moreover, all our results
are easily extended to rectangular images, although we have considered square images to
simplify the presentation.

We have also considered alternative models where pattern centers are used instead of text
centers to define what should match what, where no center-to-center assumption holds, and
where there are more dimensions. In most cases we obtain basically the same algorithms,
but there are a few interesting exceptions.

Partial preliminary versions of this work appeared in [17–19].
The organization of the paper follows. We start by giving some preliminary concepts that

are used throughout the paper, in Section 2. In Section 3, a lower bound on the average
sequential complexity of the search problem, both for exact and for approximate searching,
is given. In Section 4 we give optimal worst-case algorithms for all the matching models
in one shot. Sections 5 to 8 are devoted to optimal/efficient average-case algorithms for
the Exact, MinMax, Mismatches and Accumulated models, respectively. Section 9 deals
with some alternative formulations of the problem and briefly shows how the results could
be extended to more dimensions. We give our conclusions and future work directions in
Section 10.
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2. Preliminaries

2.1. Matching functions

Let T = T [1..n, 1..n] and P = P [1..m, 1..m] be arrays of unit squares, called cells, in
the (x, y)-plane. Each cell has a value in ordered finite alphabet �, which we sometimes
call “colors”. The size of the alphabet is denoted by � = |�|. The corners of the cell for
T [i, j ] are (i −1, j −1), (i, j −1), (i −1, j) and (i, j). The center of the cell for T [i, j ] is

(i − 1
2 , j − 1

2 ). The array of cells for pattern P is defined similarly. The center of the whole
pattern P is the center of the cell in the middle of P. We assume for simplicity that m is odd,
hence the center of P is the center of cell P [(m + 1)/2, (m + 1)/2].

Assume now that P has been moved on top of T using a rigid motion (translation and
rotation), such that the center of P coincides exactly with the center of some cell of T (this is
called the center-to-center assumption). The location of P with respect to T can be uniquely
given as ((i, j), �) where (i, j) is the cell of T that matches the center of P, and � is the
angle between the x-axis of T and the x-axis of P. The (approximate) occurrence between
T and P at some location is defined by comparing the values of the cells of T and P that
overlap. We will use the centers of the cells of T for selecting the comparison points. That
is, for the pattern at location ((i, j), �), we look which cells of the pattern cover the centers
of the cells of the text, and compare those cell values. See the leftmost plot of Fig. 1.

More precisely, assume that P is at location ((i, j), �). For each cell [r, s] of T whose
center belongs to the area covered by P, let [r ′, s′] be the cell of P whose area covers the
center of [r, s]. Then M(i,j),�([r, s]) = [r ′, s′]. Our algorithms compare the cell T [r, s]
against the cell P [M(i,j),�([r, s])].

Hence the matching function M(i,j),� is a function from the cells of T to the cells of P.
Now consider what happens to M(i,j),� when (i, j) is fixed and angle � grows continuously,
starting from � = 0. Function M changes only at the values of � such that some cell center
of T hits some cell boundary of P. It was shown in [20] that this happens O(m3) times, when
P rotates full 360◦. This result was shown to be also a lower bound in [4]. Hence there are
�(m3) relevant orientations of P to be checked. The set of angles for 0����/2 is

A =
{

�, �/2 − � | � = arcsin
h + 1

2√
i2 + j2

− arcsin
j√

i2 + j2
;

i = 1, 2, . . . , �m/2�; j = 0, 1, . . . , �m/2�; h = 0, 1, . . . , �
√

i2 + j2�
}

.

By symmetry, the set of possible angles �, 0�� < 2�, is

A = A ∪ (A + �/2) ∪ (A + �) ∪ (A + 3�/2) ,

where A + c� is the set of angles in A where c� is added to each.
For the rest of the paper, it is important to understand how the O(m3) bound is obtained.

Consider a given pattern cell, at Euclidean distance � from the pattern center. As the pattern
rotates 360◦ around its center, the pattern cell describes a circle of circumference 2��,
and hence its cell borders touch O(�) different text centers. Each such hit defines a border
between two angle ranges that must be taken as different, because there is at least one
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Fig. 1. Each text cell is matched against the pattern cell that covers the center of the text cell. For each angle �, a
set of features is read from P.

text cell that will differ in its matching function M. If we add up the O(�) different angles
defined for all the m2 pattern cells, at distances 1 to O(m) from the center, we get the O(m3)

different angles. Much more difficult is to prove that a sufficient number of these angles are
indeed different and hence there are �(m3) different rotations, see [4].

In general, note that if we consider a set of c pattern cells which are up to distance � from
the center, then there will be only �(c�) relevant angles to match them. Note that the set
of angles B defined by the c cells chosen is a subset of A. The exact size of B depends on
how the cells are chosen. If a match of such cell set is found and we want to extend it to
an occurrence of P, then there are O(|A|/|B|) = O(m3/(c�)) possible orientations where
the matching function M for the whole P can change as long as it does not change for those
c cells. Hence we may have to check O(m3/(c�)) possible orientations. The reason is that
the O(m3) angles distribute uniformly enough over the 360◦.

More precisely, assume that B = (�1, . . . , �K), and that �i < �i+1. Therefore, the text
cells corresponding to the chosen c cells can be read for angle �i using any � such that
�i �� < �i+1. On the other hand, there are O(|A|/|B)| angles � ∈ A such that �i �� <

�i+1. If there is an angle �i such that the c cells of P match the text, then P may occur with
any such angle �.

2.2. Matching models

We consider four matching models in this paper. These can be defined on top of the
matching function just defined. Assume P is at location ((i, j), �) and let us call M =
M(i,j),�. Hence the following models are defined:

Exact: defines condition

T [r, s] = P(M[r, s]) ∀[r, s] ∈ [1 . . . n, 1 . . . n] such that

M[r, s] ∈ [1 . . . m, 1 . . . m].
MinMax: defines condition

min{P(M[r, s] + [�, �′]), − 1 ≤ �, �′ ≤ 1}�T [r, s]
� max{P(M[r, s] + [�, �′]), − 1 ≤ �, �′ ≤ 1}

∀[r, s] ∈ [1 . . . n, 1 . . . n] such that M[r, s] ∈ [1 . . . m, 1 . . . m],
where we have defined + as the pairwise summation over cells.
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Mismatches: defines number∑{if T [r, s] = P(M[r, s]) then 0 else 1, [r, s] ∈ [1 . . . n, 1 . . . n],
M[r, s] ∈ [1 . . . m, 1 . . . m]}.

Accumulated: defines number∑{|T [r, s] − P(M[r, s])|, [r, s] ∈ [1 . . . n, 1 . . . n], M[r, s] ∈ [1 . . . m, 1 . . . m]}.
Given the models, the Exact and MinMax search problems are to report all the triples

(i, j, �) such that their matching condition is met, while the Mismatches and Accumulated
search problems are to report all the triples (i, j, �) such that their defined value at that point
does not exceed a given threshold k.

2.3. Features

As shown in [20], any match of a pattern P in a text T allowing arbitrary rotations must
contain a so-called “feature”, that is, a 1D string obtained by reading a line of the pattern
in some angle and crossing the center. These features are used to build a filter for finding
the position and orientation of P in T.

We now define a set of linear features (strings) for P (see Fig. 1). The length of a particular
feature is denoted by u, and the feature for angle � and row q is denoted by Fq(�). Assume
for simplicity that u is odd. To read a feature Fq(�) from P, let P be on top of T, on location
((i, j), �). Consider cells T [i − (m + 1)/2 + q, j − (u − 1)/2], . . . , T [i − (m + 1)/2+
q, j + (u − 1)/2]. Denote them as t

q

1 , t
q

2 , . . . , t
q
u . Let c

q
i be the value of the cell of P that

covers the center of t
q
i . The (horizontal) feature of P with angle � and row q is now the

sequence Fq(�) = c
q

1c
q

2 · · · cq
u . Note that this value depends only on q, � and P, not on T.

The sets of angles for the features are obtained the same way as the set of angles for
the whole pattern P. As explained in Section 2.1, the set of angles Bq for the feature set
Fq is subset of A. The size of B varies from �(u2) (for features crossing the center of
P) to �(um) (for features at distance �(m) from the center of P). Therefore, if a match
of some feature Fq(�) is found, and the feature is at distance r from the center of P, then
there are O(m3/(ur)) possible orientations to be verified for an occurrence of P. For those
orientations, M changes but Fq(�) does not change.

2.4. Spiral reads and sistrings

Each cell of the text defines a string which is obtained by reading text positions at
increasing Euclidean distances from the center of the cell. The first character is that of
the cell, then come the 4 closest centers (from the cells above, below, left and right of the
central cell), then the other 4 neighbors, and so on. The cells at the same distance are read
in some predefined order, the only important thing is to read the cells in order of increasing
distances from the central cell. If such a string hits the border of the text it is considered
finished there. We will call sistrings (for “semi-infinite strings”) [27] the strings obtained
in this way. Fig. 2 shows a possible reading order.
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Fig. 2. A spiral reading order for the sistring that starts in the middle of a text of size 5 × 5. (a) shows
the reading order by enumerating the cells, and (b) shows the enumeration graphically. (c) shows the color
values of the cells of the image, so for that image the sistring corresponding to the reading order is
〈3, 2, 19, 2, 6, 7, 5, 5, 28, 3, 12, 1, 12, 13, 31, 1, 56, 1, 9, 23, 22, 2, 2, 3, 4〉.

Note that, by reading cells in increasing distance from the center, we are making good use
of the O(m3) bound on the number of angles. Say that we have read � cells in spiral order
from pattern and text and want to determine whether there is a match or not. Since we are
at distance O(

√
�) from the centers, there are only O(�3/2) relevant rotations to consider,

according to Section 2.1.

2.5. Sistring trie and tree

Our index data structure is a trie [8], a well-known tree structure for storing strings. Each
trie node denotes a prefix of some string. Each tree edge is labeled by a character. The root
node represents the empty string, and if node v descends from node u by an edge labeled
a, and if u represents prefix s, then v represents prefix sa. Nodes that represent a complete
string in the set are marked with a pointer to that string.

