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Abstract

For any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces
a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number
of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this
paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions
different values for the asymptotic number of average adjacencies are obtained depending on the considered partition,
in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae
for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided.
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1. Introduction and definitions

In the area of numerical methods a considerable effort has been made for designing and implementing
methods able to construct meshes having a suitable distribution of points or elements over the problem
domain. Very often we are interested in measuring the goodness of the partition (or the triangulation). In
this sense several smoothing or improvement techniques have been developed (see, for example[8,13]).
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Some regularity measures for simplices (triangles in 2D, tetrahedra in 3D) and for the whole simplicial
grid (triangulation) have been proposed in the literature[9,22]. Sometimes these regularity measures
are not geometrical but topological. For example, Shimada[22] proposed a measure evaluating the ab-
solute difference between the degree of each interior node of the mesh and the degree of the nodes of
a regular lattice (6 in 2D, or 12 in 3D). Since the degree of a nodeN is the number of nodes con-
nected toN , that measure is a topological measure, i.e. it considers adjacency relations, not geometrical
quantities.

The adjacencies of triangular meshes based on a general class of simplex partitions, called skeleton-
regular partitions, have been studied in[18]. In this paper we study the asymptotic behavior of different
skeleton-regular simplex partitions in three-dimensions, when these partitions are repeatedly and globally
used over any given mesh. We show that for each one of these partitions, the asymptotic average number
of the adjacencies of the involved neighbor topological elements is constant. But although these average
adjacencies are different from one tetrahedral partition to another, we show and prove some relations
among the distinct adjacency relations that hold in all the 3D partitions. Some examples of equivalent
and nonequivalent partitions are also given.

Definition 1.1 (conforming mesh). Let � be any set ofn-dimensional triangles (n= 2 or 3) such that

• interior(t) �= ∅, ∀t ∈ �,
• ∀ti , tj ∈ �, with ti �= tj , thenti ∩ tj , if not empty, is an entire face, or a common edge, or a common

vertex.

Then� is said to be a conforming triangulation.

Frequently, before obtaining a (conforming) triangulation we have an open (polygonal) domain� ⊂
Rn to be triangulated. The triangulation problem can be stated as follows: given an open domain
� ⊂ Rn, and a fixed set of points in�, find a suitable conforming triangulation� of �, such
that

⋃
t∈� t = �.

Another related but essentially different problem from the classical triangulation problem is the tri-
angulation refinement problem, which can be stated as follows:given an acceptable triangulation of
a polygonal region�, a subregionR ∈ � defining the refinement area, a condition over the diameter
(longest-side) of the triangles, and a resolution parameter�, find or construct a locally refined triangu-
lation such that the diameter of the triangles that intersect the refinement areaR is less than� [20].

It should be noted here that in the adaptive context the refinement areaR is a changing set of triangles,
so the mesh is dynamically constructed at each time when the front or singularity moves. However, the
triangulation refinement problem for a given fixed refinement areaR can be seen, in the context of nested
meshes, comprised of two (separate) steps: uniform subdivision of all the triangles that intersectR until
the resolution parameter� is achieved, and extension of the refinement outside the refinement areaR in
order to assure the conformity of the new mesh. From this point of view, the study of geometrical and
topological features of the partitions defining the triangular or tetrahedral refinement algorithms is of the
most interest.

Definition 1.2 (skeleton). Let � be anyn-dimensional (n = 2 or 3) conforming triangular mesh. The
k-skeletonof � is the union of itsk-dimensional faces. Furthermore, the(n − 1)-skeleton is called the
skeleton[4,16].
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Fig. 1. Example of two topologically equivalent meshes.

The skeleton of a triangulation in three-dimensions is comprised of the faces of the tetrahedra, and in
two-dimensions the skeleton is the set of the edges of the triangles.

Definition 1.3(skeleton-regular partition). For any triangle or tetrahedront , a partition oft will be called
skeleton-regularif the following properties hold:

1. All the topological elements of the same dimension are subdivided in the same number of child-
elements.

2. The meshes obtained by application of the partition to any individual element in any conforming
triangulation are conforming.

