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Abstract

We consider a discrete-time ergodic Markov chain on a partially ordered state space and study the stochastic
comparison between its invariant measure and some measures related with the behaviour of the chain condi-
tioned to avoid a decreasing subset of the state space. We also study the situation when several decreasing
sets are avoided.
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1. Introduction

Stochastic comparison is one of the main tools in the study of stochastic processes (see M8uller
and Stoyan, 2002, and references therein). In many situations, it is useful to study the comparison
of random elements conditioned to some particular event, rather than on the whole space or the
comparison between the conditional and unconditional distribution of the element.
We consider a discrete-time ergodic Markov chain (Zn) on a partially ordered :nite state space I .

We are interested in the comparison of the behaviour of the original chain and the chain conditioned
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to avoid certain subsets B of the state space. With that aim, we study the stochastic comparison of
four measures related to the long-term behaviour of the chain. We brieHy describe these measures
now (the formal de:nitions will be given below).
The :rst measure we consider is �, the invariant measure of the chain (Zn), which reHects the

limit behaviour of the (unrestricted) chain. The three other measures are related to the behaviour of
the chain conditioned to stay in Ĩ = I \ B. The measure r is the limit measure of the chain de:ned
on Ĩ , obtained by forbidding the passage to B and renormalizing the entries of the transition matrix.
To de:ne the measure �, we make the states of B absorbing and take � as the quasistationary

measure of the chain. That is, � veri:es P�(Zn=i | �B¿n)=�i for all i∈ Ĩ , n¿ 1, where �B is the time
of absorption in B. The theory of quasistationary distribution is an important and well-established
topic (see Darroch and Seneta, 1965; van Doorn 1991; Ferrari et al., 1995; or Moler et al., 2000,
and references therein for results and applications). For absorbing discrete-time Markov chains on
a :nite state space which are aperiodic and irreducible on the set of transient states, the (unique)
quasistationary measure coincides with the limiting conditional measure, de:ned by

lim
n→∞

P(Zn = i)
P(�B¿n)

for any initial measure  on the transient states. In other words, the measure � represents the limit
probability of staying in state i at time n given that absorption has not occurred by that time.
The last measure we study is �, to be de:ned below, which corresponds to the limiting conditional

mean ratio (see Darroch and Seneta, 1965):

�i = lim
n→∞E

(
number of visits to i between 1 and n

n

∣∣∣∣ �B¿n
)

for any initial probability measure . That is, � represents the limit proportion of time that the chain
spends in each state up to time n, given that absorption has not occurred by that time.
We give conditions under which these measures are stochastically ordered. As �1 4st �2 means∫

f d�16
∫
f d�2 for f increasing, this can be used to compare diLerent characteristics of the be-

haviour of the conditional and unconditional chain and to give bounds on some quantities related to
� and � (which are usually diMcult to compute) in terms of � and r. In the case where I is totally
ordered, the stochastic comparison between �, � and � is studied in Section 3.7 of Kijima (1997).
It is also interesting to compare the behaviour of the chain conditioned to avoid diLerent subsets

of I . We study the stochastic comparison between the limiting conditional mean ratios �i, obtained
by removing successive subsets Bi. The conditions for the comparison are given in terms of the
original chain. We also compare the measures ri.
The paper is organized as follows: in the rest of this section, the de:nitions and some prelimi-

nary results are given. In Section 2, the main result, giving conditions for comparability is shown.
Section 3 is devoted to the situation where successive subsets Bi are avoided.
Let I be a :nite set. M(I) denotes the set of positive measures and P(I) the set of probability

measures on I . For f : I → R, �∈M(I), we write �(f) =
∫
f d�, |f|=∑

x∈I |f(x)|, |�|= �(1).
We assume I is endowed with a partial order 4. Denote by I(I) = {f : I → R : f(x)6f(y);

∀x 4 y} the set of increasing functions de:ned on I and I+(I)= {f∈I(I) : f¿ 0}. A set A ⊆ I
is increasing if 1A ∈I+(I), that is if x∈A, y∈ I , x 4 y ⇒ y∈A; and A is decreasing if I \ A is
increasing. We also write A∈I(I) if A ⊆ I is increasing.
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The stochastic order 4st in M(I) is de:ned as � 4st � if �(A)6 �(A) for all increasing A ⊆ I .
As an example �x 4st �y when x 4 y, where �z is the Dirac measure at z.

