Reducing the Space Requirement of LZ-Index*

Diego Arroyuelo ${ }^{1}$, Gonzalo Navarro ${ }^{1}$, and Kunihiko Sadakane ${ }^{2}$
${ }^{1}$ Dept. of Computer Science, Universidad de Chile
\{darroyue, gnavarro\}@dcc.uchile.cl
${ }^{2}$ Dept. of Computer Science and Communication Engineering, Kyushu University, Japan
sada@csce.kyushu-u.ac.jp

Abstract

The LZ-index is a compressed full-text self-index able to represent a text $T_{1 \ldots u}$, over an alphabet of size $\sigma=O(\operatorname{polylog}(u))$ and with k-th order empirical entropy $H_{k}(T)$, using $4 u H_{k}(T)+o(u \log \sigma)$ bits for any $k=o\left(\log _{\sigma} u\right)$. It can report all the occ occurrences of a pattern $P_{1 \ldots m}$ in T in $O\left(m^{3} \log \sigma+(m+o c c) \log u\right)$ worst case time. Its main drawback is the factor 4 in its space complexity, which makes it larger than other state-of-the-art alternatives. In this paper we present two different approaches to reduce the space requirement of LZ-index. In both cases we achieve $(2+\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits of space, for any constant $\epsilon>0$, and we simultaneously improve the search time to $O\left(m^{2} \log m+(m+o c c) \log u\right)$. Both indexes support displaying any subtext of length ℓ in optimal $O\left(\ell / \log _{\sigma} u\right)$ time. In addition, we show how the space can be squeezed to $(1+\epsilon) u H_{k}(T)+o(u \log \sigma)$ to obtain a structure with $O\left(m^{2}\right)$ average search time for $m \geqslant 2 \log _{\sigma} u$.

1 Introduction and Previous Work

Given a sequence of symbols $T_{1 \ldots u}$ (the text) over an alphabet Σ of size σ, and given another (short) sequence $P_{1 \ldots m}$ (the search pattern) over Σ, the full-text search problem consists in finding all the occ occurrences of P in T.

Applications of full-text searching include text databases in general, which typically contain natural language texts, DNA or protein sequences, MIDI pitch sequences, program code, etc. A central goal of modern text databases is to provide fast access to the text using as little space as possible. Yet, these goals are opposed: to provide fast access we must build an index on the text, increasing the space requirement. The main motivation of using little space is to store the indexes of very large texts entirely in main memory. This can compensate for significant CPU time to access them. In recent years there has been much research on compressed text databases, focusing on techniques to represent the text and the index using little space, yet permitting efficient text searching.

A concept related to text compression is the k-th order empirical entropy of a sequence T, denoted $H_{k}(T)$ [9. The value $u H_{k}(T)$ is a lower bound to the

[^0]number of bits needed to compress T using any compressor that encodes each symbol considering only the context of k symbols that precede it in T. It holds $0 \leqslant H_{k}(T) \leqslant H_{k-1}(T) \leqslant \cdots \leqslant H_{0}(T) \leqslant \log \sigma$ (log means $\log _{2}$ in this paper).

The current trend on compressed text databases is compressed full-text selfindexing. A self-index allows searching and retrieving any part of the text without storing the text itself. A compressed index requires space is proportional to the compressed text size. Then a compressed full-text self-index replaces the text with a more space-efficient representation of it, which at the same time provides indexed access to the text. This is an unprecedented breakthrough in text indexing and compression. Some compressed self-indexes are [16, 4, 7, 5.

The LZ-index [14] is another compressed full-text self-index, based on the Ziv-Lempel [18] parsing of the text. If the text is parsed into n phrases by the LZ78 algorithm, then the LZ-index takes $4 n \log n(1+o(1))$ bits of space, which is 4 times the size of the compressed text, i.e. $4 u H_{k}(T)+o(u \log \sigma)$ bits, for any $k=o\left(\log _{\sigma} u\right)$ [8, 4]. The LZ-index answers queries in $O\left(m^{3} \log \sigma+(m+o c c) \log n\right)$ worst case time. The index can also reproduce a context of length ℓ around an occurrence found (and in fact any sequence of phrases) in $O(\ell \log \sigma)$ time, or obtain the whole text in time $O(u \log \sigma)$.

However, in practice the space requirement of LZ-index is relatively large compared with competing schemes: $1.2-1.6$ times the text size versus $0.6-0.7$ and 0.3-0.8 times the text size of CS-Array [16] and FM-index [4, respectively. Yet, the LZ-index is faster to report and to display the context of an occurrence. Fast displaying of text substrings is very important in self-indexes, as the text is not available otherwise.

In this paper we study how to reduce the space requirement of LZ-index, using two different approaches. The first one, a navigational scheme approach, consists in reducing the redundancy among the different data structures that conform the LZ-index. These data structures allow us moving among data representations. In this part we define new data structures allowing the same navigation, yet reducing the original redundancy. In the second approach we combine the balanced parentheses representation of Munro and Raman [13] of the LZ78 trie with the xbw transform of Ferragina et al. [3, whose powerful operations are useful for the LZ-index search algorithm.

Despite these approaches are very different, in both cases we achieve $(2+$ $\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits of space, for any constant $\epsilon>0$, and we simultaneously improve the search time to $O\left(m^{2} \log m+(m+o c c) \log n\right)$ (worst case). In both cases we also present a version requiring $(1+\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits, with average search time $O\left(m^{2}\right)$ if $m \geqslant 2 \log _{\sigma} n$. In all cases, the worst case time to display a context of length ℓ around any occurrence found is optimal $O\left(\ell / \log _{\sigma} u\right)$.