Definition 1.4(constitutive equations). When a skeleton-regular partition is applied to some initial mesh,
there exist recurrence relations between the number of topological elements in the refined mesh and
the number of topological elements in the unrefined mesh. These recurrence equations will be called
constitutive equationsof the partition.

In the following we shall show that different partitions may have the same constitutive equations, and
consequently they generate meshes having the same average numbers of topological adjacencies.

Definition 1.5 (topologically equivalent meshes). Two meshes� and �∗ are said to be topologically
equivalent if there is a homeomorphism� such that�(�)= �∗.

Note that if two meshes are topologically equivalent, then the number of adjacencies of corresponding
elements are the same. SeeFig. 1 in which the degree of each node has been pointed out.

Definition 1.6 (topologically equivalent partitions and equivalent on average partitions). Two partitions
P1 andP2 of the same elementt will be calledtopologically equivalentor simplyequivalentif there is
a homeomorphism� such that�(P1(t))= P2(t). Two partitions will be calledequivalent on averageor
topologically equivalent on averageif the meshes obtained by application of these partitions to any initial
mesh show, on average, the same adjacency numbers.

For instance the 4T-LE partition and the 4T-SE partition introduced below are equivalent. However,
the 4T-LE partition and the 4T similar partition are not equivalent but they are equivalent on average.
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Fig. 2. Four triangle partitions in 2D: (a) 4T similar partition, (b) 4T-LE partition and (c) 4T-SE partition.

Definition 1.7(4T similar partition). The original triangle is divided into four subtriangles by connecting
the midpoints of the father-triangle by straight line segments parallel to the sides.

Note that according to the definition, all the triangles are similar to the original one (seeFig. 2(a)).
This is one of the simplest partitions of triangles considered in the literature (see for example[2]).

Definition 1.8((4T-LEpartition) (Rivara[19] )). The 4-Triangles Longest-Edge (4T-LE) partition bisects
the triangle by its longest edge, and then the two resulting triangles are bisected by the midpoint of the
common edge with the original triangle (seeFig. 2(b)).

Definition 1.9 (4T-SE partition). The 4-Triangles Shortest-Edge (4T-SE) partition uses the shortest edge
of the triangle to perform the first bisection, and then proceeds as in the 4T-LE partition (seeFig. 2(c)).

Remark 1.10. Different partitions can have the same recurrence-associated equations, because these
equations depend only on the number of child-elements for each particular original element. For example,
in 2D, the 4T-similar partition, the 4T-LE partition and the 4T-SE partition all have the following equations:

Nn =Nn−1 + En−1,

En = 2En−1 + 3Fn−1,

Fn = 4Fn−1, (1.1)

whereNn, En, andFn are, respectively, the number of nodes, edges, and triangles in the mesh�n.

Note also that two partitions having the same recurrence-associated equations are equivalent on average
or topologically equivalent on average since meshes obtained by application of these two partitions to
the same initial mesh will have on average the same topological adjacency relations, since these average
numbers depend only on the numbers of topological elements of the same dimension.

As a matter of example, seeFig. 3in which three different barycentric partitions of a triangle are shown.
Fig. 3(a) is for the so-called 0-barycentric partition, whileFig. 3(b) shows the 1-barycentric partition,
andFig. 3(c) is for the 2-barycentric partition. In general, in two-dimensions, thep-barycentric partition
is defined as

Definition 1.11(p-adic 2D Barycentric partition). For any trianglet thep-adic barycentric partition of
t is defined as follows:

1. Put a new nodeP in the barycenter oft , and putp nodes at equal distance on each of the edges oft .
2. Join the nodeP with the vertices of the edges, and with the nodes at the edges.
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Fig. 3. Threep-barycentric partitions in 2D: (a) 0-bar partition, (b) 1-bar partition and (c) 2-bar partition.

Table 1
Adjacency relations in 2D

Constant relations Non-constant

Vertices per edge= 2 Edges per vertex
Vertices per triangle= 3 Triangles per vertex
Edges per triangle= 3
Triangles per edge= 2

The constitutive equations for thep-barycentric partition in 2D are

Nn =Nn−1 + pEn−1 + Fn−1,

En = (p + 1)En−1 + (3p + 3)Fn−1,

Fn = 3(p + 1)Fn−1. (1.2)

Remark 1.12. Since we are interested in the study of the adjacency relations, it can be noted first that
some relations are held for every interior element of the mesh. For example, in 2D every internal edge is
shared by two triangular faces (triangles), so the number of triangles per edge is always 2, no matter how
the mesh is or what partition is applied to an initial mesh. These adjacency relations are calledconstant.
Otherwise we say that the adjacency relation isnon-constant.