It should be clear that it is possible to search for string s in time O(s) over a trie that
stores any set of strings of any size. It is just a matter of stepping down from the root node
following the characters of s. If at any point there is no proper edge to follow, then s is not
in the set. If we traverse the whole s, then the whole subtree of the current node contains the
strings with prefix s. In particular, if the current node is marked then we have found string
s. At this point it should be clear that a trie can be built in time proportional to its size, by
inserting the strings one by one.

To save space, we assume that the strings in the set are stored separately. Hence, as soon
as some trie node represents the prefix of a unique string, we remove all the unary path that
descends from it and make the node a leaf in the trie, with a pointer to the proper string. The
search algorithm must be slightly modified so as to continue comparing s directly against the
string once a leaf node has been reached. As a result, internal trie nodes represent prefixes
shared by at least two strings, and leaf nodes represent the whole unique strings.

As explained in Section 2.4, each text cell defines a sistring of length O(n2). A trie built
on those strings will be called the sistring trie. This time, pointers to strings are replaced by
text coordinates, which represent the starting point of the spiral that reads the corresponding
sistring.

It is well known that a trie built on n2 random strings has on average O(n2) nodes (instead
of the worst case O(n4)) and O(log�(n2)) depth. In fact this also happens when strings are
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not independent, under rather general conditions [33,34]. It is not hard to see that such a
trie can be built in O(n2 log� n) time by successive insertions.

Alternatively, the unary paths of such a trie can be compressed so as to form a sistring
tree, just like when compressing suffix tries to suffix trees [8]. Each edge is labeled now
by a string, which is represented in constant space by a text center and a range of values
in a spiral read from that center. This will yield the characters of the string represented.
Since the resulting tree is at least binary and has O(n2) leaves, it follows that it has O(n2)

nodes overall, in the worst case. For simplicity, we describe our algorithms on a sistring
trie, although they run with the same complexity over sistring trees.

We finish with folklore property of the sistring trie that is important for some analyses
in this paper. We show that, under a uniform model, the number of sistring trie nodes
at depth � is on average �(min(��, n2)). Roughly, this is to say that in levels ��h, for
h = log�(n2) = 2 log� n, all the different strings of length � exist, while from that level
on the �(n2) sistrings are already different. In particular, this means that nodes deeper than
h have O(1) children because there exists only one sistring in the text with that prefix of
length h (note that a sistring prefix is graphically seen as a spiral inside the text, around the
corresponding text cell).

To prove this property we consider that there are n2 sistrings uniformly distributed across
�� different prefixes of length �, for any �. The probability of a given prefix not being “hit”
after n2 “attempts” (sistrings) is (1 − 1/��)n

2
, so the average number of different prefixes

hit (i.e., existing sistring trie nodes) is

��(1 − (1 − 1/��)n
2
) = ��(1 − e−�(n2/��)) = ��(1 − e−x)

for x = �(n2/��). Now, if n2 = o(��) then x = o(1) and 1−e−x = 1−(1−x+O(x2)) =
�(x) = �(n2/��), which gives the result �(n2). On the other hand, if n2 = �(��) then
x = �(1) and the result is �(��). Hence the number of sistring trie nodes at depth � is on
average �(min(��, n2)), which is the same as in the worst case. Indeed, in the worst case
the constant is 1, that is, the number of different strings is at most min(��, n), while on
average the constant is smaller.

2.6. Optimal multipattern exact string matching

In [13] a 1D multipattern exact search algorithm using a suffix automaton was proposed.
A suffix automaton built on a set of strings is the smallest deterministic automaton able of
recognizing any suffix of any string in the set. The automaton is not complete, that is, edges
that cannot lead to acceptance are not present. When traversing it, we will have an edge to
follow as long as we have read a substring of some of the patterns.

The algorithm works basically as follows. Assume all the patterns are of the same length
m. We build the suffix automaton over the set of reversed patterns (that is, read backwards).
Then we slide a window of length m over the text. Each window is read from right to left,
and the characters are input to the suffix automaton. This process can finish in two possible
ways. First, it may happen that we have no edge to follow in the automaton. This means
that the suffix of the window read is not a substring of any pattern in the set, so no window
covering the suffix read can contain a match. In this case we can safely shift the window
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so it starts right after the last character read. Second, we can reach the beginning of the
window, which means that we have read a string of length m which is a substring of some
pattern of length m, that is, we have recognized a pattern in the set and we report it. We
shift the window by one position.

The above scheme is a bit simplified. In fact the algorithm uses the suffix automaton also
to remember the last position in the suffix read where the automaton recognized a suffix of
some reversed pattern. Suffixes of reverse patterns are reverse prefixes of patterns. It is not
hard to see that, no matter how the processing of the current window finished, we can shift
it so that it is aligned to the last prefix recognized.

We show now that this algorithm takes average time O(n log�(rm)/m) to search a text
of length n for r patterns of length m. Let us say that we have read � characters from the
suffix of a text window with the suffix automaton. Let us call s the string just read. There
are r different patterns where s could match. Inside each of these, there are m − � + 1
positions where s could match. Hence the probability of s matching any substring of any
search pattern is at most rm/��. This is smaller than 1/m2 provided �� log�(rm3), so for
now on let this be the value of �. Let us pessimistically assume that � characters are always
read, that if at that point s matches any substring of any pattern (with probability 1/m2)
then we read the whole window (at cost O(m)) and shift the window by 1 position, and that
otherwise we shift the window by m − � positions.

On a text of length n the number of window verifications is on average O(n/m2), and
each costs O(m), so this part adds a negligible O(n/m) cost. The scanning time dominates.
The average number of windows processed is O(n/(m − �)) and each costs O(�) character
inspections, yielding an overall average search time of O(n log�(rm3)/(m − log�(rm3))),
which is O(n log�(rm)/m). We show that this complexity is indeed optimal in [31].

An additional improvement in [13] is to combine the backward scanning with an Aho–
Corasick-like forward scanning [1], so as to ensure linear worst case time for the algorithm.

The space requirement of the suffix automaton is O(rm), one state per each suffix of
each pattern.

2.7. Optimal multipattern approximate string matching

In [16], an optimal algorithm for 1D multiple approximate string matching was presented.
They permit searching for r patterns of length m allowing up to k insertions, deletions
and substitutions in a text of length n. The algorithm has optimal average search time
O(n(k + log�(rm))/m) for k/m < 1

2 − O(1/
√

�). The optimality is shown in [31].
The algorithm precomputes, for every possible string of length � (�-gram), the minimum

number of character insertions, deletions and substitutions needed to match them some-
where inside some pattern in the set, that is, the minimum Levenshtein distance against any
substring of any pattern.

The text scanning is similar to Section 2.6. A window of length m − k is slid along
the text. The length m − k is that of the shortest possible string matching a pattern. To
process a window position, successive nonoverlapping �-grams are read right to left from
the window, and their precomputed minimum distances are accumulated. If, before reaching
the beginning of the window, the accumulated differences exceed k, then the window can
be safely abandoned since there is no way to match those �-grams inside any particular
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pattern with few enough differences. The window can be shifted to one character past the
last �-gram read. Otherwise, we reach the beginning of the window without totalizing k +1
differences and must verify with a classical algorithm up to m + k characters (maximum
length of a pattern occurrence) starting at the window beginning. Then we can shift the
window by one.

For the purposes of this paper, the analysis in [16] can be rephrased as follows. Let p(�, c)

be the probability of two random strings of length � matching under a given matching model
(Levenshtein in [16]) with at most c�differences. Pessimistically, assume that we will always
read 1+k/(�c)� �-grams from a window, and that we will verify the window whenever any
of those �-gram has precomputed minimum distance smaller than c�, for some constant c to
fix later. Otherwise we will abandon the window and shift by m−k−�(1+k/(�c)�)−1 =
m − O(k). For this to work it must hold � k/(�c)�m − k, or k/(m − k) < c, otherwise
there are no enough �-grams in the windows. Processing each �-gram takes time O(�), so
windows that do not require verification cost O(k + �) and shift by m − O(k). Given the
shift, we cannot process more than n/(m − O(k)) such windows in the text, and therefore
the total work due to windows not requiring verification is O(n(k + �)/(m − k)).

Let us consider the work due to verifications. The probability of verifying a window
is O(p(�, c)mrk/(�c)) because each of the k/(�c) �-grams can match any pattern at any
position, and the cost of verification is O(m2r). Assuming pessimistically that all the text
windows are given an opportunity, those windows cost overall O(nm2rp(�, c)mrk/(�c)).

In order to make verifications negligible compared to scanning, it is sufficient that
p(�, c) = O(1/(m4r2)). Under the Levenshtein model, it holds p(�, c) = ��/� where
� = 1/(�1−cc2c(1 − c)2(1−c)). Hence it is necessary that c < 1 − e/

√
� to make � < 1, as

otherwise verification cost is very high. For such constant c, choosing � = log1/�(m
4r2) =

�(log�(mr)/(1 − c)) gives an overall search cost of O(n(k + log�(mr))/m), which is
optimal [31]. Since c must be in the range k/(m − k) < c < 1 − e/

√
�, the method works

whenever the range is not empty, that is, k/m < (1−e/
√

�)/(2−e/
√

�) = 1
2 −O(1/

√
�).

The space requirement of the algorithm is O(m4r2�O(1)) = O(m4r2).

3. Problem complexity

In this section we prove that the lower bound for the average time of the rotation
invariant search problem in d dimensions is �(dnd log� m/md) for the Exact model,
�(dnd log m/md) for the MinMax model, �(nd(k + d log� m)/md) for the Mismatches
model, and �(nd(k/�+d log� m)/md) for the Accumulated model. Worst-case complexity
is known to be O(m3n2) for all these models, in two dimensions [4].

For the average case results of this proof and the rest of the paper, we state our probabilistic
model. We assumed that the cells of pattern and text are independent random variables
chosen uniformly from an alphabet of size �. Several of our results can be extended to
nonuniform probabilities, as long as we replace � by 1/p, where p < 1 is the probability
that two random cells chosen from the pattern and the text match.