Lemma 1.1. Let � 4st � and f∈I+(I) then �(f)6 �(f).

Proof. If �(I) = �(I) the result follows from the classic results on stochastic orders for probability
measures. Otherwise, as I is increasing, we have �(I)¡�(I). De:ne I ′ as I ∪ {a} where a is a
point not belonging to I and extend the order in I to I ′ by setting a ≺ x, for all x∈ I . Let �′ and
�′ be de:ned on I ′ as

�′(x) = �(x)1I (x) + (�(I)− �(I))1{a}(x); �′(x) = �(x)1I (x):

Note that �′ 4st �′ in I ′ because, if A ⊆ I ′ is increasing then, either a �∈ A and then �′(A) =
�(A)6 �(A) = �′(A), or a∈A but this implies, by the de:nition of increasing set that A= I ′ and, in
this case, �′(I) = �′(I). Now, extend f to I ′ by f(a) = 0. Obviously, f is increasing in I ′ and, as
�′(I) = �′(I), we have �(f) = �′(f)6 �′(f) = �(f) and the lemma is proved.

A stronger order than the stochastic order is the hazard rate order, where for �; �∈M(I), we put
� 4hr � if

�(A)�(A′)6 �(A′)�(A) ∀A; A′ ∈I(I); A ⊆ A′:

This order extends the usual hazard rate order de:ned on totally ordered spaces (see, for instance,
1.B in Shaked and Shanthikumar, 1994). By taking A′ = I , it is direct that � 4hr � and �(I)6 �(I)
imply � 4st �.
A measure �∈M(I) is said to be associated if

�(1)�(fg)¿ �(f)�(g) ∀f; g∈I+(I):

This de:nition trivially extends the classical de:nition of association (also called positive correla-
tions) for probability measures (see De:nition II.2.11 of Liggett, 1985).
If I is totally ordered, then any �∈P(I) is associated. In fact, if A; B ⊆ I increasing then, as I

is totally ordered, A ⊆ B or B ⊆ A. Therefore, say A ⊆ B,

�(1A1B) = �(A)¿ �(A)�(B) = �(1A)�(1B):

Then, as any f∈I+(I) can be written as
∑card(I)

k=1 ak1Ak , with ak¿ 0, Ak ⊆ I increasing, a direct
computation yields that � is associated. (An alternative proof of this fact, using a coupling argument,
can be seen in Theorem 3.10.5 in M8uller and Stoyan, 2002.) As a consequence, for I totally ordered,
any �∈M(I) is associated.
In the case I = X1 × · · · × Xn, where all the Xi are totally ordered and I is endowed with

the coordinatewise order ((x1; : : : ; xn) 4 (x′1; : : : ; x′n) if xi 4 x′i for all i), another relation 4tp in
M(I)\{0} is given by � 4tp � whenever

�(x ∧ x′)�(x ∨ x′)¿ �(x)�(x′) ∀x; x′ ∈ I;

where ∨ and ∧ stand for the coordinatewise maximum and minimum, respectively. From de:nition
� 4tp � ⇔ �=|�| 4tp �=|�|. This relation 4tp is also known as (multivariate) likelihood ratio order
(see 1.C and 4.E in Shaked and Shanthikumar, 1994).
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In general, the relation 4tp is not an order. Now, for any �∈M(I) it holds

� 4tp � ⇒ � is associated:

This follows from the classic results of Fortuin, Kasteleyn and Ginibre (the well-known FKG
inequalities) see, e.g., (1.1) in Lindqvist (1988).
From Theorem 2.2 of Karlin and Rinott (1980) we get

�; �∈M(I); � 4tp � ⇒ �=|�| 4st �=|�|:
When I is totally ordered � 4tp � is equivalent to

�(x)=�(x)¿ �(y)=�(y) ∀x 4 y:

Remark 1.2. Let I=X1×· · ·×Xn, where all the Xi are totally ordered. If A′ ∈I(I) is also a product
of totally ordered spaces, then for �; �∈P(I),

� 4tp � ⇒ �(·)
�(A′)

4tp
�(·)
�(A′)

on A′ ⇒ �(·)
�(A′)

4st
�(·)
�(A′)

on A′

and we get �(A)�(A′)6 �(A′)�(A) for all A ⊆ A′, A∈I(I). In particular, in totally ordered spaces,
every increasing set satis:es the above condition so � 4tp � implies � 4hr �, recovering Theorem
1.C.1 of Shaked and Shanthikumar (1994).

