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Abstract In this paper we present penalty and barrier methods for solving general
convex semidefinite programming problems. More precisely, the constraint set is
described by a convex operator that takes its values in the cone of negative semi-
definite symmetric matrices. This class of methods is an extension of penalty and
barrier methods for convex optimization to this setting. We provide implementable
stopping rules and prove the convergence of the primal and dual paths obtained
by these methods under minimal assumptions. The two parameters approach for
penalty methods is also extended. As for usual convex programming, we prove
that after a finite number of steps all iterates will be feasible.
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1 Introduction

Let Sm be the space of symmetric real m × m matrices endowed with the inner
product A · B = trace(AB) denoting the trace of the matrix product AB, and let Sm+
be the cone of positive semidefinite symmetric matrices. Related to Sm+ we define
the partial ordering � via

A � B ⇔ B � A ⇔ A − B ∈ Sm+ , ∀A, B ∈ Sm .
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We denote A � 0 or 0 ≺ A if A ∈ Sm++, the cone of positive definite symmetric
m × m matrices.

Similar relations can be established for Sm− and Sm−−, the cones of negative
semidefinite and definite symmetric m × m matrices, respectively.

Throughout the general development, we denote by IRn an arbitrary finite real-
dimensional space, and by 〈·, ·〉 an arbitrary inner product on IRn .

This paper is focused on convex optimization with constraint sets described
mainly by � convex maps, which are defined as follows: let X be a convex set in
IRn , a map G : X → Sm is said to be � convex if

G(λx + (1 − λ)y) � λG(x)+ (1 − λ)G(y), ∀x, y ∈ X, ∀λ ∈ [0, 1].
Simple examples of � convex maps that show the interest of this notion are affine
maps as G(x) = B + ∑n

j=1 x j A j with B, A j ∈ Sm , or functions of the form

G(x) = B +∑p
j=1 g j (x)A j where the g j (·)’s are convex functions while the A j ’s

are positive semidefinite matrices. Similarly, matrix convex functions, for instance
x2 : Sm → Sm and − log x : Sm++ → Sm++, are � convex maps defined on a matrix
space. Other examples, properties and applications of such maps can be found in
the books of Bhatia (1997, chapter 5), Bonnans and Shapiro (2000, chapter 5), and
Ben-Tal and Nemirowskii (2002, chapter 4).

Throughout this paper, we suppose that G is a � convex map, continuously
differentiable (C1) on IRn , and fi : IRn → IR ∪ {+∞}, i = 0, 1, . . . , p, are
convex, lower semicontinuous(lsc) functions. Thus, we define

D = {x ∈ IRn : fi (x) ≤ 0, ∀i = 1, . . . , p},
E = {x ∈ IRn : G(x) � 0}, C = D ∩ E,

and consider the optimization problem

(P) v = inf{ f0(x) | x ∈ C}.
The aim of this paper is to propose penalty and barrier methods for solving
(P). Methods of this kind have been widely developed in nonlinear optimization
(i.e. C = D). In this context, Auslender et al. (1997) have proposed a unified
framework containing most of the methods given in the literature. The article
(Auslender et al. 1997) also provides a systematic way to generate penalty and
barrier methods.

In the case when C = D ∩ E and G is an affine map into Sm , Auslender (1999)
proposed a general framework for solving (P). Roughly speaking, a systematic
way for building penalty and barrier functions φr with parameter r > 0 going ulti-
mately to 0 was presented. These functions are defined in order to solve a family
of unconstrained minimization problems of the form

(Pr ) vr = inf{ f0(x)+ φr (x) | x ∈ IRn}.
In the work by Auslender (1999), the existence of optimal solutions xr of (Pr ) is

guaranteed by supposing Slater’s condition and the usual hypothesis that the opti-
mal set S of (P) is nonempty and compact. Then, it was proven that the generalized
sequence {xr }r > 0 is bounded with all its limit points in S.
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In the first part of this paper our objective is to improve the results established
in Auslender (1999) in three directions. Firstly, we give an implementable stop-
ping rule that ensures the obtainment of xr in a finite number of steps by any
usual unconstrained descent method. This avoids the exact minimization used in
Auslender (1999) to obtain xr .