Note that, just as LZ-index, our data structures are the only compressed fulltext self-indexes of size $O\left(u H_{k}(T)\right)$ able of spending $O(\log n)$ time per occurrence reported, if $\sigma=\Theta(\operatorname{polylog}(u))$. Other data structures achieving the same or better complexity for reporting occurrences either are of size $O\left(u H_{0}(T)\right)$ bits [16], or they achieve it for constant-size alphabets [4], or for quite large alphabets $(\log \sigma=\Theta(\log n))$ [7] Theorem 4.1]. The case $\sigma=O(\operatorname{polylog}(u))$, which
represents moderate-size alphabets, is very common in practice and does not fit in the above cases. Our data structures are not competitive against schemes requiring about the same space [7, 5] for counting the number of occurrences of P in T. Yet, in many practical situations, it is necessary to report the occurrence positions as well as displaying their contexts. In this aspect, LZ-index is superior.

2 The LZ-Index Data Structure

Assume that the text $T_{1 \ldots u}$ has been compressed using the LZ78 [18] algorithm into $n+1$ phrases ${ }^{1} T=B_{0} \ldots B_{n}$, such that $B_{0}=\varepsilon$ (the empty string); $\forall k \neq \ell$, $B_{k} \neq B_{\ell}$; and $\forall k \geqslant 1, \exists \ell<k, c \in \Sigma, B_{k}=B_{\ell} \cdot c$. To ensure that B_{n} is not a prefix of another B_{i}, we append to T a special symbol " $\$$ " $\notin \Sigma$, assumed to be smaller than any other symbol. We say that i is the phrase identifier corresponding to $B_{i}, 0 \leqslant i \leqslant n$. The following data structures conform the LZ-index [14:

LZTrie: The trie of all the phrases $B_{0} \ldots B_{n}$. Given the properties of LZ78 compression, this trie has exactly $n+1$ nodes, each corresponding to a string.
RevTrie: The trie of all the reverse strings $B_{0}^{r} \ldots B_{n}^{r}$. In this trie there could be internal nodes not representing any phrase. We call these nodes "empty".
Node: A mapping from phrase identifiers to their node in LZTrie.
Range: A data structure for two-dimensional searching in the space $[0 \ldots n] \times$ $[0 \ldots n]$. We store the points $\left\{\left(\operatorname{revpos}\left(B_{k}^{r}\right), \operatorname{pos}\left(B_{k+1}\right)\right), k \in 0 \ldots n-1\right\}$, where revpos is the lexicographic position in $\left\{B_{0}^{r} \ldots B_{n}^{r}\right\}$ and pos is the lexicographical position in $\left\{B_{0} \ldots B_{n}\right\}$. For each such point, the corresponding k value is stored.

Each of these four structures requires $n \log n(1+o(1))$ bits of space if they are represented succinctly, for example, using the balanced parentheses representation [13] for the tries. For Range, a data structure of Chazelle [2] permits two-dimensional range searching in a grid of n pairs of integers in the range $[0 \ldots n] \times[0 \ldots n]$, answering queries in $O((o c c+1) \log n)$ time, where occ is the number of occurrences reported, and requiring $n \log n(1+o(1))$ bits. As $n \log u=u H_{k}(T)+O(k n \log \sigma) \leqslant u \log \sigma$ for any k [8], the final size of the LZ-index is $4 u H_{k}(T)+o(u \log \sigma)$ bits for $k=o\left(\log _{\sigma} u\right)$. The succinct representation given in the original work [14 implements (among others) the operations parent (x) (which gets the parent of node x) and $\operatorname{child}(x, \alpha)$ (which gets the child of node x with label $\alpha \in \Sigma)$ both in $O(\log \sigma)$ time for LZTrie, and $O(\log \sigma)$ and $O(h \log \sigma)$ time respectively for RevTrie, where h is the depth of node x in RevTrie. The operation ancestor (x, y), which is used to ask if node x is an ancestor of node y, is implemented in $O(1)$ time both in LZTrie and RevTrie. These operations are basically based on rank/select operations on bit vectors. Given a bit vector $\mathcal{B}_{1 \ldots n}$, we define the function $\operatorname{rank}_{0}(\mathcal{B}, i)$ (similarly $\left.\operatorname{rank}_{1}\right)$ as the number of $0 \mathrm{~s}(1 \mathrm{~s})$ occurring up to the i-th position of \mathcal{B}. The function select $_{0}(\mathcal{B}, i)$ (similarly select ${ }_{1}$) is defined as the position of the i-th $0(1)$ in \mathcal{B}.

[^1]These operations can be supported in constant time and requiring $n+o(n)$ bits [11, or $H_{0}(\mathcal{B})+o(n)$ bits [15].

Let us consider now the search algorithm for a pattern $P_{1 \ldots m}$ [14]. We distinguish three types of occurrences of P in T, depending on the phrase layout:

1. The occurrence lies inside a single phrase (there are occ c_{1} occurrences of this type). Given the properties of LZ78, every phrase B_{k} containing P is formed by a shorter phrase B_{ℓ} concatenated to a symbol c. If P does not occur at the end of B_{k}, then B_{ℓ} contains P as well. We want to find the shortest possible phrase B in the LZ78 referencing chain for B_{k} that contains the occurrence of P. This phrase B finishes with the string P, hence it can be easily found by searching for P^{r} in RevTrie in $O\left(m^{2} \log \sigma\right)$ time. Say we arrive at node v. Any node v^{\prime} descending from v in RevTrie (including v itself) corresponds to a phrase terminated with P. Thus we traverse and report all the subtree of the LZTrie node corresponding to each v^{\prime}. Occurrences of type 1 are located in $O\left(m^{2} \log \sigma+o c c_{1}\right)$ time;
2. The occurrence spans two consecutive phrases, B_{k} and B_{k+1}, such that a prefix $P_{1 \ldots i}$ matches a suffix of B_{k} and the suffix $P_{i+1 \ldots m}$ matches a prefix of B_{k+1} (there are occ2 occurrences of this type): P can be split at any position, so we have to try them all. The idea is that, for every possible split, we search for the reverse pattern prefix in RevTrie and for the pattern suffix in LZTrie. Now we have two ranges, one in the space of reversed strings (phrases finishing with the first part of P) and one in that of the normal strings (phrases starting with the second part of P), and need to find the phrase pairs $(k, k+1)$ such that k is in the first range and $k+1$ is in the second range. This is what the range searching data structure is for. Occurrences of type 2 are located in $O\left(m^{3} \log \sigma+\left(m+o c c_{2}\right) \log n\right)$ time; and
3. The occurrence spans three or more phrases, $B_{k} \ldots B_{\ell}$, such that $P_{i \ldots j}=B_{k+1} \ldots B_{\ell-1}, P_{1 \ldots i-1}$ matches a suffix of B_{k} and $P_{j+1 \ldots m}$ matches a prefix of B_{ℓ} (there are $o c c_{3}$ occurrences of this type): For this part, the LZ78 algorithm guarantees that every phrase represents a different string. Hence, there is at most one phrase matching $P_{i \ldots j}$ for each choice of i and j. This fact severely limits the number of occurrences of this class that may exist, occ $c_{3}=O\left(m^{2}\right)$. The idea is to identify maximal concatenations of phrases $P_{i \ldots j}=B_{k} \ldots B_{\ell}$ contained in the pattern, and thus determine whether B_{k-1} finishes with $P_{1 \ldots i-1}$ and $B_{\ell+1}$ starts with $P_{j+1 \ldots m}$. If this is the case we can report an occurrence. We first search for every pattern substring in LZTrie, in $O\left(m^{2} \log \sigma\right)$ time. Then, the $O\left(m^{2}\right)$ maximal concatenations of phrases are obtained in $O\left(m^{2} \log m\right)$ worst case time and $O\left(m^{2}\right)$ time on average. Finally, each of those maximal concatenations is verified in $O(m \log \sigma)$ time using operation parent for B_{k}. Overall, occurrences of type 3 are located in $O\left(m^{3} \log \sigma\right)$ time.

Note that each of the $o c c=o c c_{1}+o c c_{2}+o c c_{3}$ possible occurrences of P lies exactly in one of the three cases above. Overall, the total search time to report the occ occurrences of P in T is $O\left(m^{3} \log \sigma+(m+o c c) \log n\right)$. Finally, we can uncompress and display the text of length ℓ surrounding any occurrence reported
in $O(\ell \log \sigma)$ (as long as this context spans an integral number of phrases) time, and uncompress the whole text T in $O(u \log \sigma)$ time.

3 LZ-Index as a Navigation Scheme

In the practical implementation of LZ-index [14, see Tech.Report], the Range data structure is replaced by RNode, which is a mapping from phrase identifiers to their node in RevTrie. Now occurrences of type 2 are found as follows: For every possible split $P_{1 \ldots i}$ and $P_{i+1 \ldots m}$ of P, assume the search for $P_{1 \ldots i}^{r}$ in RevTrie yields node $v_{r e v}$, and the search for $P_{i+1 \ldots m}$ in LZTrie yields node $v_{l z}$. Then, we check each phrase k in the subtree of $v_{\text {rev }}$ and report it if $N o d e[k+1]$ descends from $v_{l z}$. Each such check takes constant time. Yet, if the subtree of $v_{l z}$ has less elements, we do the opposite: Check phrases from $v_{l z}$ in $v_{r e v}$, using $R N o d e$. Unlike when using Range, now the time to solve occurrences of type 2 is proportional to the smallest subtree size among $v_{r e v}$ and $v_{l z}$, which can be arbitrarily larger than the number of occurrences reported. That is, by using RNode we have no worst-case guarantees at search time. However, the average search time for occurrences of type 2 is $O\left(n / \sigma^{m / 2}\right)$. This is $O(1)$ for long patterns, $m \geqslant 2 \log _{\sigma} n$. The RNode data structure requires $u H_{k}(T)+o(u \log \sigma)$ bits, and so this version of LZ-index also requires $4 u H_{k}(T)+o(u \log \sigma)$ bits, for any $k=o\left(\log _{\sigma} u\right)$.

Both LZTrie and RevTrie use originally the balanced parentheses representation [13], in which every node, represented by a pair of opening and closing parentheses, encloses its subtree. When we replace Range by RNode structure, the result is actually a "navigation" scheme that permits us moving back and forth from trie nodes to the corresponding preorder positions 2^{2}, both in LZTrie and RevTrie. The phrase identifiers are common to both tries and permit moving from one trie to the other.

Figure 1 (left) shows the navigation scheme. Dashed arrows are asymptotically "for free" in terms of memory, since they are followed by applying rank on the corresponding parentheses structure. The other four arrows are in fact the four main components in the space usage of the index: Array of phrase identifiers in LZTrie (ids) and in RevTrie (rids), and array of LZTrie nodes for each phrase (Node) and RevTrie nodes for each phrase (RNode). The structure is symmetric and we can move from any point to any other.