Let P and Q be nonnegative matrices on I . We put P 4st Q if P(x; ·) 4st Q(y; ·) for all x 4 y.
If P, Q are stochastic this condition is equivalent to �Pn 4st �Qn for n¿ 1 and every �; �∈P(I)
such that � 4st �.
If P 4st P then P is said to be monotone. In this case Pf∈I+(I) for any f∈I+(I). In fact,

for x 4 y we have P(x; ·) 4st P(y; ·) and Lemma 1.1 implies Pf(x)6Pf(y).
We remove a subset B from I and denote Ĩ = I \B. For a matrix P de:ned on I we denote

P̃ = P|Ĩ×Ĩ its restriction to Ĩ .

Lemma 1.3. Let P be monotone nonnegative. If Ĩ is increasing, then P̃ is monotone.

Proof. We just have to check that if A∈I(Ĩ) then A∈I(I). Let x∈A and x 4 y with y �∈ A;
then, since A is increasing in Ĩ then y �∈ Ĩ but this contradicts Ĩ increasing.

From now on P will be a nonnegative matrix with nonvanishing rows. We associate to it the
stochastic matrix R= R(P) given by

R(x; y) = P(x; y)=P(x; I); x; y∈ I:

If P is also irreducible, by Perron–Frobenius theorem, it has a simple real eigenvalue  =  (P)¿ 0
which is greater in modulus than any other eigenvalue of P. Besides, the corresponding left and
right eigenvectors denoted, respectively, by  = (P) and ’ = ’(P), can be chosen to be strictly
positive. We associate to P the stochastic matrix Q = Q(P) de:ned on I by

Q(x; y) = P(x; y)’(y)= ’(x); x; y∈ I:
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If P is stochastic then Q=P because  =1, ’=1. Denote by �=(�(x) : x∈ I)∈P(I) the invariant
measure associated to Q. It veri:es �(A) = (’1A)=(’) for A ⊆ I .
It is well known (see, for instance, Seneta, 1981) that  and ’ verify

= lim
n→∞ �Pn=|�Pn| for �∈M(I)\{0} and ’= lim

n→∞Pnf=|Pnf| for f∈I+(I)\{0}:
We assume P is monotone. Then P(I+) ⊆ I+ and ’=limn→∞ Pn1=|Pn1|. We deduce that ’∈I+.
We will suppose that P̃=P|Ĩ×Ĩ is also irreducible and aperiodic. Denote  ̃= (P̃)¿ 0 its Perron–

Frobenius eigenvalue and by ̃ = (P̃)¿ 0 and ’̃ = ’(P̃)¿ 0 the corresponding left and right
eigenvectors. From Lemma 1.3 we get that P̃(I+(Ĩ)) ⊆ I+(Ĩ) and then ’̃ is also increasing.
Denote by Q̃ = Q(P̃), R̃ = R(P̃), " =  (P̃)∈ (0; 1), � = (P̃), h = ’(P̃). The matrices Q̃ and R̃

verify

Q̃(x; y) = P(x; y)h(y)="h(x) and R̃(x; y) = P(x; y)=P(x; Ĩ) for x; y∈ Ĩ :

The stationary probability measures of Q̃ and R̃ are denoted respectively by � and r. � veri:es
�(x) = �(x)h(x)=�(h).
Assume � is normalized, |�|=1. If P is stochastic then the matrix Q̃� de:ned on Ĩ by Q̃�(x; y) =

P(x; y) + P(x; B)�(y) for x; y∈ Ĩ is also stochastic. A direct computation shows � is the stationary
measure associated to Q̃�.

2. Comparison of measures

We will assume P is stochastic, so Q = P, and monotone. To compare the stochastic ordering
between � and the measures �, � and r, we extend these last measures to I , in such a way that they
vanish at B and we denote such extensions by �′, �′ and r′.