Secondly, here G is no longer affine but � convex. Hence, the convergence
analysis is now much more complicated than in the affine case. Indeed, the com-
putation of the recession function of φr by a useful formula is actually no longer
available when G is � convex, contrary to the case when G is affine. Unfortunately,
the recession functional analysis is a key element in our approach. The only known
result when G is � convex appears in Graña Drummond and Peterzil (2002), where
they use the classical log-barrier function in semidefinite programming (SDP)
composed with G(x) instead of a more general penalty or barrier function φr (x).
In the work of Graña Drummond and Peterzil (2002), convergence properties are
obtained under a restrictive assumption (cf. Graña Drummond and Peterzil 2002,
Assumption A2). Here, the convergence is proven for general penalty and barrier
functions assuming the two usual hypotheses in constrained convex programming,
that is, the optimal set of (P) is nonempty and compact, and Slater’s condition
holds.

A third direction is the improvement of the duality results given in Auslender
(1999) and Auslender et al. (1997), where the exact solution of the Fenchel dual
problem of (Prk ) is supposed to be computed ({rk} is a sequence of positive real
numbers going to 0). Obviously this is a theoretical result. Here we associate with
xrk a multiplier Yk given by an explicit formula. Then we prove that the sequence
{Yk} is bounded and that each limit point of this sequence is an optimal solution of
the usual Lagrangian dual of (P).

Penalty and barrier methods introduced in section 3 are based on a smoothing
procedure and depend on a single parameter. This smoothing procedure involves
two possible classes of penalty functions. The first class deals with the indicator
function of IRp

− × Sm− , while the second class concerns an exact penalty function.
However, when C = D, i.e. when we only consider the classical convex con-
strained programming problem, a second approach can be used. This approach
is only applied to functions of the second class mentioned above and its basic
idea consists of distinguishing two parameters: the “smoothness parameter” r and
the penalty weight β. This two-parameter approach has been firstly developed by
Xavier (1992) for a specific hyperbolic function and has been also the base of a
recent work of Gonzaga and Castillo (2003). Indeed, Gonzaga and Castillo (2003)
introduce a method that uses a smooth approximation θ(·) of the exact penalty
function t → max{0, t} and two parameters, r and β, so that the penalized func-
tion ψr,β(x) := f0(x)+ βr

∑m
i=1 θ ( fi (x)/r) is minimized at each iteration. The

parameters play different roles: r always decreases in order to improve the precision
of the approximation, and β increases to penalize an infeasible iteration. Thus, the
aim of the second part of this article is to extend this approach to more general
feasible sets C . Particularly, we consider C = D ∩ E instead of C = D, that is,
a feasible set that involves semidefinite constraints. Nevertheless, our results are
an improvement of those in Gonzaga and Castillo (2003) even in the nonlinear
programming case where C = D. Indeed firstly, we only work in the convex case
which allows us to give an implementable stopping rule [this is not the case in
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Gonzaga and Castillo (2003)]. Secondly, we do not suppose neither the assump-
tion named “Hypothesis” in Gonzaga and Castillo (2003) nor the compactness of
the feasible set. Finally, we associate with the primal sequence a dual sequence of
multipliers given by an explicit formula. Hence we prove that this dual sequence is
bounded with each limit point being an optimal solution of the usual Lagrangian
dual of (P). Such a result is not given in the work by Gonzaga and Castillo (2003).

The outline of this paper is as follows. In the next section we recall mate-
rial concerning recession functions, convex analysis in SDP and matrix properties
which will be needed in the sequel. In section 3 we present the penalty and barrier
methods, including the convergence analysis concerning the primal path. Section
4 deals primarily with the dual path. Finally in section 5 we consider the penalty
approach with two parameters.

2 Preliminaries

2.1 Asymptotic cones and functions

We recall some basic notions about asymptotic cones and functions [see for more
details the books of Auslender and Teboulle (2003) and of Rockafellar (1970)].