The structure, however, is redundant, in the sense that the number of arrows is not minimal. We start by defining the following reduced scheme for LZ-index:
LZTrie: The Lempel-Ziv trie, implemented with the following data structures: - par $r_{0 \ldots 2 n}$ and lets: The tree shape of LZTrie according to the DFUDS representation [1], which requires $2 n+n\lceil\log \sigma\rceil+o(n)+O(\log \log \sigma)$ bits to support the operations parent (x), child (x, α), subtree size (including the root of the subtree), and node degree, all of them in $O(1)$ time. It also supports the operation

[^2]$\operatorname{child}(x, i)$ in constant time, which gets the i-th child of node x. To get this representation, we perform a preorder traversal on the trie, and for every node reached we write its degree in unary using parentheses (for example, 3 reads '(()' and it is writen '0001'), What we get is almost a balanced parentheses representation (we only need to add a fictitious '(' at the beginning of the sequence). A node of degree d is represented by the position of the first of the $(d+1)$ parentheses corresponding to the node. Given a node in this representation, say at position i, its preorder position can be computed by $\operatorname{rank}_{1}(\operatorname{par}, i)$. Given a preorder position p, the corresponding node is computed by $\operatorname{select}_{1}(p a r, p)+1$. With this representation we can compute all the operations required by LZTrie [14] in $O(1)$ time, including ancestor $(x, y) 3^{3}$. The symbols labeling the arcs of the trie are represented implicitly. We denote by lets (i) the symbol corresponding to the node at position $\operatorname{select}_{0}(p a r, i)+1$ (i.e., the symbol with preorder position i, which is computed in constant time.

- $i d s_{0 \ldots n}$: The array of LZ78 phrase identifiers in preorder. We use the representation of Munro et al. 12 for $i d s$ such that the inverse permutation $i d s^{-1}$ can be computed in $O(1 / \epsilon)$ time, requiring $(1+\epsilon) n \log n$ bits $\sqrt{4}$.
RevTrie: The PATRICIA tree [10] of the reversed LZ78 phrases, which is implemented with the following data structures
- rpar ${ }_{0 \ldots 2 n^{\prime}}$ and rlets: The RevTrie structure represented using DFUDS [1], compressing empty unary paths and thus ensuring $n^{\prime} \leqslant 2 n$ nodes, because empty non-unary nodes still exist. The space requirement is $2 n^{\prime}+n^{\prime}\lceil\log \sigma\rceil+o\left(n^{\prime}\right)+$ $O(\log \log \sigma)$ bits to support the same functionalities as LZTrie. - $B_{0 \ldots n^{\prime}}$: A bit vector supporting rank and select queries, and requiring $n^{\prime}(1+o(1))$ bits [11. The j-th bit of B is 1 iff the node with preorder position j in rpar is not an empty node, otherwise the bit is 0 . Given a position p in rpar corresponding to a RevTrie node, the corresponding bit in B is $B\left[\operatorname{rank}_{1}(\right.$ rpar, $\left.p)\right]$.
- $R_{0 \ldots n}$: A mapping from RevTrie preorder positions to LZTrie preorder positions defined as $R[i]=i d s^{-1}($ rids $[i]) . R$ is implemented using the succinct data structure for permutations of Munro et al. [12], requiring $(1+\epsilon) n \log n$ bits to represent R and compute R^{-1} in $O(1 / \epsilon)$ worst-case time. Given a position i in rpar corresponding to a RevTrie node, the corresponding R value is $R\left[\operatorname{rank}_{1}\left(B \operatorname{rank}_{1}(r p a r, i)\right)\right]$.
- skips ${ }_{0 \ldots n^{\prime}}$: The PATRICIA tree skips of the nodes in preorder, using $\log \log u$ bits per node and inserting empty unary nodes when the skip exceeds $\log u$. In this way, one out of $\log u$ empty unary nodes could be explicitly represented. In the worst case there are $O(u)$ empty unary nodes, of which $O(u / \log u)$ are explicitly represented. This adds $O(u / \log u)$ to n^{\prime}, which translates into $O\left(\frac{u(\log \sigma+\log \log u)}{\log u}\right)=o(u \log \sigma)$ bits overall.

Fig. 1 (right) shows the resulting navigation scheme. The search algorithm remains the same since we can map preorder positions to nodes in the new rep-

[^3]

Fig. 1. The original (left) and the reduced (right) navigation structures over index components
resentation of the tries (and vice versa), and we can simulate $\operatorname{rids}[i]=i d s[R[i]]$, $R N$ ode $[i]=\operatorname{select}_{1}\left(\right.$ rpar, $\left.R^{-1}\left(i d s^{-1}(i)\right)\right)+1$, and Node $[i]=\operatorname{select}_{1}\left(\right.$ par, ids ${ }^{-1}$ (i)) +1 , all of which take constant time.

The space requirement is $(2+\epsilon) n \log n+3 n \log \sigma+2 n \log \log u+8 n+o(u \log \sigma)=$ $(2+\epsilon) n \log n+o(u \log \sigma)$ bits if $\log \sigma=o(\log u)$. As $n \log u=u H_{k}(T)+O(k n \log \sigma)$ for any k [8], the space requirement is $(2+\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits, for any $k=o\left(\log _{\sigma} u\right)$. The child operation on RevTrie can now be computed in $O(1)$ time, versus the $O(h \log \sigma)$ time of the original LZ-index [14]. Hence, the occ occurrences of P can be reported in $O\left(\frac{m^{2}}{\epsilon}+\frac{n}{\epsilon \sigma^{m / 2}}\right)$ average time, for $0<\epsilon<1$.
Reducing Further. To simplify notation, given a LZTrie node with preorder position $R[i]$, suppose that operation $\operatorname{parent}(R[i])$ gives the preorder position of its parent.