The exact number of relevant rotations in d dimensions is unknown. Particular cases
are known for d = 2 (O(m3) [20]) and d = 3 (O(m11) [23]). However, it seems clear
that it is �(md−1) because each cell of P can be forced, by rotations, to match any of the
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O(md−1) text cells that are at the same distance to the center. On the other hand, there
cannot be more than mO(d3) relevant rotations. The reason is that there are

(
d
2

) = O(d2)

rotation planes. For each such plane we can assume that, once all the other rotations at
other planes are fixed, each cell of P can be made to match O(m) different cells of P,
for a total of O(md+1) rotations regarding that rotation plane. We finally can assume that
each choice of rotation for each rotation plane produces a different combination, so we
have overall O((md+1)d

2
) = O(md3

) possibilities. Therefore, although we know very
little about the number of rotations in d dimensions, we have that they are �(m	(d)),
where 	(d) = poly(d) (in particular, d − 1�	(d)�(d − 1)d(d + 1)/2). This will be
enough for us.

3.1. Exact and MinMax models

Under our probabilistic model, there exists a general lower bound for d-dimensional exact
pattern matching. In [38] Yao showed that the 1D string matching problem requires at least
�(n log� m/m) comparisons on average, where n and m are the lengths of the text string and
the pattern, respectively. In [28] this result was generalized for the d-dimensional case, for
which the lower bound (without rotations) is �(nd log�(md)/md) = �(dnd log�(m)/md).

The above lower bound also holds for the case with rotations allowed, as exact pattern
matching reduces (as a special case) to matching with rotations. To search for the pattern
exactly, we first search for it allowing rotations, and once we find an occurrence we verify
whether or not the rotation angle is zero. Since in 2D there are O(m3) rotations [20], on
average there are O(n2m3/�m2

) occurrences. Each rotated occurrence can be verified in
O(m2) time (indeed, O(1) average time using the results of the present paper, but this is not
relevant). Hence the total exact search time (et) is that of searching with rotations (rt) plus
O(n2m5/�m2

) = o(n2 log�(m)/m2) for verifications. Because of the bound in [28], et =
�(n2 log�(m)/m2) = rt + o(n2 log�(m)/m2), and so rt = �(n2 log�(m)/m2) as well.

This argument can be easily generalized to d dimensions because there are O(ndm	(d)/�md
)

matches to verify at O(md) cost each, and hence ndmd+	(d)/�md = o(nd log�(md)/md).
Hence we get a general bound of �(nd log�(md)/md) = �(dnd log�(m)/md) compar-
isons.

This result is easily generalizable to the MinMax model if we consider that each text
cell matches a range of values. The size of the range is the average difference between the
maximum and minimum of 9 values (that is, its neighboring cells) uniformly distributed
over �. It is easy to see that the maximum over t uniformly distributed discrete random
variables in the interval 1 . . . � is on average ��t/(t +1), and the minimum is ��/(t +1),
hence the average difference is bounded above by �(t−1)/(t+1). Since in our case t = 9, we
have that the average size of our range is ( 4

5 )� (this pessimistic bound is tight, as the relative
error is O(1/�)). Hence the matching probability is 4

5 instead of 1/� and log� m becomes
O(log m), yielding a lower bound of �(n2 log(m)/m2). In d dimensions t = 3d , so the 4

5
becomes (3d − 1)/(3d + 1) and log5/4 m becomes log(m)/(log(3d + 1) − log(3d − 1)) =
log(m)/�(1/3d). Therefore, the lower bound for the MinMax model in d dimensions is
�(d3dnd log(m)/md).
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3.2. Mismatches and accumulated models

A lower bound for the k differences problem (approximate string matching with �k

mismatches, insertions or deletions of characters) was given in [12] for the 1D case. This
bound is �(n(k + log� m)/m), where n is the length of the text string and m is the length
of the pattern. This bound is tight; an algorithm achieving it was also given in [12].

This lower bound can be generalized to the d-dimensional case also. By [28], exact d-
dimensional searching needs �(nd log�(md)/md) comparisons, and this is a special case of
approximate matching. Following [12], we divide the text into nd/md disjoint “windows”,
that is, hypercubes of size md . Hence, at least k + 1 symbols of each window have to be
examined to guarantee that the window cannot match the pattern. So a second lower bound
is �(knd/md). The lower bound �(nd(k + log� md)/md) = �(nd(k + d log� m)/md)

follows, without considering rotations.
We can apply the same reduction as before to show that the bound is also valid when rota-

tions are permitted. The only delicate part of the reduction is to ensure that ndmd+	(d)p =
o(nd log�(md)/md), where p is the probability that the pattern matches some text position

at some given rotation. According to Appendix A, p�
(
md

k

)
/�md−k . Substituting we get

that our bound is valid for k/md < 1/(1 + d log� m)(1 + o(1)). However, for larger k the
lower bound is also valid, simply because the number of occurrences to report by a rotation
invariant search is on average ndm	(d)p = �(nd log�(md)/md), and we cannot work less
than the size of the output.

To generalize this result for the Accumulated model, we have to take into account that
(k + 1)/� cell inspections may be sufficient to discard a window, so the lower bound
becomes just �(nd(k/� + d log� m)/md). Considering the results of this paper, however,
we conjecture that this bound is not tight, and that it could be improved to �(nd(k/� +
d log m)/md). If we consider that the alphabet size is a constant, however, both bounds are
indistinguishable.

3.3. Worst-case complexity

With respect to worst-case complexity, it has been shown in [4] that the number of
different pattern rotations is �(m3), and therefore the size of the output in the worst-case
is �(m3n2). Hence the worst-case complexity is �(m3n2) for the Exact and any other of
our models. An optimal worst-case algorithm for exact searching was also given in [4]. In
this paper we show that this can be obtained simultaneously with average-case optimality.

In d dimensions, this worst-case lower bound generalizes to O(m	(d)nd), although un-
fortunately we know little about the exact value of 	(d), except that it is between d − 1 and
(d − 1)d(d + 1)/2.

Recently, an algorithm whose worst-case scanning time is O(m2n2) was obtained [7].
The algorithm is for the Exact model, and is based on linearizing all the pattern rotations,
and then relying on 1D linear time dictionary matching algorithms. However, if all the
occurrences must be reported, any algorithm still requires �(m3n2) time in the worst case.
In the next section we give an algorithm whose worst-case time is O(m3n2), and that does
not assume Exact matching model.
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Note that the O(m2n2) worst-case scanning time algorithm in [7] might not be optimal.
The trivial lower bound for the scanning time is �(n2), but it is not known if this is tight
when only polynomial space and pattern preprocessing time are allowed.

4. A worst-case optimal algorithm

In this section we present a simple worst-case optimal algorithm that works for any of
our matching models.

In [23], a 3D algorithm is presented for the Mismatches model which involves an idea that
can be exploited much further. We reuse that idea and convert it into an optimal worst-case
algorithm.

Assume that, when computing the set of angles A = (�1, �2, . . .) to match the pattern, we
also sort those angles so that �i < �i+1, and associate with each angle �i the set Ci containing
the corresponding text cell centers that must hit a pattern cell boundary at �i . Hence we
can evaluate the number of mismatches for successive rotations of P incrementally. That
is, assume that the number of mismatches has been evaluated for �i , then to evaluate the
number of mismatches for rotation �i+1, it suffices to re-evaluate the cells restricted to the
set Ci+1. This is repeated for each � ∈ A. Therefore, the total time for evaluating the number
of mismatches for P centered at some position in T, for all possible angles, is O(

∑
i |Ci |).

This is O(m3) because each fixed cell center of T, covered by P, can belong to O(m) different
Ci sets. To see this, note that when P is rotated the whole 360◦, any cell center of T is touched
by O(m) cell boundaries of P (see Section 2.1).

Therefore, it suffices to apply the above algorithm for each of the n2 possible text positions
in order to solve the Exact, MinMax, 5 and Mismatches problem in O(n2m3) worst-case
time. The Accumulated problem is easily solved in the same time by (re)computing absolute
differences instead of number of mismatches.

In fact, the algorithm is very flexible, and can be adapted to many other matching models
as well. The space requirement of the algorithm is O(m3).

All the algorithms that follow from now on are filters that discard most of the text
positions and orientations, and check a small subset of the candidates. Although we will
use a different verification algorithm that is faster on average, their same average complexity
can be achieved if we replace their verification algorithm with the one we have just described.
Hence, without affecting their good average complexity (optimal in most cases), we have
that all these algorithms will be also optimal in the worst case, since the worst that can
happen is that they have to verify all the text positions and orientations, just as we have
assumed here. We only have to make sure that we do not verify the same text position more
than once.

5 In this case recomputing a cell means considering a new 9-cell set. This is constant but depends on the
dimension. A truly constant-time solution is to precompute, for each cell of P, the range of values permitted given
its neighbors.
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5. The exact model

In [20] only a set of features of length m crossing the center of P is extracted from P,
that is, q = (m + 1)/2 and u = m (see Section 2.3). The text is then scanned row-wise for
the occurrence of some feature, and upon such an occurrence the whole pattern is checked
at the appropriate angles. As explained in Section 2.1, one has to check O(m) angles per
occurrence, and since each verification takes O(1) time on average, the average verification
cost is O(m). Overall, the algorithm of [20] is O(n2), dominated by multipattern text search
for the features using an Aho–Corasick machine [1].

In [22] the possibility of using features of length u�m is considered, since it reduces the
space usage and number of rotations.

We show now how to improve both search and verification time. In which follows we
assume that the features are of length u�m, and later find the optimal u.

5.1. Faster search

In [10] a 2D search algorithm (not allowing rotations) is proposed which works by
searching for all the pattern rows in the image. Only every mth row of the image needs to
be considered because one of them must contain some pattern row in any occurrence.

We take a similar approach. Instead of taking the O(u2) features that cross the center of
the pattern, we also take some not crossing the center. More specifically, we take features
for q in the range (m − r)/2 + 1 . . . (m + r)/2, where r is an odd integer for simplicity. For
each such q, we read the features at all the relevant rotations. This is illustrated in Fig. 1.