Theorem 2.1. Assume P is stochastic and monotone and that Ĩ is an increasing set.
(a) If P(x; ·) is associated for all x∈ Ĩ , then � 4st r′ and � 4st �′.
(b) If Ĩ veri?es x �∈ Ĩ ; y∈ Ĩ ⇒ x 4 y, then � 4st �′.
(c) If � is associated, then � 4st �.
(d) If P̃(x; ·) is associated for all x∈ Ĩ , then R̃(x; ·) 4st Q̃(x; ·) for every x∈ Ĩ . Moreover, if

P(x; ·) 4hr P(y; ·) for any x 4 y, x; y∈ Ĩ , then R̃ is monotone and r 4st �.

Proof. (a) Let A ⊆ I be increasing.
Let us show � 4st r′. Let x∈ Ĩ . Since P(x; ·) is associated and the sets A and Ĩ are increasing,

we get P1A(x)P1Ĩ (x)6P(1A1Ĩ)(x) which is equivalent to

P(x; A)6P(x; A ∩ Ĩ)=P(x; Ĩ): (1)

We will show that (1) is suMcient to imply the result. De:ne the matrix R′ as

R′(x; y) = P(x; y)1B(x) + R̃(x; y)1Ĩ (x)1Ĩ (y):

It is clear that R′ has r′ as its unique invariant measure. Let us see that P 4st R′, that is for any
x 4 y it holds P(x; ·) 4st R′(y; ·). Since P is monotone, it is enough to check that P(x; ·) 4st R′(x; ·)
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for x∈ Ĩ (if x∈B it is trivial). Let A ⊆ I be increasing, from (1) we get

R′(x; A) = P(x; A ∩ Ĩ)=P(x; Ĩ)¿P(x; A):

Therefore, for any �∈P(I) it holds �= limn→∞ �Pn 4st limn→∞ �R′n= r′ and the result is proved.
Let us prove � 4st �′. We denote h′ the extension of h to I with h′ vanishing at B. Then

P(h′g)(x) = P̃(hg)(x) for x∈ Ĩ and g any function de:ned on I . De:ne the matrix Q′ on I by

Q′(x; y) = P(x; y)1B(x) + Q̃(x; y)1Ĩ (x)1Ĩ (y):

Q′ has �′ as its unique invariant measure. Since h′ is increasing we get for x∈ Ĩ and any increasing A

Ph′(x)P1A(x)6P(h′1A)(x): (2)

Since Ph′(x) = "h′(x) for x∈ Ĩ we get that (2) is equivalent to

P(x; A)6
∑

y∈A∩Ĩ
P(x; y)h(y)="h(x) = Q′(x; A) for x∈ Ĩ :

We have shown that P(x; ·) 4st Q′(x; ·) for any x∈ I (because for x∈B it is trivial). Since P is
monotone we get P 4st Q′, and we deduce � 4st �′.
(b) First, let us show that the following condition holds for all x∈ Ĩ and A ⊆ I increasing in I :

P(x; A\ Ĩ)6 �(A ∩ Ĩ)P(x; B): (3)

Let A be increasing. If A \ Ĩ is empty then (3) holds trivially. If A \ Ĩ �= ∅ then, from the hypothesis
and A increasing, we have A ∩ Ĩ = Ĩ and �(A ∩ Ĩ) = 1. Hence (3) holds.
Now, (3) suMces to get the result. To prove it, consider the following stochastic matrix S ′ on I ,

S ′(x; y) = P(x; y)1B(x) + (P(x; y) + P(x; B)�(y))1Ĩ (x)1Ĩ (y):

It is clear that S ′ has �′ as its unique invariant measure.
Let us see now that P 4st S ′. As P is monotone, we just have to see that P(x; ·) 4st S ′(x; ·) for

all x∈ I . The inequality is trivial if x∈B, so take x∈ Ĩ and A increasing. From condition (3) it is
veri:ed

S ′(x; A) = P(x; A ∩ Ĩ) + P(x; B)�(A ∩ Ĩ)¿P(x; A)

and we conclude P 4st S ′. Then � 4st �′.
(c) Let A ⊆ Ĩ be increasing. Then, as � is associated and h and 1A are increasing we have