Definition 1. We define function φ as $\varphi(i)=R^{-1}(\operatorname{parent}(R[i]))$.
That is, let $a x(a \in \Sigma)$ be the i-th string in RevTrie. Then, $\varphi(i)=j$, where the j-th string in RevTrie is x. Thus φ is a suffix link function in RevTrie. As $x^{R} a$ must be a LZTrie phrase, by the LZ78 parsing it follows that x^{R} is also a LZTrie phrase and thus x is a RevTrie phrase. Hence, every non-empty node in RevTrie has a suffix link.

Let us show how to compute R using only φ. We define array $L_{1 \ldots n}$ such that $L[i]=\operatorname{lets}(R[i])$. As $L[i]$ is the first character of the i-th string in RevTrie, we have that $L[i] \leqslant L[j]$ whenever $i \leqslant j$, and L can be divided into σ runs of equal symbols. Thus L can be represented by an array L^{\prime} of $\sigma \log \sigma$ bits and a bit vector L_{B} of $n+o(n)$ bits, such that $L_{B}[i]=1$ iff $L[i] \neq L[i-1]$, for $i=2 \ldots n$, and $L_{B}[1]=0$ (this position belongs to the text terminator " $\$$ "). For every i such that $L_{B}[i]=1$, we store $L^{\prime}\left[\operatorname{rank}_{1}\left(L_{B}, i\right)\right]=L[i]$. Hence, $L[i]$ can be computed as $L^{\prime}\left[\operatorname{rank}_{1}\left(L_{B}, i\right)\right]$ in $O(1)$ time. To simplify the notation assume that, given a LZTrie position $R[i]$, operation $\operatorname{child}(R[i], \alpha)$ yields the LZTrie preorder position belonging to the child (by symbol α) of the node corresponding to $R[i]$.

Lemma 1. Given $0 \leqslant i \leqslant n$, the value $R[i]$ can be computed by the following recurrence:

$$
R[i]= \begin{cases}\operatorname{child}(R[\varphi(i)], L[i]) & \text { if } i \neq 0 \\ 0 & \text { if } i=0\end{cases}
$$

Proof. $R[0]=0$ holds from the fact that the preorder position corresponding to the empty string, both in LZTrie and RevTrie, is 0 . To prove the other part we note that if x is the parent in LZTrie of node y with preorder position $R[i]$, then the symbol labeling the arc connecting x to y is $L[i]$. That is, $\operatorname{child}(\operatorname{parent}(R[i]), L[i])=R[i]$. The lemma follows from this fact and replacing $\varphi(i)$ by its definition (Def. (1) in the recurrence.

As in the case of function Ψ of Compressed Suffix Arrays [16], we can prove the following lemma for function φ, which is the key to compress R.
Lemma 2. For every $i<j$, if lets $(R[i])=\operatorname{lets}(R[j])$, then $\varphi(i)<\varphi(j)$.
Proof. Let $\operatorname{str}_{r}(i)$ denote the i-th string in the lexicographically sorted set of reversed strings. Note that $\operatorname{str}_{r}(i)<\operatorname{str}_{r}(j)$ iff $i<j$. If $i<j$ and lets $(R[i])=$ $\operatorname{lets}(R[j])$ (i.e., $\operatorname{str}_{r}(i)$ and $\operatorname{str}_{r}(j)$ start with the same symbol, as their reverses end with the same symbol), then $\operatorname{str}_{r}(\varphi(i))<\operatorname{str}_{r}(\varphi(j))$ (as $\operatorname{str}_{r}(\varphi(i))$ is $\operatorname{str}_{r}(i)$ without its first symbol), and thus $\varphi(i)<\varphi(j)$.
Corollary 1. φ can be partitioned into at most σ strictly increasing sequences.
As a result, we replace R by φ, L_{B} and L^{\prime}, and use them to compute a given value $R[i]$. According to Lemma 1, we can represent φ using the idea of Sadakane [16], requiring $n H_{0}$ (lets) $+O(n \log \log \sigma)$ bits and allowing to access $\varphi(i)$ in constant time, and hence we replace the $n \log n$-bit representation of R by the $n H_{0}($ lets $)+$ $O(n \log \log \sigma)+n+O(\sigma \log \sigma)+o(n)$ bits representation of φ, L_{B} and L^{\prime}.

The time to compute $R[i]$ is now $O\left(\left|\operatorname{str}_{r}(i)\right|\right)$, which actually corresponds to traversing LZTrie from the root with the symbols of $\operatorname{str}_{r}(i)$ in reverse order. But we can store ϵn values of R in an array R^{\prime}, plus a bit vector R_{B} of $n+o(n)$ bits indicating which values of R have been stored, ensuring that $R[i]$ can be computed in $O(1 / \epsilon)$ time and requiring $\epsilon n \log n$ extra bits. To determine the R values to be explicitly stored, for each LZTrie leaf we traverse the upward path to the root, marking one out of $O(1 / \epsilon)$ nodes, and stopping the procedure for the current leaf when we reach the root or when we reach an already marked node. If the node to mark is at preorder position j, then we set $R_{B}\left[R^{-1}(j)\right]=1$. After we mark the positions of R to be stored, we scan R_{B} sequentially from left to right, and for every i such that $R_{B}[i]=1$, we set $R^{\prime}\left[\operatorname{rank}_{1}\left(R_{B}, i\right)\right]=R[i]$. Then, we free R since $R[i]$ can be computed by:

$$
R[i]= \begin{cases}\operatorname{child}\left(R[\varphi(i)], L^{\prime}\left[\operatorname{rank}_{1}\left(L_{B}, i\right)\right]\right) & \text { if } R_{B}[i]=0 \\ R^{\prime}\left[\operatorname{rank}_{1}\left(R_{B}, i\right)\right] & \text { if } R_{B}[i]=1\end{cases}
$$