This allows us to search only one out of r image rows, but there are O(ru max(r, u))

features now (since the farthest feature cell is at distance max(r, u) from the pattern center).
Fig. 1 also shows that the features may become shorter than m when they are far away from
the center and the pattern is rotated. On the other hand, there is no point in taking features
farther away than m/2 from the center, since in the case of unrotated patterns this is the
farthest we can go. Therefore, we have the limit r �m. If we take features from r = m rows
then the shortest ones (for the pattern rotated at 45◦) are of length (

√
2 − 1)m = �(m).

Note that some features do not cross the pattern center, but they are still fixed if the pattern
center matches a text center.

The search time per character is independent on the number of features if an Aho–
Corasick machine [1] is used. Alternatively, we can use a suffix automaton (DAWG-MATCH

algorithm) [13] to get optimal average search time. The worst-case time for the suffix
automaton is the same as for the Aho–Corasick automaton.

5.2. Faster verification

We show how verifications can be performed faster, in O(1) average time instead of
O(m). Note that, between two consecutive angles of this O(m)-size set, there are many
text cells that actually match the same pattern cell, so by checking each rotation separately
we are unnecessarily recomparing a lot of cells. Our idea is to recompare cells only when
necessary.
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Imagine that a feature taken at angle � has been found in the text. Since the feature
has length u and its farthest cell can be at distance at least u from the center, there at
most O(m3/u2) different angles to check, whose limits we call �1 to �K , and we have
�i �� < �i+1.

We will show first an overkill technique that is O(1), and then will turn into practical
efficiency considerations. Let us assume that we want to check for an occurrence centered
at a given text position, for any possible orientation.

The idea is that, instead of checking each orientation separately, we interleave checking
and orientation refining. We perform a spiral read of the text around the position of interest,
as in Section 2.4. If the text center does not match the pattern center, we finish immediately.
Otherwise, at any moment, we have a set of ranges of orientations in which the pattern has
matched the text up to now. In the beginning, after we see that the centers match, our range
set contains a single range of 360◦.

Each time we read a new text cell, we consider all the active orientation ranges. For each
such range, the text cell center may be covered by one or more different pattern cells. If
there is more than one choice of pattern cells, then we split the orientation range under
consideration into several smaller ranges and replace them in the set. After this operation,
each range gives us a single choice of which pattern cell should match the current text
cell. Now, we remove from the active ranges all those where the text cell does not match
the pattern cell. We repeat the process until either there are no more active ranges or
we have checked all the pattern cells for a given range. In the latter case we report the
occurrence of P.

Let us analyze this algorithm. Say that we are reading the �th text cell in a spiral read.
This means that we are at distance O(

√
�) from the center, and therefore there are O(�3/2)

relevant orientations up to now (Section 2.1). For each such orientation, we will read the
new text cell only if all the previous � − 1 cells have matched in this fixed orientation, and
if the text and pattern centers have matched initially. Hence the total cost of the algorithm
is the sum of the text cells read for each orientation for every �, which is

O(m2)∑
�=1

O(�3/2)/�� = O(1).

This shows that even the least orientation-restricted verification can be done in constant
average time if we cleverly interleave checking and orientation restriction. Note that the
algorithm can use backtracking instead of actually keeping a set of active orientations.

It is interesting that, using this smart verification technique, we would obtain O(n2)

average search time, just by checking every text cell.
If we use the technique for verification of matching features, then the initial angle range

will be much smaller than the 360◦ we start with. Indeed, all the pattern cells closer to the
center than the farthest feature cell are checked with a single orientation, and the incremental
process described above is started only in order to check cells that are farther away.

Note that this result holds even if the cell values are not uniformly distributed in the
range 1 . . . �. It is enough that there is an independent probability p < 1 of match between
a random pattern cell and a random text cell, in which case � is replaced by 1/p.
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5.3. Analysis

The average search time of the suffix automaton for s features of length u is O(n2 log�(su)

/(r(u − log�(su)))): There are su feature suffixes to match, so we examine O(log�(su))

characters on average before abandoning each text window, and shift the window by
O(u − log�(su)) positions. We are searching for s = O(ru max(r, u)) features (count-
ing all their rotations). Finally, we scan only every rth row of the text.

The verification time per feature that matches is O(1) as explained, and there are
O(ru max(r, u)/�u) features matching each text position on average. This results in a total
search cost of

O

(
n2

r

(
log�(ru2 max(r, u))

u − log�(ru2 max(r, u))
+ ru max(r, u)

�u

))
.

The optimum is at r = u = �(m), which leads to total average time

O(n2(log�(m)/m2 + m2/�m)) = O(n2 log�(m)/m2),

which is average optimal. So the exact matching problem can be solved in optimal average
time O(n2 log�(m)/m2). The space requirement of the suffix automaton is O(m4).

Again, this analysis is valid for nonuniformly distributed cell values, by replacing 1/�
by p, the probability of a match between random pattern and text cells.

If we want to make this algorithm worst-case optimal at the same time, we must resort
to the O(m3) verification technique of Section 4 instead of our constant-time verification.
In this case the average search cost with r = u = �(m) stays optimal:

O(n2(log�(m)/m2 + m3 m2/�m)) = O(n2 log�(m)/m2).

5.4. Indexed searching

Let us now consider that we have built a sistring trie over T (Section 2.5). A simple search
approach is to consider all the O(m3) pattern orientations in turn and search for each one
in the sistring trie. To check the pattern at a given orientation we have to see in which order
the pattern cells have to be read so that they match the reading order of the sistring trie
construction.

Fig. 3 shows the reading order induced in the pattern by a rotated occurrence, using the
spiral reading order given in Fig. 2. For each possible rotation we compute the induced
reading order, build the string obtained by reading the pattern in that order from its center,
and search for that string in the sistring trie. Note in particular that some pattern cells may
be read twice and others may not be considered at all. Observe that in our example the cells
numbered 30, 32, 34, and 36 are outside the maximum circle contained in the pattern, and
are therefore ignored in the sistring trie search. This is because those values cannot be used
unless some trie levels are skipped in the search, which would mean entering into all the
branches after reading cell number 20. Rather, we prefer to check the surviving candidates
directly in the text. Finally, text cells 21–29, 31, 33, 35, and 37– all fall outside the pattern.

As in Section 5.2, we can do better. We do not need to consider all the O(m3) orientations
from the beginning because of two reasons: (1) when we are not reading far away from
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Fig. 3. Reading order induced in the pattern by a rotated occurrence. (a) shows the pattern superimposed on the
image, (b) shows the enumeration of the induced reading order, and (c) shows the color values for the pattern cells.
The corresponding string is 〈3, 2, 4, 2, 6, 7, 5, 5, 12, 9, 19, 9, 5, 6, 7, 3, 1, 7, 1, 1, 3〉. Cells numbered 30, 32, 34,
and 36 are ignored in the trie search.

the pattern center, many of those rotations are indistinguishable; (2) we may have found no
string in the text equal to the pattern long before reading all the pattern cells.

The main idea is to use the sistring trie to verify all the text positions simultaneously. Just
as in Section 5.2, we start by considering the pattern center and a single orientation range
of 360◦. We refine the relevant angles as we get farther away from the center, so that there
is always a single pattern cell to match. However, instead of directly comparing a particular
text cell against our pattern cell, we try to descend in the trie using the current pattern cell
value. In this way, we search all the possible text positions at the same time.

Our algorithm reads deeper and deeper cells in the sistring trie, and considers finer
rotations (hence entering more than one trie branch at times) as it gets farther away from
the pattern center. When the pattern cells are exhausted (that is, we have reached the end
of the pattern in our spiral read), the rest of the pattern cells are directly verified in the
text individually, for each text position that has survived up to now, using the algorithm of
Section 5.2.

Let us analyze this algorithm. The number of rotations grows as we get farther from the
center, and they are tried only on the existing branches of the sistring trie. That is, when we
reach depth � in the sistring trie we are considering a pattern cell which is at distance O(

√
�)

from the center, and hence we need to consider O(�3/2) different rotations (Section 2.1).
The fact that on average every different string up to length h = O(log� n2) exists in the

sistring trie (Section 2.5) means that we always enter until depth h. The number of sistring
trie nodes considered up to depth h is thus

h∑
�=1

�3/2 = O(h5/2).

At this point we have O(h3/2) candidates that are searched deeper in the sistring trie.
Now, each such candidate corresponds to a node of the sistring trie at depth h, which has
O(1) children because there exist O(1) text sistrings that share this prefix with the pattern
(Section 2.5, a “prefix” here means a spiral around the pattern center).

A simple way to see this process is to consider that following a unary path is equivalent
to directly checking in the text each candidate that arrived at depth h, instead of using the
sistring trie. Indeed, this is what actually happens because the trie does not store the final
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unary path, but stores a pointer to the text coordinate as soon as the prefix becomes unique.
Hence, we may resort to direct text verification long before reaching a border of the pattern.
There are O(h3/2) candidates and each one can be checked in O(1) time using the result of
Section 5.2. Hence this part of the search is dominated by the O(h5/2) time spent in the top
part of the trie.

Therefore, we have a total average search cost of O((log� n)5/2). This assumes that the
pattern is large enough, that is, that we can read h characters from the pattern center in spiral
form without hitting the border of the pattern. This is equivalent to the condition

m2 � 4

�
log� n2,

which is a precondition for our analysis. Smaller patterns leave us without the help of the
sistring trie long before we have eliminated enough candidates, so their text verification is
expensive (O(m3n2/�m2�/4), that is, on average O(�m2(1−�/4)) time per result delivered).
Note, incidentally, that this would be optimal if we searched for circular instead of square
patterns, because even if the pattern were very small, once the pattern cells were all used
we would have all the results in the subtrees of our current trie node. Hence we would work
O(1) time per delivered result, which is optimal.

6. The MinMax model

In the MinMax model a match requires that the color of each text cell must be between
the minimum and maximum pattern colors in the 9-cell neighborhood of the corresponding
pattern cell. As it was shown in Section 3.1, the probability of matching between a random
pattern and text cell in this model is p = 4

5 . In practice p is much smaller than 4
5 , as images

do not usually have many color changes between neighboring cells [22].