�(1A)�(h)6 �(h1A), which is equivalent to �(A)6 �(A). The result follows.
(d) Let A be an increasing subset in Ĩ . Since h is increasing we get

(P̃h)(x)(P̃1A)(x)6 P̃(h1A)(x)(P̃1Ĩ)(x): (4)

We have (P̃1A)(x) = P(x; A) and P̃h= "h. Then (4) is equivalent to

P(x; A)=P(x; Ĩ)6
∑
y∈A

P(x; y)h(y)="h(x):

The :rst part is shown.
For the second part, it is immediate to check that R̃(x; ·) 4hr R̃(y; ·) for any x 4 y, so R̃ is

monotone. This implies (by the :rst part) R̃ 4st Q̃, and then r 4st �.
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From Theorem 2.1(b) we deduce the following result for monotone matrices.

Corollary 2.2. Assume P is nonnegative, Q(P) is monotone and Ĩ veri?es x �∈ Ĩ , y∈ Ĩ ⇒ x 4 y.
Then (’1A)=(’)6 ̃(’1A)=̃(’) for every increasing set A ⊆ Ĩ .

Proof. From � ]Q(P) = "� and the de:nition of Q we get∑
x∈Ĩ

�(x)P(x; y)=’(x) =  "�(y)=’(y) for y∈ Ĩ :

We deduce � = ̃ ’=̃(’) (and  ̃ =  "¡ ). From Theorem 2.1(b) we get � 4st �′. Since �(A) =
(’1A)=(’) we :nd the result.

In the following remark we analyze some interesting situations for the application of Theorem 2.1.

Remark 2.3. (i) Assume I is totally ordered. The hypothesis of (b) is trivially ful:lled. Besides as
any �∈M(I) is associated, conditions (a), (c) and the :rst part of (d) are also veri:ed. For the
second condition of part (d) it suMces, by Remark 1.2, that P(x; ·) 4tp P(y; ·) for x 4 y, x; y∈ Ĩ .
(ii) Assume I = X1 × · · · × Xn, where all the Xi are totally ordered. Then P(x; ·) 4tp P(x; ·)

for x∈ Ĩ suMces for (a). Condition (b) means that B is the point (m1; : : : ; mn) with mi the minimum
of Xi.
Concerning (c), the condition P̃ 4tp P̃ established by Karlin and Rinott (1980) is suMcient to

insure that � is associated. The condition P̃ 4tp P̃ means

P̃(x ∧ x′; y ∧ y′)P̃(x ∨ x′; y ∨ y′)¿ P̃(x; y)P̃(x′; y′): ∀x; y; x′; y′ ∈ Ĩ :

In Theorem 2.4 of Karlin and Rinott (1980) it is shown that �P̃ 4tp �P̃ for all �∈P(Ĩ) such that
� 4tp �. Since �a 4tp �a, for a∈ Ĩ (since both sides of the inequality, when applied to x �= x′, are
zero), we get by iteration � 4tp �, so � is associated. By the same argument than the one given
above, it holds h 4tp h (and is associated) and therefore, � 4tp � (and is associated).
For condition (d), when Ĩ is a product of subsets of Xi, it is enough that P(x; ·) 4tp P(y; ·) for

x 4 y, x; y∈ Ĩ (see Remark 1.2).
(iii) Observe that the hypotheses of Theorem 2.1 imply that P(x; Ĩ) is increasing with x. An

extreme case is given by the following condition:

P(x; Ĩ) does not depend on x∈ Ĩ : (5)

In that case, R̃ is proportional to P̃ and no further condition is needed to insure the monotonicity of R̃
in Theorem 2.1(d). Concerning the association of �, when (5) holds it suMces that P̃ is monotone and
P̃(x; ·) is associated for all x∈ Ĩ . To see this, let us prove that this condition insures that, if
�∈M(Ĩ) is associated then �P̃ is also associated. Let c = P(x; Ĩ) = P1Ĩ (x) = �P̃(1) for any
x∈ Ĩ . Let f; g∈I+(Ĩ). Since P̃(x; ·) is associated we have P̃(fg)(x)¿ (P̃1(x))−1P̃f(x)P̃g(x) =
c−1P̃f(x)P̃g(x). Then

(�P̃)(1Ĩ)(�P̃)(fg) = (�P̃)(1)�(P̃(fg))¿ c�(c−1P̃fP̃g)

= �(P̃fP̃g)¿ �(P̃f)�(P̃g) = (�P̃)(f)(�P̃)(g);
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the last inequality because � is associated. Now, if a∈ Ĩ , �a is associated and �=limn→∞ �aP̃n=|�aP̃n|.
We conclude that � is associated.