In two dimensions all the adjacency relations are classified as given inTable 1.

Theorem 1.13(Plaza and Rivara[18] ). Let � be any(conforming) triangular mesh. For any skeleton-
regular partition letNn,En, Tn be, respectively, the total number of nodes, edges, and triangles after the
nth partition application. Then the asymptotic average numbers of topological adjacencies are indepen-
dent of the particular partition of each triangle and these numbers are

lim
n→∞Av#(triangles per node)= lim

n→∞
3 × Tn
Nn

= 6,

lim
n→∞Av#(edges per node)= lim

n→∞
2 × En
Nn

= 6.

The previous result establishes that in 2D all the skeleton-regular partitions are asymptotically topologi-
cally equivalent on average; that is, the average adjacency numbers are the same for all the skeleton-regular
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Fig. 4. Bey division: cutting off the corners and internal edge.

partitions considered, regardless of whether they have the same constitutive equations as those shown in
Fig. 2, or not, as those inFig. 3.

The focus of this paper is to investigate the situation of tetrahedral skeleton-regular partitions, and to
prove some relations between the average number of topological adjacencies that always appear in these
kinds of partitions in 3D.

2. 3D skeleton-regular partitions

In three-dimensions several techniques have been developed in recent years for refining (and coars-
ening) tetrahedral meshes by means of bisection. A general overview can be found in[7]. As in 2D,
a refinement tetrahedral procedure consists of two main steps: firstly (uniform or global), partition of
the elements presenting the highest error according to the error indicator and to the refinement strategy
employed, and then (local or partial), refinement of the elements having hanging or non-conforming
nodes.

Here, we resume briefly some of the main skeleton-regular partitions of tetrahedra used in the literature.

Definition 2.1 (3D Freudenthal–Bey partition). The original tetrahedron is divided into eight sub-
tetrahedra by cutting off the four corners by the midpoints of the edges (seeFig. 4), and the remaining
octahedron is subdivided further into four tetrahedra by one of the three possible interior diagonals[5,6]
(seeFig. 5).

Numbers in the figures indicate the degree of the nearest node.

Definition 2.2 (8T-LE partition). The original tetrahedron is divided into eight sub-tetrahedra by per-
forming the 4 T-LE partition of the faces, and then subdividing the interior of the tetrahedron in a manner
consistent with the performed division in the 2-skeleton[16,17,21].
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Fig. 5. The three possibilities for dividing the interior octahedron.
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Fig. 6. Refinement patterns for the 8T-LE partition.

The 8T-LE partition and the associated local refinement algorithm[16] can also be explained by
successive bisections by mid-point edges of the original tetrahedron, after classifying its edges based on
their length (Fig. 6). In this sense this partition and its counterpart refinement algorithm generalize to three-
dimensions, the 4T-LE partition and the respective local refinement. Other partitions in eight tetrahedra
equivalent to the 8T-LE partition but not based on the length of the edges are those by Kossaczký[12],
Maubach[14], Mukherjee[1,15], and Liu and Joe[13]. For a comparison of these partitions and the
associated 3D local refinements see[16].

Definition 2.3 (3D Barycentric partition). For any tetrahedront the barycentric partition oft is defined
as follows:

1. Put a new nodeP at the barycenter oft , put new nodes at the barycenters of the faces oft , and put
new nodes at the midpoints of the edges oft .
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Fig. 8. 3D 4T Barycentric partition.

2. On each face oft perform the barycentric triangular partition (seeFig. 1(c) for the two-dimensional
case).

3. Join the nodeP with all the vertices oft , and with all the new nodes just introduced (seeFig. 7).

Note that from a topological point of view, it is not relevant that the interior nodeP of initial tetrahedron
t is located either at the barycenter or at any interior node oft . The same remark is valid for the barycenter
of each face.