Note that the same structure used to compute R^{-1} before freeing R can be used under this scheme, with $\operatorname{cost} O\left(1 / \epsilon^{2}\right)$ (recall footnote 6).
Theorem 1. There exists a compressed full-text self-index requiring $(1+\epsilon)$ $u H_{k}(T)+o(u \log \sigma)$ bits of space, for $\sigma=O(\operatorname{polylog}(u))$, any $k=o\left(\log _{\sigma} u\right)$ and any constant $0<\epsilon<1$, and able to report the occ occurrences of a pattern $P_{1 \ldots m}$ in a text $T_{1 \ldots u}$ in $O\left(\frac{m^{2}}{\epsilon^{2}}+\frac{n}{\epsilon^{2} \sigma^{m / 2}}\right)$ average time, which is $O\left(m^{2}\right)$ if $m \geqslant 2 \log _{\sigma} n$. It can also display a text substring of length ℓ in $O\left(\ell\left(1+\frac{1}{\epsilon \log _{\sigma} \ell}\right)\right)$ worst-case time.

The bound $O\left(\ell\left(1+\frac{1}{\epsilon \log _{\sigma} \ell}\right)\right.$ in the displaying time holds from the fact that we perform ℓ parent operations, and we must pay $O(1 / \epsilon)$ to use $i d s^{-1}$ each time we pass to display the next (previous) phrase, which in the (very) worst case is done $O\left(\ell / \log _{\sigma} \ell\right)$ times. We still assume that these ℓ symbols form whole phrases.

We can get worst case guarantees in the search process by adding Range, the two-dimensional range search data structure defined in Section 2. Occurrences of type 2 can now be solved in $O\left(m^{2}+(m+o c c) \log n\right)$ time.

Theorem 2. There exists a compressed full-text self-index requiring $(2+\epsilon)$ $u H_{k}(T)+o(u \log \sigma)$ bits of space, for $\sigma=O(\operatorname{polylog}(u))$, any $k=o\left(\log _{\sigma} u\right)$ and any constant $0<\epsilon<1$, and able to report the occ occurrences of a pattern $P_{1 \ldots m}$ in a text $T_{1 \ldots u}$ in $O\left(m^{2}\left(\log m+\frac{1}{\epsilon^{2}}\right)+(m+o c c) \log n+\frac{o c c}{\epsilon}\right)=$ $O\left(m^{2} \log m+(m+o c c) \log n\right)$ worst-case time. It can also display a text substring of length ℓ in $O\left(\ell\left(1+\frac{1}{\epsilon \log _{\sigma} \ell}\right)\right)$ worst-case time.

4 Using the $x b w$ Transform to Represent LZTrie

A different idea to reduce the space requirement of LZ-index is to use the $x b w$ transform of Ferragina et al. 3 to represent the LZTrie. This succinct representation supports the operations parent $(x), \operatorname{child}(x, i)$, and $\operatorname{child}(x, \alpha)$, all of them in $O(1)$ time and using $2 n \log \sigma+O(n)$ bits of space. The representation also allows subpath queries, a very powerful operation which, given a string s, returns all the nodes x such that s is a suffix of the string represented by x. We represent LZ-index with the following data structures:

Balanced parentheses LZTrie: The trie of the Lempel-Ziv phrases, storing

- par : The balanced parentheses representation [13] of LZTrie. In order to index the LZTrie leaves with $x b w$, we have to add a dummy child to each. In this way, the trie has $n^{\prime} \leqslant 2 n$ nodes. The space requirement is $4 n+o(n)$ bits in the worst case if we use the Munro and Raman representation [13]. We use the bit 0 to represent ' (' and 1 to represent ')'. In this way, the preorder position of a node is computed by a $\operatorname{rank} k_{0}$ query, and the node corresponding to a preorder position by a select ${ }_{0}$ query, both in $O(1)$ time.
- ids : The array of LZ78 phrase identifiers in preorder, represented by the data structure of Munro et al. [12], such that we can compute the inverse permutation $i d s^{-1}$ in $O(1 / \epsilon)$ time, requiring $(1+\epsilon) n \log n$ bits.
$\boldsymbol{x b w}$ LZTrie: The $x b w$ representation [3] of the LZTrie, where the nodes are lexicographically sorted according to their upward paths in the trie. We store
- S_{α} : The array of symbols labeling the arcs of the trie. In the worst case LZTrie has $2 n$ nodes (because of the dummy leaves we add), and then this array requires $2 n \log \sigma$ bits.
- $S_{\text {last }}:$ A bit array such that $S_{\text {last }}[i]=1$ iff the corresponding node in LZTrie is the last child of its parent. The space requirement is $2 n(1+o(1))$ bits.
Pos: A mapping from $x b w$ positions to the corresponding preorder positions. In the worst case there are $2 n$ such positions, and so the space requirement is
$2 n \log (2 n)$ bits. We can reduce this space to $\epsilon n \log (2 n)$ bits by storing in an array Pos' one out of $O(1 / \epsilon)$ values of Pos, such that Pos $[i]$ can be computed in $O(1 / \epsilon)$ time. We need a bit vector Pos_{B} of $2 n(1+o(1))$ bits indicating which values of Pos have been stored. Assume we need compute Pos Pi, for a given $x b w$ position i. If $\operatorname{Pos}_{B}[i]=1$, then such value is stored at $\operatorname{Pos}^{\prime}\left[\operatorname{rank}_{1}\left(\operatorname{Pos}_{B}, i\right)\right]$. Otherwise, we simulate a preorder traversal in $x b w$ from node at $x b w$ position i, until $\operatorname{Pos}_{B}[j]=1$, for a $x b w$ position j. Once this j is found, we map to the preorder position $j^{\prime}=\operatorname{Pos}^{\prime}\left[\operatorname{rank}_{1}\left(\operatorname{Pos}_{B}, j\right)\right]$. If d is the number of steps in preorder traversal from $x b w$ position i to $x b w$ position j, then $j^{\prime}-d$ is the preorder position corresponding to the node at $x b w$ position i. We also need to compute Pos^{-1}, which can be done in $O\left(1 / \epsilon^{2}\right)$ time under this scheme, requiring $\epsilon n \log (2 n)$ extra bits if we use the representation of [12].
Range: A range search data structure in which we store the point k (belonging to phrase identifier k) at coordinate (x, y), where x is the $x b w$ position of phrase k and y is the preorder position of phrase $k+1$. We use the data structure of Chazelle [2] requiring $n \log n(1+o(1))$ bits, as for the original LZ-index.

