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Abstract

A de Bruijn sequence over a finite alphabet of spann is a cyclic string such that all words of lengthn appear exactly once a
factors of this sequence. We extend this definition to a subset of words of lengthn, characterizing for which subsets exists a
Bruijn sequence. We also study some symbolic dynamical properties of these subsets extending the definition to a langua
by forbidden factors. For these kinds of languages we present an algorithm to produce a de Bruijn sequence. In this wo
graph-theoretic and combinatorial concepts to prove these results.
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1. Introduction

Given a setD of words of lengthn, a de Bruijn se-
quence of spann is a periodic sequence such that ev
word in D (and no othern-tuple) occurs exactly once
Its first known description appears as a Sanskrit w
yamátárájabhánasalagámwhich was a memory aid fo
Indian drummers, where the accented/unaccented s
bles represent long/shorts beats, so all possible tri
of short and long beats are included in the word.
Bruijn sequences are also known as “shift register
quences” and were originally studied by De Bruijn
D = {0,1}n [1]. These sequences have many differ
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applications, such as memory wheels in computers
other technological devices, network models, DNA
gorithms, pseudo-random number generation, mo
public-key cryptographic schemes, to mention a
(see [2–4]). Typically, de Bruijn sequences have b
studied over an arbitrary alphabetA considering the se
of all then-tuples, that is,An. There is an exponentia
number of de Bruijn sequences in this case, but on
few can be generated efficiently.

In this work we generalize the definition of de Bru
sequence for any setD, characterizing those setsD for
which a de Bruijn sequence exists. In Section 3 we st
some symbolic dynamical properties of these sets,
tending our results to languages defined by forbidd
some factors. Finally, in Section 4 we present an a
rithm to produce a de Bruijn sequence for these kind
languages.
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2. Definitions and generalizations

Let A be a finite set. Aword w on the alphabetA
is a finite sequence of elements ofA. For a wordw, its
length is denoted by|w|.

A word p is said to be afactor of a wordw if there
exist wordsu,v ∈ A∗ such thatw = upv. If u is the
empty word (denoted byε), thenp is called aprefix
of w, and ifv is empty then is called asuffixof w.

Let D be a set of words of lengthn + 1. We call this
set adictionary. A de Bruijn sequence of spann + 1
for D is a cyclic wordBD of length|D| such that all the
words inD are factors ofBD . In other words,
{
(BD)i . . . (B

D)i+n mod |D| | i = 0, . . . , |D| − 1
} = D.

De Bruijn sequences are closely related to de Br
graphs. Thede Bruijn graph of spann for D, denoted
by GD, is the directed graph with vertex set

V (GD) = {u ∈ An | u is a prefix or a suffix

of a word inD}
and arc set

E(GD) = {
(αv, vβ) | α,β ∈ A,αvβ ∈ D

}
.

This graph was first defined implicitly in 1894 by Fly
[5] and it was explicitly detailed in 1946 by de Brui
[1] and Good [6] independently. In both cases the dic
nary studied wasD = An+1. The first use of this grap
for a subset ofAn+1 was given in [7].

From this definition, we can do a bijection betwe
the arcs ofGD and the words inD: to an arc go-
ing from αv to vβ we associate the wordαvβ. Us-
ing this bijection we can interpret the graphGD as
the union of non-trivial components of the original
Bruijn graph forAn+1 after removing the arcs corre
sponding to words not inD (see Fig. 1).

We label the graphGD using the following func-
tion l: if e = (αv, vβ) then l(e) = β. This labeling has
an interesting property:

Remark 1. Let P = e0 . . . em be a walk overGD of
lengthm � n. ThenP finishes in a vertexu if and only
if u is a suffix ofl(P ) = l(e0) . . . l(em).
This property is essential to understand de Bru
graphs and will be used in all the proofs in this wo
Therefore we mention a few important consequence
this property:

Corollary 2. All the walks of lengthn + 1 finishing at
vertexu have labelαu for someα ∈ A.

Corollary 3. If u andv are vertices of a cycleC, thenu

andv are factors of the infinite wordl(C)∞.

These consequences and the bijection between
and words inD explain the relation between de Brui
graphs and de Bruijn sequences:

Lemma 4. There exists a de Bruijn sequenceBD if and
only if GD is an Eulerian graph. Moreover, the labe
of Eulerian cycles overGD are the de Bruijn sequence
for D.

Proof. Let C be an Eulerian cycle ofGD. As we ex-
plained before, any wordw ∈ D has a correspondin
arce in GD. By Remark 1 any sub-walk of lengthn+ 1
of C finishing with the arce has labelw, therefore any
word inD is a factor ofl(C). As the length ofC is the
number of words inD we conclude thatl(C) is a de
Bruijn sequence forD.