The asymptotic cone of a set Q ⊆ IRn is defined to be

Q∞ =
{

y : ∃tk → +∞, xk ∈ Q with y = lim
k→∞

xk

tk

}

. (2.1)

When Q is convex and closed, it coincides with its recession cone

0+(Q) := {y : x + λy ∈ Q ∀λ > 0, ∀x ∈ Q}. (2.2)

Let f : IRn → IR ∪ {+∞} be lower-semicontinuous (lsc) and proper (i.e., ∃x ∈
dom f := {x : f (x) < +∞}). We recall that the asymptotic function f∞ of f is
defined by the relation

epi f∞ = (epi f )∞,
where epi f:= {(x, r) : f (x) ≤ r}. As a straightforward consequence, we get (cf.
Auslender and Teboulle 2003, Theorem 2.5.1)

f∞(y) = inf

{

lim inf
k→+∞

f (xktk)

tk
: tk → +∞, xk → y

}

(2.3)

where the sequences {tk} and {xk} belong to IR and IRn , respectively.

Remark 2.1 This formula is fundamental in the convergence analysis of unbounded
sequences and is often used in the following way: let {xk}be an unbounded sequence
satisfying

lim
k→∞ ‖xk‖ = +∞, lim

k→∞
xk

‖xk‖ = d �= 0.

Suppose that f∞(d) > −∞, and let α ∈ IR so that f∞(d) > α. Then it follows
from (2.3) that for all k sufficiently large we have

f (xk) = f

(
xk

‖xk‖‖xk‖
)

≥ α‖xk‖.
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Note also that f∞ is positively homogeneous, that is

f∞(λd) = λ f∞(d) ∀d, ∀λ > 0. (2.4)

When f is a convex, lsc, proper function its asymptotic function coincides with its
recession function

0+ f (y) = lim
λ→+∞

f (x + λy)− f (x)

λ
, ∀x ∈ dom f, (2.5)

deducing immediately that

f∞(y) = lim
t→+∞

f (t y)

t
, ∀y ∈ dom f. (2.6)

Furthermore, if ∂ f (x) denotes the (convex) subdifferential of f at x , we also have

f∞(y) = sup {〈c, y〉 | c ∈ ∂ f (x), x ∈ dom ∂ f } . (2.7)

Now consider the lsc functions f, g : IRn → IR ∪ {+∞} satisfying f∞(d) > −∞
and g∞(d) > −∞. Then

( f + g)∞(d) ≥ f∞(d)+ g∞(d), (2.8)

with equality in the convex case. Recall that f∞(d) > −∞ always holds when f
is convex, lsc and proper.

When f is convex, a useful consequence of (2.2) and (2.5) is the following

{x : f (x) ≤ λ}∞ = {d : f∞(d) ≤ 0}, (2.9)

for any λ such that {x : f (x) ≤ λ} is nonempty.
The following proposition is crucial in the convergence analysis. The reader

can see a proof in Auslender and Teboulle (2003, chapter 3).

Proposition 2.1 Let C be a closed convex set in IRn and let f : IRn → IR ∪ {+∞}
be a convex, lsc, proper function such that dom f ∩ C is nonempty. Consider the
optimization problem

(P) α = inf{ f (x) | x ∈ C},
and let S be the optimal set of (P). Then a necessary and sufficient condition for S
to be nonempty and compact is given by

f∞(d) > 0 ∀d ∈ C∞, d �= 0,

or equivalently

lim||x ||→∞, x∈C
f (x) = +∞.

In this case (P) is said to be coercive.
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In our analysis, the asymptotic function of a composite function is of a particular
interest. More precisely, we will consider the composition between a penalty or
barrier function θ and the � convex function G(·).

Let us consider the following class of functions F introduced by
Auslender et al. (1997)

F =
{

θ : IR → IR ∪ {+∞}, lsc, convex, proper and non-decreasing with

θ∞(1)>0, lim
t→η− θ(t)=+∞, and dom θ=]−∞, η[ where η∈[0,+∞]

}

.

In the remainder of this paper, we consider two subclasses of F , namely F1 and
F2 [cf. Auslender et al. (1997) and Chen and Mangasarian (1996), respectively]
defined by

F1 = {θ ∈ F : θ is C1 on dom θ, θ∞(1) = +∞, θ∞(−1) = 0},
F2 =

{

θ ∈ F : dom θ = IR, θ is C1, θ∞(1) = 1, lim
t→−∞ θ(t) = 0

}

.