Definition 2.4 (4T partition). For any tetrahedront the 4T barycentric partition oft is defined by

1. Put a new nodeP at an interior point oft (for example at the barycenter oft).
2. Join nodeP with all the vertices oft (seeFig. 8).
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As in 2D, we can also introduce thep-adic barycentric partitionin 3D as follows:

Definition 2.5 (p-adic 3D Barycentric partition). For any tetrahedront thep-adic barycentric partition
of t is defined as follows:

1. Put a new nodeP at the barycenter oft , put new nodes at the barycenters of the faces oft , and putp
new nodes at each one of the edges oft .

2. On each face oft perform thep-adic barycentric triangular partition (seeFig. 3(c) for the two-
dimensional case).

3. Join nodeP with all the vertices oft , and with all the new nodes just introduced.

According to this definition, the 3D Barycentric partition is the 1-adic 3D Barycentric partition.

3. Asymptotic results of the adjacency relations in 3D

In three dimensions the adjacency relations are classified as given inTable 2.
Let �0 be an initial triangulation in three-dimensions, in which some skeleton-regular partition is

recursively applied. If we denote byN0, E0, F0, andT0, respectively, the number of nodes, edges, faces
(triangles) and tetrahedra in�0, then the number of topological elements in the subsequent mesh levels
�n depend on the corresponding numbers of the previous mesh level�n−1. In addition, the average of the
adjacency relations depends on the number of topological elements in the mesh as the following lemma
establishes:

Lemma 3.1. Let �n be some3D triangulation withNn nodes, En edges, Fn faces, andTn tetrahedra.
Then, the nonconstant adjacency relations averages are:

Av#(tetrahedra per edge)= 6Tn
En

; Av#(tetrahedra per node)= 4Tn
Nn

;

Av#(faces per edge)= 3Fn
En

; Av#(faces per node)= 3Fn
Nn

;

Av#(edges per node)= 2En
Nn
.

In order to calculate the asymptotic behavior of the average adjacencies of the topological elements
of a particular skeleton-regular partition, we have to solve the constitutive equations associated to that
partition. This can be done by means of generating functions[11]. The constitutive equations can also
be solved easily by writing the equations in matrix form, if the associated matrix is diagonalizable[18],
according to the following classic theorem[23]:

Theorem3.2. Letun=Anu0beadifferenceequation, inwhichmatrixA is diagonalizable; i.e., thereexists
a non-singular matrixS such thatA= SDS−1, withD being a diagonal matrix. Thenun = SDnS−1u0.

Then, equationun = SDnS−1u0 can be solved by using a symbolic calculus package like MAPLE or
Mathematica[18].
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Table 2
Adjacency relations in 3D

Constant relations Non-constant

Vertices per edge= 2 Edges per vertex
Vertices per triangle= 3 Triangles per vertex
Vertices per tetrahedron= 4 Tetrahedra per vertex
Edges per triangle= 3 Triangles per edge
Edges per tetrahedron= 6 Tetrahedra per edge
Triangles per tetrahedron= 4
Tetrahedra per face= 2

In 3D, the situation of the asymptotic behavior of the adjacency relations between the topological
elements in the mesh is quite different from the situation in 2D. Now, different values for the average
limit depending on the particular partition considered are obtained. Before reporting the different results
for the average limits of adjacencies it should be noted that the nonconstant adjacency numbers are not
independent as the following theorem establishes:

Theorem 3.3. Let �n be any3D triangulation withNn nodes, En edges, Fn triangular faces, and Tn
tetrahedra. Then, the limits of the average of nonconstant adjacency relations verify

lim
n→∞Av#(tetrahedra per edge)= lim

n→∞Av#(faces per edge), (3.1)

3
2 lim
n→∞Av#(tetrahedra per node)= lim

n→∞Av#(faces per node), (3.2)

1
2 lim
n→∞Av#(tetrahedra per node)+ 2 = lim

n→∞Av#(edges per node). (3.3)

Proof. Let us first consider Eq. (3.1). Since the number of internal edges is of orderO(N2) while the
number of external edges is of orderO(N), the limits of the average numbers of tetrahedra per edge and
faces per edge depend only on the limits involving the internal edges of the triangulations. Note that for
internal edges the number of tetrahedra sharing each internal edge is equal to the number of faces sharing
each internal edge (seeFig. 9). This proves (3.1).