Remark 2.4. From the proof above we recover Theorem 5.2.8 in M8uller and Stoyan (2002), which
states that, if P is a monotone stochastic matrix, then the necessary and suMcient condition for �Pn

being associated whenever � is, is that P(x; ·) is associated for all x. The suMciency follows from
our proof and the necessity from the fact that �x is associated and P(x; ·) = �xP. This compares
with the continuous-time case, when a monotone Markov chain keeps the association of the initial
measures if and only if every jump is ‘up’ or ‘down’ (see Harris, 1977).

Remark 2.5. Association plays an important role in most parts of Theorem 2.1 and, in fact, the
corresponding results are not valid if that assumption is dropped. For instance, consider part (a) and
take I = {1; 2; 3}, with the partial order 1 4 3, 2 4 3, Ĩ = {2; 3} and the matrix

P =



3=10 1=10 3=5

1=5 2=5 2=5

1=10 1=10 4=5


 ;

which is stochastic and monotone (with respect to 4). Note that P(2; ·) = (1=5; 2=5; 2=5) is not
associated, for take f(1) = 1, f(2) = 0, f(3) = 1 and g(1) = 0, g(2) = 1, g(3) = 1, which are 4—
increasing and 0:4=P(2; ·)(1)P(2; ·)(fg)� P(2; ·)(f)P(2; ·)(g)= 0:48. We have �=(1=7; 1=7; 5=7),
r′ = (0; 2=11; 9=11) and �′ = (0; (2 −√

2)=4; (2 +
√
2)=4). Take A = {1; 3} which is 4—increasing;

then 6=7 = �(A)� r′(A) = 9=11, so � 4= str′; also 6=7 = �(A)� �′(A) = (2 +
√
2)=4, so � 4= st�′.

Also, for parts (c) and (d), take I = {0; 1; 2; 3} with the partial order 0 4 1 4 2 (3 is not
comparable with any other point). For �1; �2 ∈P(I), �1 4st �2 if and only if �1(1)+�1(2)6 �2(1)+
�2(2), �1(2)6 �2(2) and �1(3) = �2(3) (this equality follows from the fact that the sets {0; 1; 2},
{3} are increasing and �1; �2 ∈P(I)).
Let

P =




0:1 0:1 0:1 0:7

0:1 0:1 0:1 0:7

0:05 0:05 0:2 0:7

0:8 0:1 0 0:1


 ;

which is monotone and take Ĩ = {1; 2; 3}. Then

P̃ =



0:1 0:1 0:7

0:05 0:2 0:7

0:1 0 0:1


 ;

whose left Perron eigenvector is �=(0:22208; 0:09724; 0:68068). � is not associated on Ĩ since, taking
f(1)=0, f(2)=1, f(3)=0, g(1)=0, g(2)=0, g(3)=1, we have 0= �(fg)� �(f)�(g)=0:06619.
Besides, �=(0:410197; 0:206952; 0:382851), and � 4= st� since �(3) �= �(3). Thus, part (c) fails if the
assumption of association is dropped. For part (d), note that P̃(1; ·) is not associated (this is checked
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as above). We have

R̃=



1=9 1=9 7=9

1=19 4=19 14=19

1=2 0 1=2




and

Q̃ =



0:233433 0:268976 0:49759

0:1012933 0:466866 0:4318376

0:766569 0 0:2334332




and R̃(1; ·) 4= stQ̃(1; ·) since R̃(1; 3) �= Q̃(1; 3).