6.1. Sequential searching

In principle, we can apply our exact search algorithm as is, just taking care of
precomputing the range of color values that match each pattern cell in O(m2) time before
the search.

The simultaneous search for multiple pattern features, however, is rather different now.
Each pattern cell has a range of values rather than a single value. Standard string matching
algorithms do not work in this scenario. The most similar problem is called “string matching
with classes”, where each pattern position matches a set of alphabet values. Although there
are some solutions for single-pattern searching, no good multipattern search algorithms
exist [32].

We opt for expanding the pattern set into the full set of all simple patterns that may result
from the given ranges. That is, if a pattern of length 2 has the ranges 〈[1 . . . 3], [2 . . . 3]〉
then we expand it into the 6 patterns 〈1, 2〉, 〈1, 3〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉.

If we call 
, where 1�
��, the random variable telling the range of values of each
feature cell, then this expansion yields O(
u) simple features for each feature of length u.
Hence, returning to the analysis in Section 5.3, we are now searching for O(
uru max(r, u))
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simple features of length u. It is not convenient, however, to analyze the search time of a
suffix automaton for this number of patterns, because the set is not a general set of patterns,
but a rather particular one.

Let us redo the analysis of Section 2.6 for our particular case. Assume that we have
read � characters from the suffix of a text window with the suffix automaton. Let us call s
the string just read. There are ru max(r, u) different patterns where s could match. Inside
each of these, there are u − � + 1 positions where s could match. Finally, for each such
position, there are 
� possible values for s that match that position. Overall, the probability
of s matching any substring of any search pattern is ru2 max(r, u)
�/��. This is smaller
than 1/u2 provided �� log�/
 ru4 max(r, u), so for now on let this be the value of �. Now
pessimistically assume that � characters are always read, that if at that point s matches
any substring of any pattern (with probability 1/u3) then we check the window (at cost
O(u) with an Aho–Corasick machine [1]) and shift the window by 1 position, and that
otherwise we shift the window by u − � positions. On a text of length n the number of
window verifications is on average O(n/u2), and each costs O(u), so this part adds a
negligible O(n/u) cost. The other case dominates, yielding an overall average search time
of O(n log�/
(ru4 max(r, u)))/(u − log�/
(ru4 max(r, u))).

To continue, consider that the expectation of
 is ( 4
5 )�, and therefore log�/
 x = log5/4 x.

Substituting, we have that the search cost for all the features is

O

(
n2

r

(
log5/4(ru

4 max(r, u))

u − log5/4(ru
4 max(r, u))

))
,

where the optimum is clearly r = u = �(m), so as to obtain O(n2 log(m)/m2) search
time.

Verifications still cost O(1) time using the technique of Section 5.2, but their number has
raised to O(n2
uru max(r, u)/�u) = O(n2ru max(r, u)/( 5

4 )u). This is smaller than the
search cost provided we choose u > 5 log5/4 m. This is no problem since u = �(m).

A remaining problem is that the size of the automaton is exponential in m, because we

store 
u = 
O(m) features. A way to circumvent this is as follows. We store every �-sized
substring of every pattern. Instead of running the real DAWG-MATCH algorithm, we run
something much closer to its pessimistic (but still accurate) analysis: we read at most �

characters in the window, and if the string read still appears in some pattern, then we verify
the window with Aho–Corasick and shift it by 1 position. As shown with our analysis, this
still has the optimal complexity. However, now the space usage is O(
�ru2 max(r, u)) =
O(m7 log5/4(�)−3), which is polynomial in m.

If we wish to retain the optimal worst-case complexity, then we would pay O(m3) for ver-
ifications. We need to choose u > 8 log5/4 m and spend a bit more space for the automaton
(but still polynomial in m).

6.2. Indexed searching

Indexed searching can be adapted as well. In this case, we do not enter into a single
branch of the sistring trie. Rather, for each pattern cell we follow all the branches whose
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color is between the minimum and maximum neighbor of that pattern cell. The number of
branches qualifying for the next pattern cell is again a random variable 
.

Since there are now O(
�) possible strings that match the pattern prefix of length �, and
O(�3/2) rotations for each, we touch

h∑
�=1

�3/2
� = O(h3/2
h)

sistring trie nodes up to depth h, because all those qualifying strings exist up to that depth.
From that depth on, we verify the remaining O(h3/2
h) candidates one by one using the
O(1) verification technique. Therefore, the total complexity is

O(h3/2
h) = O
(
(log� n)3/2n2 log� 


)
= O

(
(log� n)3/2n2(1−log� 5/4)

)
,

where the last step is based on that 
 = ( 4
5 )� on average.

7. The mismatches model

This model is an extension of the Exact matching model. An additional parameter k
is provided to the search algorithm, such that a mismatch occurs only when more than k
characters have not matched. In this section we use � = k/m2. We require 0�� < 1, as
otherwise the pattern would match everywhere.

7.1. A robust algorithm

We first present a 2D version of the incremental algorithm of [23], which runs in O(k3/2n2)

average time to search for a pattern in a text allowing rotations and at most k mismatches.
This algorithm works for any k and converges smoothly to the worst case O(m3n2) when k
tends to m2.

Recall the verification technique proposed in Section 4. Then consider the k mismatches
problem. As proven in Appendix A, the matching probability with k mismatches becomes
exponentially decreasing as soon as we compare more than kH = �(k) characters.

This suggests the following algorithm for the k-mismatches case. Check, for every text
position, whether or not it matches the pattern with k mismatches. However, do not use the
whole pattern P, but rather the smallest subpattern P ′ of P, with the same center cell, of
size m′ × m′ > kH . Then use the verification algorithm of Section 4 at each text position.
This has a worst case cost of O(m′3n2).

Now, for those text positions where P ′ has been found, continue the verification until the
whole P has been matched or discarded. For this stage, use the verification algorithm of
Section 5.2. Since at this point we have examined more than m′2 > kH cells, the probability
of continuing the verification is exponentially decreasing at any moment, and therefore
completing the verification adds only O(1) cost per text cell on average.

Overall, we have an average search time of O(m′3n2), which is O(k3/2n2). Note that
this algorithm assumes nothing on how we compare the cell values, so any other distance
measure than counting the mismatches can be also used.
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We show now how to improve this time complexity. The results we present next com-
pletely overshadow our previous results for this model [19].

7.2. Approximate features

If there are k mismatches or less in an occurrence of P and we choose r features as for
exact searching, then at least one of the features must appear in the occurrence with at
most �k/r� mismatches. Otherwise, each of the r features appears with at least �k/r� + 1
mismatches, for a total of r(�k/r� + 1) > r(k/r) = k mismatches.

This folklore property can be used as follows. Instead of scanning one text row out of r as
in Section 5.1, we scan one text row out of �r/��, for some 1���r . This guarantees that at
least � features of every potential occurrence are scanned. Hence the above argument implies
that we can search for all the r features allowing �k/�� mismatches in their occurrences.
When we find such a feature, we check the complete pattern.

It turns out that it is trivial to simplify the 1D multipattern approximate search algorithms
presented in Section 2.7 so that they permit only mismatches (that is, Hamming distance).
Just the preprocessing has to be changed to precompute Hamming instead of Levenshtein
distances.

Let us now adapt the analysis. For the optimal algorithm, the windows can be of length m
now, instead of m − k. The reason is that an approximate occurrence has length m (instead
of a minimum length of m − k under Levenshtein model). Hence the first requirement on
c is k/m < c. Also, we show in Appendix A that, under the Mismatches model, p(�, c) =
��/

√
�, where � = 1/(�1−ccc(1 − c)1−c) and � < 1 for c < 1 − e/�. Therefore, we get

again � = log1/�(m
4r2) = �(log�(m4r2)/(1 − c)) and the analysis follows the same. The

change only affects the condition of applicability, to k/m < c < 1 − e/�. We can obtain
an optimal algorithm by choosing a constant c in the interval, which is not empty as long
as k/m < 1 − e/�.

Let us now use this 1D algorithm for our purposes. We search one out of r/� text rows. Our
r features are of length u, and the number of relevant rotations for each is O(u max(r, u)).
Hence the total number of length-u strings searched for is O(ru max(r, u)). The number
of mismatches permitted is k/�. So the search cost is

O

(
n2

r/�

(
k/� + log�(ru2 max(r, u))

)
u

)
= O

(
n2

ru

(
k + � log�(ru2 max(r, u))

))
.

It is clear that � should be as small as possible. Yet, we have to fulfill the condition that the
number of mismatches divided by pattern length should be less than 1 − e/�. This means
(k/�)/u�1 − e/�, and therefore ��(k/u)/(1 − e/�). Since we want the smallest possible
�, let us set � = max(1, (k/u)/(1 − e/�)).

Let us first assume u > k/(1 − e/�) and hence � = 1. The search cost becomes

O

(
n2

ru

(
k + log�(ru2 max(r, u))

))
,
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where it is clear that we prefer the maximum possible u = r = �(m), which yields the
optimal search time

O

(
n2

m2

(
k + log� m

))

under the condition u > k/(1−e/�). The maximum possible value for u such that r = �(m)

and still r features of length u can be extracted from the pattern rotated 45◦ is u = m
√

2 − �2

and r = �m. Hence the condition under which we can reach optimal search time is � <

(
√

2/m)(1 − e/�).
Let us now assume u�k/(1 − e/�) and � = (k/u)/(1 − e/�). Hence we have that the

search cost is

O

(
n2

ru

(
k + k log�(ru2 max(r, u))

u

))
,

where again the best choice is to have the largest possible u and r, so we set r = �(m) and
u = min(k/(1−e/�),

√
2m). First assume k/(1−e/�)�

√
2m and hence u = k/(1−e/�).