For (3.2) consider that

4Tn
Nn

= 4 · Tn · Fn
Fn ·Nn = 2

Fn

Nn
,

hence, by Lemma 3.1

3

2
× lim
n→∞Av#(tetrahedra per node)

= lim
n→∞

3

2
· 4 · Tn
Nn

= lim
n→∞

3

2
· 2 · Fn
Nn

= lim
n→∞

3 · Fn
Nn

= lim
n→∞Av#(faces per node)

so Eq. (3.2) is proved.
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Fig. 9. Hull of tetrahedra sharing an internal edge.

Fig. 10. Hull of tetrahedra sharing an internal node.

For Eq. (3.3) consider the Euler–Poincaré formula applied to the surface triangulation of the hull of
each interior node.Fig. 10shows the set of tetrahedra sharing an interior node. If the number of nodes of
such a node-hull is noted byn, the number of edges bye and the number of triangular faces byf , then
the Euler–Poincaré formula says thatn− e + f = 2.

On the other hand, the number of edges incident with the interior nodeP is equal to the number of
nodes of the node-hull ofP , n; the number of faces incident withP is equal to the number of edges of
the hulle, and the number of tetrahedra having nodeP as a vertex is the number of triangular faces of its
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Table 3
Asymptotic average of adjacency relations in 3D

Partition lim
n→∞ Av#(tet per edge) lim

n→∞ Av#(tet per node)

8T-LE 36
7 24

3D-Bey 36
7 24

Barycentric 66
13 22

4T 9
2 12

p-adic Barycentric 33(p + 1)/(6p + 7) 44(p + 1)/(p + 3)

lim
p→∞ p-adic Bar 33

6 = 11
2 44

node-hull. This reasoning leads us to another relation between the adjacency numbers

Av#(edges/node)− Av#(faces/node)+ Av#(tetrahedra/node)= 2.

Taking into account Eq. (3.2) we have

Av#(edges/node)− 3
2Av#(tets/node)+ Av#(tets/node)= 2

which is equivalent to Eq. (3.3).�

In view of Eq. (3.2), Eq. (3.3) is equivalent to

1
3 lim
n→∞Av#(faces per node)+ 2 = lim

n→∞Av#(edges per node).

This is because Eq. (3.2) is equivalent to

1
2 lim
n→∞Av#(tetrahedra per node)= 1

3 lim
n→∞Av#(faces per node)

and replacing the first term of Eq. (3.3) by1
3 limn→∞Av#(faces per node) gives the result.

Remark 3.4. Since the 3D Freudenthal–Bey partition is equivalent on average to the 8T-LE partition,
then both have the same asymptotic adjacencies. Note that since on average each vertex is shared by 24
tetrahedra, it can be said that these partitions lead toalmost regular triangulations(see[10]) when they
are applied successively over any initial triangulation.

Table 3shows the results for the partitions presented in Section 2.
We shall prove the results for the 3D 4T partition following[11] by basic maneuvers with the generating

functions associated with the corresponding constitutive equations.
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Theorem 3.5. Let� be a(conforming) initial tetrahedral mesh in which the3D 4T partition is recursively
applied. Then the asymptotic average adjacencies are the following:

lim
n→∞Av#(tetrahedra per edge)= 9

2 = lim
n→∞Av#(faces per edge),

lim
n→∞Av#(tetrahedra per node)= 12,

lim
n→∞Av#(faces per node)= 18,

lim
n→∞Av#(edges per node)= 8.

Proof. From Definition 2.4 andFig. 8, it is easy to get the recurrence equations associated with this
partition

Tn = 4 · Tn−1 + T0 · 10(n),

Fn = Fn−1 + 6 · Tn−1 + F0 · 10(n),

En = En−1 + 4 · Tn−1 + E0 · 10(n),

Nn =Nn−1 + Tn−1 +N0 · 10(n)

for n�0, where 10(n) is equal to zero ifn �= 0 and equal to 1 ifn= 0; so in this form, initial conditions
are included in the equations.