Conversely, letB be a de Bruijn sequence forD.
Any factor of lengthn + 1 is a word ofD so there is
a corresponding arc inGD. Moreover, two consecutiv
factorsαv andvβ have two corresponding arcs such t
the head of the first is the tail of the second one. Th
fore B has a corresponding closed walk overGD with
labelB. Since every factor is different, every arc in t
walk is different, and since every word ofD is a fac-
tor of B, every arc ofGD is in the walk. We conclude
that the closed walk overGD is an Eulerian cycle o
labelB. �

By previous lemma, given a dictionaryD, the exis-
tence of a de Bruijn sequence of spann + 1 is charac-
terized by the existence of an Eulerian cycle overGD .
A graph has an Eulerian cycle if and only if it is strong
Fig. 1. Examples in a binary alphabet: De Bruijn sequence of span 2,GD for D = {000,001,010,100,110} and its essential subgraph.
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connected and at each vertex the in-degree and the
degree are equal. Therefore we can write these co
tions as restrictions overD, characterizing the dictio
naries with a de Bruijn sequence.

Corollary 5. A dictionaryD ⊆ An+1 has a de Bruijn
sequence of spann + 1 if and only if

(1) For any u,v ∈ D there exists a wordw ∈ A∗ such
that u is a prefix ofw, v is a suffix ofw and any
factor of lengthn + 1 of w is in D.

(2) For any wordx ∈ An there exists a bijection be
tween words inD havingx as a suffix, and word
in D havingx as a prefix.

Proof. By the bijection between arcs and words inD,
the first condition assures the existence of a walk (o
belw) between any two arcs. HenceGD is strongly con-
nected. For any wordx, a word inD havingx as suffix
(prefix) has a corresponding arc terminating (starti
atx. Therefore, the second condition assures that th
degree and the out-degree at any vertex are equal.�
3. Symbolic dynamics

Symbolic dynamics gives a natural framework
study the setsD with a de Bruijn sequence.

A first class of dictionaries with a de Bruijn sequen
is given by the set of factors of lengthn + 1 in a bi-
infinite sequenceu over an alphabetA. We denote this
set byLn+1(u).

A factor v of length n in u is right extensible(re-
spectively left extensible) ifvα (respectivelyαv) is in
Ln+1(u) for someα ∈ A. These concepts have an im
portant relation with the complexity of the sequen
(see [8]).

For any sequenceu, is easy to see that the dictiona
D = Ln+1(u) satisfies the first condition of Corollary
Also, the second condition is satisfied if and only if t
numbers of left and right extensions of any factor
lengthn are equal. Therefore, we obtain the next t
orem.

Theorem 6. Let u be a bi-infinite sequence. For anyn,
the dictionaryD = Ln+1(u) has a de Bruijn sequence
and only if any factor of lengthn has equal number o
left and right extensions.

Another class of dictionaries with a de Bruijn s
quence is given by the language of subshifts. Given
alphabetA, a full shift AZ is the set of all bi-infinite se
quences of symbols fromA. Let F be a collection of
-(finite) words, we call these words “forbidden word
A shift X = XF is the subset of sequences ofAZ which
do not contain any factor fromF . If F is finite, we say
thatX is a subshift of finite type.

Let Ln(X) be the set of factors of sequences inX of
lengthn. The language of a shiftX is the setL of the
factors of any finite length of sequences inX.

L(X) =
∞⋃

n=0

Ln(X).

A shift X is irreducible if for every pair of wordsu,v ∈
L(X), there is aw ∈ L(X) such thatuwv ∈ L(X).

Given a labeled graphG, let XG be the set of label
of all bi-infinite walks overG. It is known thatXG is a
(sofic) shift [9], however in the case of de Bruijn grap
we show thatXGD is a subshift of finite type.

Lemma 7. LetD ⊆ An+1 be a dictionary. ThenXGD is
a subshift of finite type. Moreover,

XGD = XF withF = An+1 \D.

Proof. SinceLn+1(XGD ) ⊆ D we have thatXGD ⊆
XF . Let x ∈ XF , any factor of lengthn+ 1 of x is inD
so each factor has a corresponding arc inGD. Moreover,
two consecutive factorsαv andvβ of lengthn + 1 have
two corresponding arcs inGD such thatv is the head o
the first and the tail of the second one. Therefore th
exists a walk overGD with labelx, soXF ⊆ XGD . �
Corollary 8. LetF be a set of forbidden words of leng
at mostn + 1. Then forD = Ln+1(XF ) we have tha
XF = XGD .

Proof. We can extendF to a subsetF ′ ⊆ An+1 such
thatXF = XF ′ . SinceD = An+1\F ′ we conclude. �

A vertexv is strandedif either no arc starts atv or no
arc terminates atv. A subgraph isessentialif no vertex
of the graph is stranded (see Fig. 1). Obviously a
infinite walk does not use stranded vertices, so for
graphG there exists an essential subgraphG′ such that
XG = XG′ . Therefore in the rest of this work we on
consider setsD such thatGD is essential.