Then the search cost is

O

(
n2

mk

(
k + log� m

))
,

which is valid only for k/(1 − e/�)�
√

2m, that is, ��(
√

2/m)(1 − e/�). This branch is
not interesting, as it is not optimal and is valid in the same k range of the optimal result.
Hence assume

√
2m ≤ k/(1 − e/�) and then u = �(m). The search cost becomes

O

(
n2

m2

(
k + k

m
log� m

))
= O

(
n2k

m2

)

and this is valid for ��(
√

2/m)(1 − e/�). There is another condition of applicability,
however, namely ��r . This means (k/u)/(1 − e/�)�r , that is, k/(1 − e/�)�ru. The
maximum ru that works for all rotations (in particular, 45◦) is reached for r = u = m/

√
2,

and therefore the applicability condition is ��( 1
2 )(1 − e/�).

To summarize, we have optimal search time O(n2(k + log� m)/m2) for � < (
√

2/m)

(1 − e/�) (choosing u = m
√

2 − �2, r = �m, � = 1) and search time O(n2k/m2)

for (
√

2/m)(1 − e/�)���( 1
2 )(1 − e/�) (choosing u = r = m/

√
2, � = (k/u)/(1 −

e/�)). Notice that both complexities are indeed the optimal O(n2(k + log� m)/m2) in
the range of k values where they are applicable, so we actually have an optimal algo-
rithm for k/m2 �( 1

2 )(1 − e/�). The space requirement of the feature search algorithm is
O(u6r2 max(r, u)2) = O(m10), polynomial in m.

7.3. Verification

We have not considered up to now how the pattern should be verified once a matching
feature has been found. This time verification at O(1) cost is not possible because we must
let k + 1 mismatches occur before abandoning the verification.
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The technique described in Section 7.1 is useful here. As we have shown, we can check
for all the potential occurrences centered at any text cell in O(k3/2) average time.

The next concern is how many verifications we perform on average. Using the same rea-
soning of Appendix A, the probability of a piece of length u matching with k/� mismatches
is O(�u/

√
u), where � < 1 as long as � = (k/�)/u < 1−e/�. On the other hand, we search

for ru max(r, u) such features, so the total verification cost is

O(n2k3/2ru max(r, u)�u/
√

u) = O(n2k3/2m5/2��(m)),

where the equality is based on our previous decisions r = u = �(m). This is negligible
compared to the search time as long as � < 1, that is, � = k/(u�) < 1 − e/�. In our
algorithms we have two cases: (i) � = 1, u = √

2m and k/m2 �(
√

2/m)(1 − e/�),
where � = k/(

√
2m)�1 − e/� implies k/m�

√
2(1 − e/�), which matches our previous

conditions; and (ii) � = (k/u)/(1 − e/�), u = m/
√

2 and k/m2 �( 1
2 )(1 − e/�), where

� < 1 − e/�, also matching our previous conditions. Hence verifications do not introduce
any new constraints.

In order to achieve O(m3n2) worst-case time simultaneously, we should use the algorithm
of Section 4 for verifications. This does not change the conditions under which verifications
are negligible (that is, � < 1), so the average case stays the same.

7.4. Indexed searching

The idea of traversing all the relevant branches of the sistring trie gives several compli-
cations now. Even for a fixed rotation, the number of sistring trie nodes to consider grows
exponentially with k. To see this, note that at least k characters have to be read in all the
sistrings, which gives a minimum of �(�k) nodes to process. This means in particular that
if k�h then we will consider all the n2 sistrings and the index will be of no use, so we
assume k < h; still stricter conditions will appear later. We first present a standard technique
and then a pattern partitioning technique.

As in Section 6.2, we enter into the trie and at the same time perform the rotations
incrementally. This time, however, we do not follow only the branch whose label coincides
with the next character of the pattern. Rather, we enter into all branches and keep a count
of the number of mismatches found up to now. Only when this counter exceeds k can we
abandon a branch.

As explained, up to depth k we enter into all the branches of the trie. Since we assume
h > k, we have to analyze which branches we enter at depths k < ��h. Since all those
strings exist in the sistring trie, this is the same as to ask how many different strings of
length � match a pattern prefix of length � with at most k mismatches. Resorting again to
Appendix A, we have that

(
�
k

)
�k is a tight upper bound. To this we have to add the fact that

we are searching for O(�3/2) different strings at depth �. Hence, the total number of trie
nodes touched up to level h is

k∑
�=1

�3/2�� +
h∑

�=k+1
�3/2

(
�

k

)
�k = O

(
h3/2�k

(
h

k

))
.
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After level h we are left with a number of candidate text positions to verify. There are two
cases to distinguish here, according to Appendix A. First, if h > kH = k/(1 − e/�), then
when we start the verification we have already seen enough characters so that the matching
probability is exponentially decreasing. Hence we can apply an incremental verification as
in Section 5.2 and it will cost O(1) time per verification. Second, if h�kH , then it holds

that
(
h
k

)
/�h−k = �(h−1/2), and therefore just the trie search costs h3/2�k

(
h
k

) = �(hn2),
which is not sublinear.

Therefore, the condition for a sublinear search time is kH < h < m2. This in particular
implies that � < 1 − e/�. In this case the search cost is

O

(
h3/2�k

(
h

k

))
= O

(
(2 log� n)k+3/2�k

)
.

7.5. Partitioning the pattern into pieces

The above search time is polylogarithmic in n, but exponential in k. We present now a
pattern partitioning technique that obtains a cost of the form O(n2�) for � < 1. The idea is
to split the pattern into j2 pieces (j divisions across each coordinate). If there are at most
k mismatches in an occurrence, then at least one of the pieces must have at most �k/j2�
mismatches. Otherwise, each piece would need at least �k/j2� + 1 mismatches, and the
total number of mismatches would be j2(�k/j2� + 1) > j2(k/j2) = k.

So the technique is to search for each of the j2 pieces (of size (m/j) × (m/j)) sep-
arately allowing �k/j2� mismatches, and for each (rotated) match of a piece in the text,
go to the text directly and check if the match can be extended to a complete occurrence
with k mismatches. Note that the � value for the pieces stays the same as for the whole
pattern, k/m2.

The center-to-center assumption does not hold when searching for the pieces. However,
for each possible rotation of the whole pattern with the center-to-center assumption, it is
possible to fix some position of the center of each piece inside its text cell. The techniques
developed to read the text in rotated form can be easily adapted to introduce such a fixed
offset at the center of the matching subpattern.

Let us consider a piece of size (m/j) × (m/j) which is at distance �(m) from the center
of the pattern. The number of relevant rotations for that piece is O((m/j)2m) = O(m3/j2)

(Section 2.1). Since it is problematic to consider a spiral search with incremental rotations
for a piece that is not centered, let us devise a more brute-force approach. We search for
each of the O(m3/j2) rotations of each of the j2 pieces separately, for a total of O(m3)

independent searches in the trie.
Hence the search cost for this technique becomes O(m3) times the cost to search for a

piece (with a fixed rotation and center offset) in the sistring trie plus the cost to check for a
complete occurrence if the piece is found.

If we consider that (m/j)2 �h, then all the strings corresponding to pattern pieces exist
in the trie. Therefore, the cost to traverse the sistring trie for a piece at a fixed rotation
is equivalent to the number of strings that can be obtained with k/j2 mismatches from it.
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According to Appendix A, this is

U =
(

(m/j)2

k/j2

)
�k/j2

.

On average there are n2/�(m/j)2
text sistrings matching each string in U. Each of these

strings has to be checked in the text for a complete occurrence. Since the rotation is fixed, the
cost to check an occurrence is O(k), which is the average time needed to find k mismatches
when comparing two strings (Appendix A). So the total amount of verification work per
piece is Ukn2/�(m/j)2

and the overall cost is

m3
(

U + Uk
n2

�(m/j)2

)
.

According to Appendix A, U/�(m/j)2
is of the form �(m/j)2

/(m/j), where � < 1 if � < 1−
e/�. Since in case ��1 − e/� the second term is not sublinear, let us assume � < 1. It can
also be seen in Appendix A that ��1/�. Hence, the first term of the formula, U, is of the
form �(m/j)2

�(m/j)2
/(m/j) = (��)(m/j)2

/(m/j), which decreases with j. The second term
of the formula is of the form kn2�(m/j)2

/(m/j) and increases with j.
The optimum is therefore found when both terms meet, that is, j = m/

√
2 log� n(1 +

o(1)), which incidentally is away by a lower order term from our limiting condition
(m/j)2 �h. (The fact that it is away only means that the analysis is pessimistic, because in
the last levels not all the different sistrings exist in the trie.)

Expanding the value of �, we can write

U =
(

��

��(1 − �)1−�

)(m/j)2

/ (m/j) = (kn2)�+HH
� (�)/

√
log� n,

where the equality holds because the optimal j satisfies (m/j)2 = log�(kn2). For this sake
we have defined

HH
� (�) = −� log�(�) − (1 − �) log�(1 − �).

Hence the overall search time is

O

(
m3k√
log� n

n2(�+HH
� (�))

)
.

This bound is sublinear as long as � < 1 − e/�. On the other hand, we can consider to
use a larger j, violating the assumed condition (m/j)2 �h so as to reduce the verification
time. However, the search time will not be reduced and therefore the time bound will not
decrease.

Note that this time there is no need that the trie be deep enough, as we indeed expect
that the search for the pieces will stop before reaching the end of the trie. This time the
sublinearity is obtained by making the pieces large enough to ensure that they will not
appear in the text on average. All we require is kH �m2 and h�m2 (so j �1).
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8. The accumulated model

Even more powerful is the Accumulated model, which provides a Mismatches-like search
capability for gray-level images. Here, the sum of the absolute differences between text and
pattern colors must not exceed k. In this section we call � = k/m2 as before, but this time
0����.

8.1. Sequential searching

A first relevant choice is to apply the algorithm of Section 7.1 to this model. According to
Appendix B, once we have tried more than kA = O(k/�) cells, the probability of matching
with threshold k becomes exponentially decreasing. With the same method of Section 7.1
we get an O((k/�)3/2n2) average time algorithm for this model.

We can improve the search by using again the reduction to 1D multipattern approximate
searching, as in Section 7.2. Again, it is trivial to adapt the 1D algorithms described in
Section 2.7 so that they use a distance defined as the sum of the absolute differences between
pattern and text characters. Just the preprocessing has to be changed to precompute these
new distances instead of Levenshtein distances.