To solve the system of equations, we begin by noting that the generating function associated with the
first equation is

T (z)=
∞∑
n=0

Tnz
n =

∞∑
n=1

4Tn−1z
n +

∞∑
n=0

T010(n)z
n

= 4
∞∑
n=0

Tnz
n+1 + T0 = 4zT (z)+ T0

from which we can concludeT (z)= (T0/1 − 4z).
In an analogous way for solving the equation for the faces we observe the following:

F(z)=
∞∑
n=0

Fnz
n =

∞∑
n=1

Fn−1z
n +

∞∑
n=1

6Tn−1z
n +

∞∑
n=0

F010(n)z
n,

(1 − z)F (z)= 6T0z

1 − 4z
+ F0,

F (z)= 6T0z

(1 − 4z)(1 − z) + F0

1 − z .
For the edges we obtain

E(z)=
∞∑
n=0

Enz
n =

∞∑
n=1

En−1z
n +

∞∑
n=1

4Tn−1z
n +

∞∑
n=0

E010(n)z
n,



A. Plaza, M.C. Rivara

(1 − z)E(z)= 4T0z

1 − 4z
+ E0,

E(z)= 4T0z

(1 − 4z)(1 − z) + E0

1 − z .

Finally, for the nodes we get

N(z)=
∞∑
n=0

Nnz
n =

∞∑
n=1

Nn−1z
n +

∞∑
n=1

Tn−1z
n +

∞∑
n=0

N010(n)z
n,

(1 − z)N(z)= T0z

1 − 4z
+N0,

N(z)= T0z

(1 − z)(1 − 4z)
+ N0

1 − z .

Once the generating functions have been obtained from their power series expansions, we obtain the
values for the unknownsTn, Fn,En andNn

Tn = 4nT0,

Fn = F0 + 2(4n − 1)T0,

En = E0 + 4(4n − 1)

3
T0,

Nn =N0 + 4n − 1

3
T0.

Now taking limits in the corresponding quotients given in Lemma 3.1 the asymptotic adjacency relations
are obtained. �

The next theorem establishes explicit formulae for the nonconstant asymptotic adjacencies for any
skeleton-regular tetrahedral partition in 3D. First note that the recurrence equations of any skeleton-
regular tetrahedral partition in 3D are given by an upper triangular matrixA ∈ R4×4, where the entries
of the matrixaij for 0�i�j�4 are the numbers ofi-dimensional topological elements arising in each
previousj -dimensional element. As an example, the recurrence equations of the 3D 4T partition studied
before can be written in matrix form as

un =


Nn
En
Fn
Tn


 =




1 0 0 1
0 1 0 4
0 0 1 6
0 0 0 4


 ·



Nn−1
En−1
Fn−1
Tn−1


 = A · un−1.

Theorem3.6. Let�0bea(conforming) tetrahedralmesh.Foranyskeleton-regularpartition letNn,En, Fn,
andTn be the total number of nodes, edges, triangular faces, and tetrahedra, respectively, after thenth
partition application to�0 of the considered partition. Let A ∈ R4×4 be the upper triangular matrix,



A. Plaza, M.C. Rivara

whose entries are nonnegative integers, defining the recurrence equations of the partition considered,
un = Aun−1



Nn
En
Fn
Tn


 =




1 a b c

0 d e f

0 0 g h

0 0 0 i


 ·



Nn−1
En−1
Fn−1
Tn−1


 . (3.4)

If the partition is not trivial, which means that the coefficientsc, f , h are positive integers andi >1;
then, the asymptotic average of nonconstant adjacency numbers are

lim
n→∞Av#(tetrahedra per edge)= 3h+ 4e

2e + f ,

lim
n→∞Av#(tetrahedra per node)= 4(i − d)(i − 1)

a(2e + f )+ (2b + c)(i − d) .

Proof. From the constitutive equations in matrix form (3.4) we obtain

un = A2 · un−2 = · · · = An · u0 = An · (N0, E0, F0, T0)
T, (3.5)

whereN0, E0, F0, andT0 are the initial values for the number of nodes, edges, faces, and tetrahedra,
respectively. The entries of matrixA verify

• d = #(edges per edge)= a + 1�1, sincea�0,
• g = #(triangles per triangle)= a + 1 + 2e

3 �d, since 3g = 3(a + 1)+ 2e,
• i = #(tetrahedra per tetrahedron)= g + h

2 = a + 1 + 2e
3 + h

2 >g,
• g = 3a + 2b + 1,
• e = 3a + 3b.