3. Iteration of the inequalities

For P stochastic and monotone we have given general conditions on P and Ĩ for having � 4st �′
and � 4st r′. As � and r are the invariant measures of the transition matrices Q̃ and R̃, respectively,
we can remove a new set B′ from Ĩ and, under suitable conditions on P̃ and B′, we will have
�′ 4st �′′ and r′ 4st r′′ where �′′ and r′′ are the new vectors arising from Q̃ and R̃, respectively.
This procedure can be applied successively, and under adequate conditions, we will have

� 4st �′ 4st �′′ 4st · · · 4st �i
′
4st · · · and � 4st r′ 4st r′′ 4st · · · 4st ri

′
4st · · · :

A problem is that the conditions need to be checked for the corresponding matrices and removed
subsets at each step. Below we study conditions on the original stochastic matrix P and the removed
subsets B to guarantee the above chains of inequalities. For the :rst case, we will restrict ourselves to
the case of I totally ordered, while, for the second one, I will be a product of totally ordered spaces.
We will use the notation I 1 = I and I i = I i−1 \ Bi−1, where Bi is the removed set at step i. The

measures �i and ri will be the measures � and r corresponding to step i (although de:ned on I i+1,
we extend them to I by giving them the value 0 at I \ I i+1). It is important to note that the measure
ri (respectively, �i) so de:ned coincides with the measure r (�) de:ned by the direct removal of
B1 ∪ · · · ∪ Bi. Therefore, the result below can be used to compare the behaviour of the chain when
avoiding diLerent sets B ⊆ B′.
If I is totally ordered, for having � 4st �′, it is enough that P is stochastic monotone and B is

decreasing. However, P monotone does not imply Q̃ monotone so, in order to iterate the inequality,
some extra conditions are to be imposed on P. If I = X1 × · · · × Xn with Xi totally ordered, to
have � 4st r′, it is enough that P is monotone, Ĩ is increasing and P(x; ·) is associated. The key
point now is that the structure of I lets us use the order 4tp; therefore, for the iteration, it will be
important that the successive sets I i are also products of totally ordered sets.

Theorem 3.1. (a) Let I be totally ordered and P be stochastic. If P(x; ·) 4tp P(y; ·) for all x 4 y,
and Bi decreasing in I i, then

� 4st �1 4st · · · 4st �i 4st · · · :
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(b) Let I = X1 × · · · × Xn with Xi totally ordered and P be stochastic. If P(x; ·) 4tp P(y; ·) for
all x 4 y and Bi decreasing in I i such that I i = X i

1 × · · · × X i
n, then

� 4st r1 4st · · · 4st ri 4st · · · :

Proof. (a) As P(x; ·) 4tp P(y; ·) for x 4 y implies P is monotone, we have � 4st �1. Now, to
iterate the inequality, we just have to check that the matrix Q̃ inherits the properties imposed to P in
the statement of the theorem; that is, we have to check that, if x 4 y in I 2, then Q̃(x; ·) 4tp Q̃(y; ·).
This is direct from the de:nition of Q since, for z 4 z′, we have P(x; z)=P(y; z)¿P(x; z′)=P(y; z′)
and then

Q̃(x; z)

Q̃(y; z)
=

P(x; z)h(y)
P(y; z)h(x)

¿
P(x; z′)h(y)
P(y; z′)h(x)

=
Q̃(x; z′)
Q̃(y; z′)

:

Then (a) follows.
(b) We have P is monotone. Besides, since P(x; ·) 4tp P(x; ·), then P(x; ·) is associated and the

:rst inequality is proved.
Now, by the de:nition of R it is evident that R̃(x; ·) 4tp R̃(y; ·) for x 4 y and (b) follows.

Remark 3.2. The conditions of Theorem 3.1(b) on the sets Bi are satis:ed, for instance, if they are
unions of sets of the form

X1 × · · · × [xj 4 ]× · · · × Xn;

where [xj 4 ] = {y∈Xj : y 4 xj}; that is, we remove from I any point which has at least one of
its j1; : : : ; jk coordinates smaller than xj1 ; : : : ; xjk .

Remark 3.3. Although all the results of this work are given for :nite I , they hold with the same
proof for countable I , as long as the measures  and ’ can be written as  = limn→∞ �aP̃n=|�aP̃n|
for some a∈ I , and ’= limn→∞ P̃nf=|P̃nf| for some increasing f.
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