The analysis follows the same lines of Section 7.2, although this time 0 < c < �. As in
Section 7.2, windows are of length m instead of m − k. The probability p(�, c) is obtained
in Appendix B; we have p(�, c) = ��/

√
�, where � = 2(1 + c)1+c/(�cc), which is smaller

than 1 provided c < �/(2e) − 1. Hence we get again � = log1/�(m
4r2), but now we have

log(1/�) = log � + c log c − (c + 1) log(c + 1) − log 2

= log � − log c − log 2 + O(1/c)

= log(�/(2c)) + O(1/c),

and the search cost of the optimal algorithm becomes

O

(
n

m

(
log�/(2c)(rm) + k

c

))
,

which is not optimal in the range log� mr < k < � log(rm). In fact, it is simpler to take
c = �(�) to obtain

O

(
n

m

(
log(rm) + k

�

))
,

which is not optimal in the same range, and only by an O(log �) factor. 6 The range of
applicability of this solution is given by k/m < �/(2e) − 1.

We can repeat step by step the development of Section 7.2, replacing variable k there by
k′ = k/�, to make formulas as similar as possible. The only changes are (1) search time of the
sublinear algorithm is O(n(log(rm) + k′)/m), (2) applicability of the algorithm is k′/m <

1/(2e)(1 + O(1/�)). By following all the details one arrives at O(n2(k/� + log m)/m2)

6 In fact, this can be regarded as optimal if we consider that the alphabet size is a constant. We have not done
that in this paper for time complexities.
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time for � < �/(4e). The space remains O(m10). Incidentally, the same would be obtained
if we applied the technique of coarsening gray levels presented in [17], and combined it
with the algorithms for the Mismatches model presented in this paper.

As usual, we can use the verification algorithm of Section 4 to achieve O(m3n2) worst-
case time simultaneously, without major complications.

8.2. Indexed searching

As in Section 7.4, we have to enter, for each relevant rotation, into all the branches of
the sistring trie until we obtain an accumulated difference larger than k. We present first a
standard approach and then a pattern partitioning technique.

We enter into all the branches of the sistring trie until we can report a match or the sum
of the differences exceeds k. As we show in Appendix B, the number of strings matching a
given string of length � under this model is at most 2�

(
k+�
k

)
. Since up to length h all them

exist, we traverse

h∑
�=1

�3/22�

(
k + �

k

)
= O

(
h3/22h

(
k + h

k

))

nodes in the trie. As in Section 7.4, we have that the candidate-wise verification that follows
is O(1) per candidate provided h > kA (where kA = k(�/(2e) − 1) is the limit defined in
Appendix B), and it is not sublinear for h�kA.

Hence for k > kA the total search cost is

O

(
h3/22h

(
k + h

k

))
= O

(
(k + 2 log� n)k(log� n)3/2n2 log� 2

)
,

which is sublinear in n2 for � > 2. On the other hand, � = 2 means that the image is bilevel,
and in that case the Mismatches model is the adequate choice. Hence, we obtain sublinear
complexity (albeit exponential in k) for kA < 2 log� n.

8.3. Partitioning the pattern into pieces

As in Section 7.5, we can partition the pattern into j2 subpatterns that are searched
exhaustively in the sistring trie. Again considering (m/j)2 �h we have a total search
cost of

m3
(

U + Uk
n2

�(m/j)2

)
,

where this time

U = 2(m/j)2
(

(m/j)2 + k/j2

k/j2

)

according to Appendix B. Again, looking at the detailed formula, we have that the first term
decreases and the second term increases as a function of j. The optimum is found when both
terms meet, which is again j = m/

√
2 log� n(1 + o(1)), consistent with our condition
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(m/j)2 �h. In fact, the second term is decreasing only for � < �/(2e) − 1 (or kA < m2),
otherwise the optimum is j = 1, i.e., no pattern partitioning.

For this optimal j, the overall complexity is

O

(
m3k√
log� n

n2(log� 2+HA
� (�))

)
,

where we have defined

HA
� (�) = −� log�(�) + (1 + �) log�(1 + �).

This complexity is sublinear as long as � < �/(2e) − 1. Again, we can consider to use a
larger j value but the complexity does not improve.

9. Alternative matching models

In this section, we consider the implications of changing some of the assumptions we
have been working on. We reconsider the decisions of (1) defining matching in terms of text
cell centers rather than pattern cell centers; (2) assuming the pattern center has to match a
text center; and (3) sticking to the bidimensional case.

9.1. Considering pattern centers

We have considered up to now that text centers must match the value of the pattern cells
they lie in. This has been done for technical convenience, although an equally reasonable
alternative model is that the pattern cells must match the text color where their centers lie
in the text. In applications it is most likely that one can choose either way.

With respect to sequential algorithms, the main problem is related to extracting pattern
features to search for. There may be more than one pattern center lying at the same text cell,
and even no pattern center at all. This means that, when searching for features in the text, it
might be that our search pattern has some positions that do not have to be matched against
the text, or several positions that have to be matched against the same text character. The
resulting string matching problem can hardly be solved in optimal or even linear time, so
all the average-optimal complexities would be lost.

Verification, on the other hand, will not be affected by this model change, because each
pattern cell read will have to match against some text cell. We will still be able to check
each text position in O(1) time for the Exact and MinMax model, O(k3/2) time on the
Mismatches model and O((k/�)3/2) time on the Accumulated model. Probably the only
reasonable choice to deal with this situation is to use these verification algorithms to check
every text position, with a complexity equal to n2 times the verification cost per cell.

Indexed searching presents similar complications, but some surprising opportunities too.
Using pattern centers means that in some branches of the sistring trie we may have more than
one condition to meet (which may be incompatible and then the branch can be abandoned
under some models) or there may be no condition at all, in which case we have to follow
all the branches at that level of the trie.
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On average, however, we still have �(�) conditions when entering in the sistring trie with
a pattern string of length �, and therefore all the time bounds remain the same. The reason
behind this is the same that permits retaining the complexity of verification.

We present two cases where it turns out to be possible to develop new algorithms. The
first is for the Exact matching model, where we can have a larger index that searches faster
than with the standard model. The second is for the MinMax model.

9.1.1. The exact model
In the normal index the text sistrings are indexed once at a fixed rotation (zero). When a

given pattern rotation is tried, the pattern is read in rotated form, in an order driven by the
text centers. This becomes problematic when using pattern centers, because some text cells
must be skipped and others read more than once. However, the dual approach becomes
feasible. Imagine that the text sistrings are read in all the rotated forms. The way to do
this is to assume that a rotated pattern is superimposed onto it and to read the text cells
where the pattern cells, read in order, fall. This effectively corresponds to the model we are
considering in this section, and would be problematic under the text-centers model.

We consider then indexing the rotated versions of the text sistrings, instead of considering
the rotated versions of the pattern at search time. Hence, the pattern is just searched with no
rotations. Imagine that we index all the rotations of the text up to depth H. This means that
there will be O(n2H 3/2) sistrings, and the size of the sistring trie will grow accordingly.

The benefit comes at search time: in the first part of the search we do not need to consider
rotations of the pattern, since all the rotated ways to read the text are already indexed.
Since we index O(n2H 3/2) strings now, all the different sistrings will exist until depth
h′ = log�(n2H 3/2) = 2 log� n + 3/2 log� H . We first assume that H �h′. This means
that until depth H we pay O(H). After that depth all the surviving positions and rotations
are individually considered. Since H �h′, there are O(1) candidates, which are checked in
constant time each. Hence the overall cost is O(H), and the best choice is to take H = h′.
Therefore, h′ must satisfy h′ = 2 log� n + 3/2 log� h′, so h′ = x log� n, for any x > 2,
will do.

This makes the total search time O(log� n) on average. The space complexity becomes
now O(n2(log� n)3/2). The same technique can be used for the Mismatches and Accumu-
lated model, but in that case the complexity does not improve significantly.

9.1.2. The MinMax model
In a model where pattern centers are used, it might be more natural to require that the color

of each pattern cell is between minimum and maximum colors of the text cells neighboring
the one where the center of the pattern cell lies. However, this time the indexed algorithm
cannot be used. This is because the condition to enter into a branch of the sistring trie does
not depend only on its value but also on its neighbors.

A possible solution to this problem is to generate a new text from the current one, where
the value of each cell is replaced by a range of values. This range goes from the minimum
to the maximum over its nine neighbors. After this transformation we can search for the
pattern, in principle, as in the Exact model, where equality is redefined as that the pattern
value must belong to the text range.
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However, some problems arise. First, the alphabet of the text is of size O(�2) to account
for all the possible ranges. This changes h to h = log�2(n2) = log� n. Second, the search
has to enter into all the branches whose value (a range) contains the value of the current
pattern cell. Let us call 
 the number of ranges matching a random pattern cell. Then, using
the same techniques as before, the search cost of this backtracking is

O
(
(log� n)3/2nlog� 


)
= O

(
(log� n)3/2n2−log�(5/4)

)
,

where for the last step we have considered that 
�( 4
5 )�2 on average. This is only a bit

worse than the complexity under the standard model. Some considerations for efficient
implementation of this type of trie can be found in [22].

9.2. Center-to-center assumption

It is possible to extend the model by removing the center-to-center assumption [21]. In
this case the number of matching functions goes as high as O(m7) instead of O(m3). Despite
the algorithmic complications, sequential complexities are not affected: the exponent of m
is either inside logarithms (so it is translated just into worse constant factors) or is divided
by functions exponential in m (and hence any polynomial in m is the same). The only
exceptions are the robust algorithms for Mismatches and Accumulated models, which now
become O(k7/2n2) and O((k/�)7/2n2), respectively.

Indexing techniques do change their complexity. Since there are O(�7/2) sistrings to
search for at depth �, the search time for the Exact model becomes O((log� n)9/2). By
indexing all the rotations and center displacements we get O(log� n) time again, but at a
space cost of O(n2(log� n)7/2).