The first equation shows the relation between the number of edges per edge(d) and the number of nodes
per edge(a). The second one comes from the counting of the edges in a triangular face once a triangular
face has been divided. If the number of triangles per triangle is “g”, there will be “3g” edges. The same
number is obtained by counting the edges arising by dividing the 3 edges of the original triangle “3d”, and
adding up the edges arising inside the triangle which have to be counted twice, “2e”. So, 3g = 3d + 2e.

The third relation comes from the counting of the faces arising by dividing a single tetrahedron. The
number of faces will be “4i”. The same number is obtained by summing up the number of faces arising
by the partition of the 4 faces of the initial tetrahedron, “4g”; and the number of internal faces counted
twice, “2h”. So, 4i = 4g + 2h.

The last two relations are a consequence of the following property[3, Theorem 9.1]: “Let P be a set
of n points in a triangle, not all collinear, and letk denote the number of points inP on the edges of
the triangle. Then, any triangulation ofP has 2n − 2 − k triangles and 3n − 3 − k edges”. In our case
n=3+3a+b andk=3+3a. Note that relations of the second, fourth and fifth equations are dependent.

We will have in mind these relations in the calculus below.
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Matrix A is diagonalizable, and

A=



1 a b c

0 a + 1 e f

0 0 a + 1 + 2e
3 h

0 0 0 a + 1 + 2e
3 + h

2


 = S ·D · S−1,

D being the diagonal matrix with the diagonal of matrixA and S a nonsingular matrix. Therefore,
An = SDnS−1. Then, by using MAPLE or Mathematica, we get the following value forAn, where, as
usual,O(gn) designates a quantity whose limit asn→ ∞ divided bygn is a constant

An =




1 dn − 1 O(gn) 612ae+6af+8be+6bh+4ce+3ch
24ae+18ah+16e2+24eh+9h2 i

n + O(gn)

0 dn 3
2(g

n − dn) 6 2e+f
4e+3hi

n + O(gn)

0 0 gn 2(in − gn)
0 0 0 in


 . (3.6)

Now, from (3.5) and (3.6) the asymptotic average adjacency relations are

lim
n→∞Av#(tetrahedra per edge)= lim

n→∞
6Tn
En

= lim
n→∞

6 · in · T0

6 2e+f
3h+4e · in · T0

= 3h+ 4e

2e + f = 6(i − d)
2e + f ,

lim
n→∞Av#(tetrahedra per node)

= lim
n→∞

4Tn
Nn

= lim
n→∞

4 · in · T0

6 12ae+6af+8be+6bh+4ce+3ch
24ae+18ah+16e2+24eh+9h2 · in · T0

= 4[6a · 6(i − d)+ (6(i − d))2]
6[6a(2e + f )+ 6(i − d)(2b + c)]

= 4(i − d)(a − d + i)
a(6a + 6b + f )+ (2b + c)(i − d) = 4(i − d)(i − 1)

a(2e + f )+ (2b + c)(i − d) .

Note that in the last equation, relations among the entries of matrixA have been applied.�

This theorem establishes the asymptotic behavior of any skeleton-regular tetrahedral partition. This
result is a generalization to 3D of the behavior of the skeleton-regular partitions in 2D (Theorem 1.13).

4. Concluding remarks

In this paper we have studied the average adjacencies for tetrahedral skeleton-regular partitions. Al-
though in 2D all skeleton-regular triangular partitions verify the same average asymptotic relations, in 3D



A. Plaza, M.C. Rivara

different values are obtained depending on the considered partition. However, some independent relations
between these numbers have been proved here.

The study of the asymptotic behavior of the partitions based on their recurrence equation system could
be a clue in the proof of the non-degeneracy or stability properties of some local refinement algorithms
in 3D and higher dimensions based on these partitions. The study presented here can be applied to other
polyhedral or polygonal partitions of the space, not only simplicial partitions, and can also be generalized
to higher dimensions.
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