The total space requirement is $(2+\epsilon) n \log n(1+o(1))+2 n \log \sigma+(8+\epsilon) n+o(n)$ bits, which is $(2+\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits if $\log \sigma=o(\log u)$ and $k=o\left(\log _{\sigma} u\right)$.

We depict now the search algorithm for pattern P. For occurrences of type 1, we perform a subpath query for P to obtain the interval $\left[x_{1}, x_{2}\right]$ in the $x b w$ of LZTrie corresponding to all the nodes whose phrase ends with P. For each position $i \in\left[x_{1}, x_{2}\right]$, we can get the corresponding node in the parentheses representation using $\operatorname{select}_{0}(\operatorname{par}, \operatorname{Pos}[i])$, and then we traverse the subtrees of these nodes and report all the identifiers found, as done with the usual LZ-index.

To solve occurrences of type 2 , for every possible partition $P_{1 \ldots i}$ and $P_{i+1 \ldots m}$ of P, we traverse the $x b w$ from the root, using operation $\operatorname{child}(x, \alpha)$ with the symbols of $P_{i+1 \ldots m}$. Once this is found, say at $x b w$ position i, we switch to the preorder tree (parentheses) using select $t_{0}(p a r, \operatorname{Pos}[i])$, to get the node $v_{l z}$ whose subtree has the preorder interval $\left[y_{1}, y_{2}\right]$ of all the nodes that start with $P_{i+1 \ldots m}$. Next we perform a subpath query for $P_{1 \ldots i}$ in $x b w$, and get the $x b w$ interval $\left[x_{1}, x_{2}\right.$] of all the nodes that finish with $P_{1 \ldots i}$ (we have to replace $x_{r} \leftarrow$ $\operatorname{rank}_{1}\left(S_{\text {last }}, x_{r}\right)$ to avoid counting the same node multiple times, see [3]). Then, we search structure Range for $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ to get all phrase identifiers k such that phrase k finishes with $P_{1 \ldots i}$ and phrase $k+1$ starts with $P_{i+1 \ldots m}$.

For occurrences of type 3 , one could do mostly as with the original LZTrie (navigating the $x b w$ instead), so as to find all the nodes equal to substrings of P in $O\left(m^{2}\right)$ time. Then, for each maximal concatenation of phrases $P_{i \ldots j}=$ $B_{k+1} \ldots B_{\ell-1}$ we must check that phrase B_{ℓ} starts with $P_{j+1 \ldots m}$ and that phrase B_{k} finishes with $P_{1 \ldots i-1}$. The first check can be done in constant time using $i d s^{-1}$. As we have searched for all substrings of P in the trie, we know the preorder interval of descendants of $P_{j+1 \ldots m}$, thus we check whether the node at preorder position $i d s^{-1}(\ell)$ belongs to that interval. The second check can also be done in constant time, by determining whether k is in the $x b w$ interval of $P_{1 \ldots i-1}$ (that is, B_{k} finishes with $\left.P_{1 \ldots i-1}\right)$. The $x b w$ position is $\operatorname{Pos}^{-1}\left(i d s^{-1}(k)\right)$.

To display the text around an occurrence, we use $i d s^{-1}$ to find the preorder position of the corresponding phrase, and then we use parent on the parentheses to find the symbols in the upward path. To know the symbol, we have to use Pos ${ }^{-1}$ to go to the $x b w$ position and read S_{α}.

For the search time, occurrences of type 1 cost $O(m+o c c / \epsilon)$, type 2 cost $O\left(m^{2}+m / \epsilon+m(o c c+\log n)\right)$, and type $3 \operatorname{cost} O\left(m^{2}\left(\log m+\frac{1}{\epsilon^{2}}\right)\right)$. Thus, we have achieved Theorem 2 again with radically different means. The displaying time is $O\left(\ell / \epsilon^{2}\right)$, but it can also become $O\left(\ell\left(1+\frac{1}{\epsilon \log _{\sigma} \ell}\right)\right)$ if we store the array of symbols in the balanced parentheses LZTrie, which adds $o(u \log \sigma)$ bits of space. We can get a version requiring $(1+\epsilon) u H_{k}(T)+o(u \log \sigma)$ bits and $O\left(m^{2}\right)$ average reporting time if $m \geqslant 2 \log _{\sigma} n$ (as in Theorem(1) if we solve occurrences of type 2 similarly as we handled occurrences of type 3, and dropping Range.

5 Displaying Text Substrings

LZ-index is able to report occurrences in the format (k, offset), where k is the phrase in which the occurrence starts and offset is the distance between the beginning of the occurrence and the end of the phrase. However, we can report occurrences as text positions by adding a bit vector $V_{1 \ldots u}$ that marks the n phrase beginnings. Then $\operatorname{rank}_{1}(V, i)$ is the phrase number i belongs to, and select $_{1}(V, j)$ is the text position of the j-th phrase. Such V can be represented with $H_{0}(V)+o(u) \leqslant n \log (u / n)+o(u) \leqslant n \log \log u+o(u)=o(u \log \sigma)$ bits [15]. We can also add, to both proposed indexes, an operation for displaying a subtext $T_{i \ldots i+\ell-1}$ for any given position i, in optimal $O\left(\ell / \log _{\sigma} u\right)$ time.