An interesting technique that can be used as a prefilter based on the center-to-center
assumption is as follows. Assume that P is at some location ((u, v), �) on top of T, such that
(u, v) ∈ T [i, j ] is not a center-to-center translation, and that the number of mismatches
is k for that position of P. Then assume that P is translated to ((i, j), �), that is, center to
center becomes true while the rotation angle stays the same. As a consequence, some cell
centers of T may have moved to the cell of P that is one of its eight neighbors. Now compute
the number of mismatches such that T [r, s] is compared against M(T [r, s]) and its eight
neighbors as well. If any of those nine cells match T [r, s], then we count a match, otherwise
we count a mismatch. Let the number of mismatches obtained this way be k′.

This means that k′ �k, because all matches that contribute to m2 − k must be present
in m2 − k′ too. Hence this gives a lower bound on the number of mismatches that occur in
a match.

Hence we use the algorithm with the center-to-center assumption, but count a mismatch
only when the text cells differs from all the nine pattern cells that surround the one it matches
with. The net result in efficiency is that the alphabet size becomes �′ = 1/(1− (1−1/�)9),
meaning that cells match with probability 1/�′.

This is useful both for the Exact and Mismatches models, and is easy to adapt to the
MinMax and Accumulated models.
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9.3. Three and more dimensions

Rotation invariant template matching in three dimensions has important applications in
microbiology, when searching some known substructures (e.g., proteins) from 3D models
of biological viruses. Matching models in three dimensions have been defined in [23].

The techniques we have developed can be extended to d dimensions in a straightforward
manner. As seen in Section 3, in d dimensions, a pattern of size md can be rotated in
O(m	(d)) ways, where d − 1�	(d) = �(poly(d))�(d − 1)d(d + 1)/2.

For exact sequential searching, for example, we can extract rd−1 = O(md−1) features of
length u = O(m), and search for all them together in the text. It is enough to select one out
of r text rows along each dimension, since this still ensures that a cube of size md matching
the pattern will touch one of the selected rows [9]. Therefore, we have to traverse nd/md−1

text cells, with a multipattern search for rd−1 features, rotated in O(m	(d)) ways each. The
search cost is

O

(
nd

md−1

log�
(
md−1m	(d)

)
m

)
= O

(
poly(d)nd log� m

md

)

which, at least for constant d, is optimal (Section 3.1). It is easy to see that all the other
optimal complexities can be achieved as well.

Similarly, it is possible to adapt the robust algorithms (Section 7.1) for the Mismatches
model. After comparing O(k) cells, we are at distance O(k1/d) from the center, and therefore
we have considered O(k	(d)/d) rotations. Hence the average search time is O(k	(d)/dnd).
For the Accumulated model this is O((k/�)	(d)/dnd).

Finally, it is possible to apply the techniques of Section 4 to limit the worst case to
O(m	(d)nd), which is worst-case optimal.

With respect to indexing, the index needs O(nd) space and is able of exact searching
in O((d log� n)1+	(d)/d) time. For the MinMax model there will be 3d neighboring cells,
and the 5

4 becomes (3d + 1)/(3d − 1). Hence the search time will be O((d log� n)	(d)/d

nd(1−log�((3d+1)/(3d−1)))) = O((d log� n)	(d)/dnd(1−1/�(3d log �))). For the Hamming

model we get O((k + d log� n)k+	(d)/d�k) or O(m	(d)knd(�+HH
� (�))/(d log� n)1/d). The

formulas for the Accumulated model are similar.

10. Conclusions and future work

We have addressed the problem of searching for a 2D pattern in a large 2D image (text),
so that the pattern can appear with any rotation in the image. The problem has applications
in image processing, image databases, geographic information systems, and computational
biology, to name a few areas.

We have considered not only the exact matching problem but also several matching
models that permit a few differences between the pattern and its occurrences.

We have derived average-case lower bounds for the problem, and designed search algo-
rithms that are optimal on average and in the worst case simultaneously, for all the matching
models under consideration. We have also considered text preprocessing techniques, which
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have resulted in search times which are sublinear in the text size. These indexing techniques
can be used to search all the images of a library at once.

The techniques we describe here can be implemented, and have been successfully used
to solve some computational biology problems [23]. These combinatorial techniques are
much faster than those based on the FFT. However, despite that our matching models permit
relaxing the matching conditions, even more flexible matching models should be addressed
in order to closing the gap towards more ambitious applications in image retrieval.
• In real applications, images may suffer from deformations because of several factors.

Some models permit handling displacement errors such as insertions/deletions along rows
and columns and in any dimension [9], but these do not address rotations. Combining
both would make up a stronger model.

• It would be interesting to generalize the method for scaling invariance also, so that the
pattern and the text do not have to be exactly of the same size. Some work on scaling
invariance has been carried out [6,5], but rotations have not been addressed.

• Another problem that should be addressed is due to different lighting conditions. The
pattern and the image might have been obtained under different conditions, and hence one
image may be brighter than the other. The pixel values in this case may differ considerably,
even if the images are taken from the very same object. In this respect, some recent work
on transposition invariant string matching [30], aimed at music retrieval, can be adapted
to search under lighting invariance [15].

• One general problem for this kind of pattern matching algorithms is that the pattern
template may contain different background than the occurrence of the pattern in the text,
or some parts of the pattern or its counterpart in the text may be occluded by some other
objects. One possible way to solve this to specify which parts of the pattern are actually
relevant and which are background. In pattern partitioning techniques, we could require
that only some pieces match.
On the other hand, our basic ideas (approximate feature search, spiral reads) are rather

general and can be applied to address several other matching models. For example, our
approximate feature search algorithm can be easily adapted to a variant of the Accumulated
model where the squares of the color differences (rather than their absolute values) are
accumulated, with the same time complexity. This model is closer to the traditional cross-
correlation approach usually addressed via FFT. The cross-correlation comes from the
model (a − b)2 = a2 + b2 − 2ab, and the basic traditional cross-correlation uses the term
ab (normalized, sometimes), since ab corresponds to the convolutions that can be efficiently
computed using FFT. Using our algorithms would yield a much more efficient technique.

Appendix A. Probability of matching under the mismatches model

We are interested in the probability of two strings of length � matching with at most k
mismatches. For this to hold, at least � − k characters must match. Hence, the probability
of matching is upper bounded by

(
�
k

)
�k

��
= 1

��−k

(
�

k

)
,
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where the combinatorial counts all the possible locations for the mismatching characters and
�k all the ways to choose their value. Note that we are permitting to replace a character by
itself, and hence we are including the probability of matching with less than k mismatches
as well. The formula is an upper bound because, when less than k mismatches exist, we are
counting the same strings more than once.

In the analysis that follows, we call � = k/� and take it as a constant (which is our case
of interest, as seen later). We will prove that, after some length �, the matching probability
is O(�(�)�), for some �(�) < 1. By using Stirling’s approximation x! = (x/e)x

√
2�x(1 +

O(1/x)) over the matching probability we have

1

��−k

(
��

√
2��

kk(� − k)�−k
√

2�k
√

2�(� − k)

)(
1 + O

(
1

�

))
,

which is(
1

�1−���(1 − �)1−�

)�

�−1/2

(
1√

2��(1 − �)
+ O

(
1

�

))
.

This formula is of the form �(�)� �(1/
√

�), where we define

�(x) = 1

�1−xxx(1 − x)1−x
.

Therefore, the probability is exponentially decreasing with � if and only if �(�) < 1,
that is,

� >

(
1

��(1 − �)1−�

)1/(1−�)

= 1

��/(1−�)(1 − �)
.

It is easy to show analytically that e−1 ���/(1−�) �1 if 0���1, so it suffices that
� > e/(1 − �), or equivalently, � < 1 − e/� is a sufficient condition for the probability to
be exponentially decreasing with �.

Hence, the result is that the matching probability is very high (actually, �(1/
√

�)) for
� = k/��1 − e/�, and otherwise it is exponentially decreasing, O(�(�)�/

√
�), where

�(�) < 1.
Seen another way, we have that the probability of matching is large as long as

� � kH = k

1 − e/�
,

but from then on it is exponentially decreasing.

Appendix B. Probability of matching under the accumulated model

We are interested in the probability of two random strings of length � matching with
threshold k. Our model is as follows: we consider the sequence of � absolute differences
between both strings �1 . . . ��. The matching condition states that

∑�
i=1 �i �k.
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The number of different sequences of differences satisfying this is
(
k+�
�

)
, which can be

seen as the number of ways to insert � divisions into a sequence of k elements. The �

divisions divide the sequence into �+1 zones. The sizes of the first � zones are the �i values
and the last allows the sum to be �k instead of exactly k. Note that we are pessimistically
forgetting about the fact that indeed �i ��.

Finally, each difference �i can be obtained in two ways: ci + �i and ci − �i , where ci

is the ith character of the other string (we pessimistically count twice the case �i = 0).
Therefore, the total matching probability is upper bounded by

2�

��

(
� + k

k

)
.

In the analysis that follows, we call � = k/� and take it as a constant (which is our case
of interest, as seen later). We will prove that, after some length �, the matching probability
is O(�(�)�), for some �(�) < 1. By using Stirling’s approximation x! = (x/e)x

√
2�x(1 +

O(1/x)) over the matching probability we have

2�

��

(
(k + �)k+�

√
2�(k + �)

kk��
√

2�k
√

2��

)(
1 + O

(
1

�

))
,

which is(
2(1 + �)1+�

���

)�

�−1/2

(√
1 + �

2��
+ O

(
1

�

))
.

This formula is of the form �(�)� �(1/
√

�), where we define

�(x) = 2(1 + x)1+x

�xx
.

Therefore, the probability is exponentially decreasing with � if and only if �(�) < 1, that
is,

2(1 + �)

�

(
1 + 1

�

)�

< 1.

It can be easily seen analytically that (1 + 1/�)� �e, so � < �/(2e) − 1 is a sufficient
condition for the probability to be exponentially decreasing with �.

Hence, the result is that the matching probability is very high (�(1/
√

�)) for
� = k/���/(2e) − 1, and otherwise it is O(�(�)�/

√
�), where �(�) < 1.

Seen another way, we have that the probability is exponentially decreasing for

� > kA = k

�/(2e) − 1
.
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