Note that ifGD is essential then for any wordw ∈ D
there exists a walk overGD with labelw.

In order to obtain setsD with a de Bruijn sequence
GD needs to be an Eulerian graph, in particular it ne
to be strongly connected. This property has an inter
tation in symbolic dynamics:

Lemma 9. LetD be a dictionary.XGD is irreducible if
and only ifGD is strongly connected.
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Proof. SinceGD is essential, the strongly connect
components have size at least 2. LetXGD be an irre-
ducible subshift of finite type. For any two arcse,f of
GD there are two corresponding wordswe,wf in D.
SinceXGD is irreducible, there exists a word̂w such
that weŵwf is a factor ofXGD . In other words, there
exists a walk overGD with label weŵwf . Therefore
there exists a walk with label̂wwf connectinge to f ,
soGD is strongly connected.

Conversely, ifXGD is not irreducible, there exist fac
tors w1,w2 such that∀z ∈ A∗, w1zw2 is not a factor
of XGD . But w1 is the label of a walk overGD finish-
ing at a vertexv1 andw2 is the label of a walk starting a
a vertexv2, therefore there is no walk overGD connect-
ing v1 to v2, henceGD is not strongly connected.�

Let XF be an irreducible subshift of finite type.
D = Ln+1(XF ) then the corresponding graphGD is not
necessarily an Eulerian graph.

For example, forA = {0,1} and F = {11} a ver-
tex 0w1 has two in-going arcs (corresponding to wo
00w1 and 10w1) but only one out-going arc (corre
sponding to the word 0w10). Therefore we will study
the subset ofperiodicwords inLn+1(XF ) because for
this set we obtain an Eulerian de Bruijn graph.

Let w ∈ A∗ be a word, we say thatw is a periodic
word of XF if and only if the bi-infinite sequencew∞,
obtained by infinite concatenations ofw, is in XF . The
set of periodic words of lengthn is denoted byPn(XF ).

Theorem 10. Let F be a set of forbidden words o
length at mostn + 1 and D = Pn+1(XF ). If XGD is
irreducible then there exists a de Bruijn sequence
the dictionaryD.

Proof. By Lemma 9,GD is strongly connected. Le
u ∈ An be a vertex ofGD. Any arc leavingu with
labelα corresponds to a worduα ∈D. Sinceuα is a pe-
riodic word,αu is also inD. Therefore there exists a
arc going intou corresponding to the wordαu, which
implies that the in-degree ofu is greater or equal to
out-degree ofu. The same argument proves that the o
degree ofu is greater than or equal to the in-degree ou,
concluding thatGD is an Eulerian graph. �

Note that not all irreducible subshifts of finite typ
have a de Bruijn sequence forD = Pn+1(XF ). For ex-
ample, forA = {0,1} and F = {010} the subshift of
finite typeXF is irreducible butXGD is not irreducible,
becauseGD has two strongly connected components
4. Constructing a de Bruijn sequence for subshifts

LetXF be a subshift of finite type andD=Pn+1(XF )

such thatXGD is irreducible. In this section we study a
efficient generation of a de Bruijn sequence forD.

Even in the unrestricted case (whereF = ∅) this is
an interesting problem (see [10] for a survey on this s
ject). One of the most elegant and efficient solution
the unrestricted case is given in [11] and usesLyndon
words.

Let < be a linear order over alphabetA. The setA∗
of all words on the alphabetA is linearly ordered by
the lexicographical order induced by the order< on A.
A word w is a Lyndon word if and only if∀u,v such
thatw = uv, thenw < vu.

The algorithm of Fredricksen and Maiorana cons
of to concatenate in increasing lexicographical order
Lyndon words of length dividingn. This is a linear time
algorithm because the Lyndon words can be gener
efficiently (see [12]).

We always can construct the graphGD and apply
one of the known results about constructing an Eule
cycle to obtain a de Bruijn sequence, however the c
struction ofGD is not efficient. Therefore in this sectio
we study the structure ofGD in order to obtain an algo
rithm to construct a de Bruijn sequence only using
words inD.

The set of arcs of an Eulerian graph can be p
titioned in cycles. In the particular case ofGD these
cycles have a given length.

Theorem 11. Let F be a set of forbidden words o
length at mostn + 1 andD = Pn+1(XF ) such thatGD

is the de Bruijn graph of spann for D. Then the cycle
of length dividingn + 1 partition the set of arcs ofGD.

Proof. We prove that any arc of the graph is in one a
only one cycle of length dividingn.