A compressed data structure [17] to display any text substring of length $\Theta\left(\log _{\sigma} u\right)$ in constant time, turns out to have similarities with LZ-index. We take advantage of this similarity to plug it within our index, with some modifications, and obtain improved time to display text substrings. They proposed auxiliary data structures of $o(u \log \sigma)$ bits to LZTrie to support this operation efficiently. Given a position i of the text, we first find the phrase including the position i by using $\operatorname{rank}_{1}(V, i)$, then find the node of LZTrie that corresponds to the phrase using $i d s^{-1}$. Then displaying a phrase is equivalent to outputting the path going from the node to the root of LZTrie. The auxiliary data structure, of size $O(n \log \sigma)=o(u \log \sigma)$ bits, permits outputting the path by chunks of $\Theta\left(\log _{\sigma} u\right)$ symbols in $O(1)$ time per chunk. In addition, we can now display not only whole phrases, but any text substring within this complexity. The reason is that any prefix of a phrase is also a phrase, and it can be found in constant time by using a level-ancestor query [6] on the LZTrie.

We modify this method to plug into our indexes. In their original method [17], if more than one consecutive phrases have length less than $\left(\log _{\sigma} u\right) / 2$ each, their phrase identifiers are not stored. Instead the substring of the text including those phrases are stored without compression. This guarantees efficient displaying operation without increasing the space requirement. However this will cause the problem that we cannot find patterns including those phrases. Therefore in our modification we store both the phrases themselves and their phrase identifiers. The search algorithm remains as before. To decode short phrases we can
just output the explicitly stored substring including the phrases. For each phrase with length at most $\left(\log _{\sigma} u\right) / 2$, we store a substring of length $\log u$ containing the phrase. Because there are at most $O(\sqrt{u})$ such phrases, we can store the substrings in $O(\sqrt{u} \log u)=o(u)$ bits. These auxiliary structures work as long as we can convert a phrase identifier into a preorder position in LZtrie in constant time. Hence they can be applied to all the data structures in Sections 3 and 4 .

Theorem 3. The indexes of Theorem 1 and Theorem 2 (and those of Section 4) can be adapted to display a text substring of length ℓ surrounding any text position in optimal $O\left(\frac{\ell}{\log _{\sigma} u}\right)$ worst case-time.

References

1. D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S.S. Rao. Representing trees of higher degree. Algorithmica, 43(4):275-292, 2005.
2. B. Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM J. on Computing, 17(3):427-462, 1988.
3. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for optimal succinctness, and beyond. Proc. FOCS, pp. 184-196, 2005.
4. P. Ferragina and G. Manzini. Indexing compressed texts. J. of the ACM 54(4):552-581, 2005.
5. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly FM-index. Proc. SPIRE, LNCS 3246, pp. 150-160, 2004. Extended version to appear in $A C M$ TALG.
6. R. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. Proc. $S O D A$, pp. 1-10, 2004.
7. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. Proc. SODA, pp. 841-850, 2003.
8. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv algorithms. SIAM J. on Computing, 29(3):893-911, 1999.
9. G. Manzini. An analysis of the Burrows-Wheeler transform. J. of the ACM 48(3):407-430, 2001.
10. D. R. Morrison. Patricia - practical algorithm to retrieve information coded in alphanumeric. J. of the ACM 15(4):514-534, 1968.
11. I. Munro. Tables. Proc. FSTTCS, LNCS 1180, pp. 37-42, 1996.
12. I. Munro, R. Raman, V. Raman, and S.S. Rao. Succinct representations of permutations. Proc. ICALP, LNCS 2719, pp. 345-356, 2003.
13. J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees. SIAM J. on Computing, 31(3):762-776, 2001.
14. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms (JDA), 2(1):87-114, 2004. See also TR/DCC-2003-0, Dept. of CS, U. Chile. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/jlzindex.ps.gz.
15. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. Proc. SODA, pp. 233-242, 2002.
16. K. Sadakane. New Text Indexing Functionalities of the Compressed Suffix Arrays. J. of Algorithms, 48(2):294-313, 2003.
17. K. Sadakane and R. Grossi. Squeezing Succinct Data Structures into Entropy Bounds. Proc. SODA, pp. 1230-1239, 2006.
18. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans. Information Theory, 24(5):530-536, 1978.

[^0]: * Supported in part by CONICYT PhD Fellowship Program (first author) and Fondecyt Grant 1-050493 (second author) and the Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japan (third author).

[^1]: ${ }^{1}$ According to [18], $\sqrt{u} \leqslant n \leqslant \frac{u}{\log _{\sigma} u}$; thus, $n \log u \leqslant u \log \sigma$ always holds.

[^2]: ${ }^{2}$ In the representation 13, the preorder position of a node is the number of opening parentheses before the one representing the node. This is rank ${ }_{0}$ at the node position in the bit sequence representing the parentheses, if bit 1 represents ')'.

[^3]: ${ }^{3}$ As ancestor $(x, y) \equiv \operatorname{rank}_{1}($ par,$x) \leqslant \operatorname{rank}_{1}($ par, $y) \leqslant \operatorname{rank}_{1}($ par,$x)+$ subtreesize $($ par,$x)-1$.
 ${ }^{4}$ This data structure ensures that one finds the inverse after following the permutation $O(1 / \epsilon)$ times.