Let e be an arc from the vertexau to the vertexub

with a, b ∈ A (then, l(e) = b). By construction of the
graph, there is a walk of lengthn from vertexub to ver-
tex au with labelau. Therefore, the union of this wal
with the arce produces a closed walk of lengthn + 1
with labelaub corresponding to one or more repetitio
of a cycle of length dividingn+1, proving the existenc
of one cycle.

Let us suppose now that there are two cyclesC and
C′ of lengths dividingn + 1 using the arce. Let f be
an arc ofC and g an arc ofC′ with tail at the same
vertexu and different heads. Sincee is in both cycles,
by Corollary 2 the walks of lengthn from the head ofe
to the tail of e using only the arcs ofC and C′ must
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INPUT: L = {L1, . . . ,Lk} Lyndon words inL(XF ) of length dividingn + 1.
(1) Size← ∑ |Li |
(2) u ← Li for anyLi ∈ L such that|Li | = n + 1
(3) L ← L \ u

(4) B ← uu

(5) while L 	= ∅
(6) for α = 1 to |A| − 1
(7) w ← Bj−n−1 . . .BjBj+1

α

(8) w′ ← LYNDON(w)

(9) if w′ ∈ L then
(10) B ← B1 . . .Bjwnw1 . . .w|w′|−1Bj+1 . . .

(11) L ← L \ w′
(12) end if
(13) end for
(14) end for
(15) B ← B1 . . .BSize
whereaα = a + α mod|A| and LYNDON(w) return the Lyndon wordz such thatz∞ = w∞.

Algorithm 1. Produce a de Bruijn sequence using the Lyndon words of the language.
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have the same label. Therefore the label ofl(f ) = l(g)

but in this case the head off and the head ofg are the
same vertex, producing a contradiction. This proves
uniqueness of the cycles.�
Corollary 12. The set of Lyndon words of length divi
ing n+1 in L(XF ) corresponds to a partition of the s
of arcs ofGD.

Proof. Let C be a cycle of lengthd with d dividing
n + 1 and let us label itw in such a way that∀u,v such
thatw = uv, we have that eitherw = vu or w < vu. We
only have to prove thatw is not a repetition of a smalle
wordu.

Let us assume thatw = ui for an integeri � 2 and let
x andy be two vertices ofC at distance|u| overC such
that the walk ofC from x to y has labelu. Since both
vertices are inC, x andy are factors of lengthn of the
word w(n+1)/d . Since the walk fromx to y has labelu,
u is a suffix ofy. Moreover, sincew(n+1)/d = ui(n+1)/d ,
uu is a suffix ofy thenu is also a suffix ofx, concluding
thatx = y.

Therefore, every cycle in the partition has a differ
label which is a Lyndon word of length dividingn + 1.

It remains to prove that to each Lyndon word, o
can associate a cycle. But this can be proved using c
nality considerations. Indeed, a periodic word of len
n+ 1 has either least periodn+ 1 or least periodd with
d dividing n + 1. Therefore,

∣∣Pn+1(XF )
∣∣ =

∑ ∣∣{words with least periodd}∣∣.

d|n+1
Now, a word with least periodd is a Lyndon word or
one of thed −1 rotations of a Lyndon word of lengthd .
Hence,
∑

d|n+1

∣∣{words with least periodd}∣∣

=
∑

d|n+1

d · ∣∣{Lyndon words of lengthd}∣∣.

Since|E(GD)| = |Pn+1(XF )| we conclude. �
Now we are prepared to construct an algorithm p

ducing a de Bruijn sequence forD = Pn+1(XF ).
Given a partition in cycles of an Eulerian graph,

following strategy produces an Eulerian cycle: we c
start from an arc and follow the corresponding cy
in the partition, until we reach an intersection with a
other cycle in the partition. At this point we follow th
other cycle and when we return to the intersection
continue with the original cycle. Using this procedu
recursively we construct an Eulerian cycle.

By Corollary 12, we can reproduce this strategy
terms of the Lyndon words of length divingn + 1 in
L(XF ) obtaining Algorithm 1 producing a de Bruij
sequence forD = Pn+1(XF ) without constructing the
graphGD.

The function LYNDON() in the algorithm can be im
plemented with an on-line automata accepting whe
suffix of B is a factor of lengthn of rotations of the
words inL, allowing to do this step in a constant tim
(see [13]). Hence, steps (7)–(12) in the algorithm h
complexityO(n) and these steps are repeated at m
|A| · |L| times. Therefore, the complexity of the alg
rithm is O(|A| · |L| · n). SinceSize= ∑ |Li | is the
L
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size of the input (and also the size of the output) a
Sizeis at mostn · |L|, we conclude that our procedu
is a linear time algorithm. Note that the input of the
gorithm can also be constructed in an efficient way (
[14]).
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