For example, the functions

θ1(u) = exp(u), dom θ = IR → exponential penalty (Cominetti
and Dussault 1994),

θ2(u) = − log(1 − u), dom θ =] − ∞, 1[, → modified log barrier
(Polyak 1992),

θ3(u) = u
1−u , dom θ =] − ∞, 1[, → hyperbolic modified barrier

(Ben-Tal and
Zibulevsky 1997),

θ4(u) = − log(−u), dom θ =] − ∞, 0[, → log barrier (Frisch 1995),
θ5(u) = −u−1, dom θ =] − ∞, 0[ → inverse barrier method

(Den Hertzog et al. 1991),

belong to the class F1, while the functions

θ6(u) = log(1 + exp(u)), θ7(u) = 2−1(u +
√

u2 + 4)

belong to F2. Furthermore, systematic ways to generate classes of functions θ
belonging either to F1 or to F2 are described in Auslender et al. (1997) and Chen
and Mangasarian (1996).

The following result was proven in Auslender et al. (1997).

Proposition 2.2 Let θ ∈ F, f be a convex, lsc, proper function with dom θ ∩
f (IRn) �= ∅ and consider the composite function

g(x) = θ( f (x)) if x ∈ dom f, +∞ otherwise.

Then the function g is a convex, lsc, proper function and we have

g∞(d) = θ∞( f∞(d)) if d ∈ dom f∞, +∞ otherwise.
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2.2 Convex analysis over the cone of symmetric semidefinite positive matrices

Let Sm be equipped with the inner product A · B := trace(AB) where trace(A)
denotes the trace of the matrix A. Let A ∈ Sm with the eigenvalue decomposition
A = Q	Qt . Thus Q is an orthogonal matrix whose columns qi , i = 1, . . . ,m, are
the orthonormalized eigenvectors of A, and 	 is a diagonal matrix whose entries
λi (A), i = 1, . . . ,m, are the eigenvalues of A in nonincreasing order.

Let ci (A) := qi q t
i . The spectral decomposition of A can be written as

A =
m∑

i=1

λi (A)ci (A).

Now, let g : IR → IR ∪ {+∞}. For any A∈ Sm such that λi (A)∈dom g for each i ,
we set

g◦(A) :=
m∑

i=1

g(λi (A))ci (A), (2.10)

the usual matrix function associated with g. We are particularly interested here in
the function 
g: Sm → IR ∪ {+∞} defined by


g(A) =
m∑

i=1

g(λi (A)) if λi (A) ∈ dom g for each i, +∞ otherwise,

(2.11)

or equivalently


g(A) = trace(g◦(A)) if λi (A) ∈ dom g for each i, +∞ otherwise.

The function 
g is a spectrally defined function and the following properties
hold (see e.g., Auslender 2003, Proposition 2.2)

Proposition 2.3 Suppose that g ∈ F. Then

(i) 
g is a proper, lsc, convex function.
(ii) dom
g is open.

(iii) If g is C1 on dom g, then 
g is C1 on dom
g with ∇
g(A) = (g′)◦(A),
for all A ∈ dom
g.

(iv) (
g)∞(D) = 
g∞(D), for all D.
(v) For g ∈ F, 
g is isotone, i.e., A � B ⇒ 
g(A) ≥ 
g(B).

(vi) For all D ∈ Sm it holds that

(
θ )∞(D) = δSm− (D), if θ ∈ F1, (2.12)

= 
a+(D), if θ ∈ F2, (2.13)

where δSm− is the indicator function of Sm− = −Sm+ and where a+ = max(0, a) with
a ∈ IR.
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Consider the functions θ ∈ F given in section 2.1 and set L := 
θ . For θ ∈ F1,
we have the following examples from the work of Auslender (1999):

L1(D) = trace(exp D),

L2(D) =
{

− log(det(I − D)) if D ≺ I,
+∞ otherwise,

L3(D) =
{

trace((I − D)−1 D) if D ≺ I,
+∞ otherwise,

L4(D) =
{

− log(det(−D)) if D ≺ 0,
+∞ otherwise,

L5(D) =
{

trace(−D−1) if D ≺ 0,
+∞ otherwise.

And for θ ∈ F2 we get

L6(D) = log(det(I + exp D)), L7(D) = trace

(
D + √

D2 + 4I

2

)

.

It is worthwhile to note that L4 is the classical log-barrier function used in semi-
definite programming (see Nesterov and Nemirovski 1994).

To end this subsection we recall two characterizations of � convexity. First,
it is easy to show that G : IRn → Sm is � convex iff for each u ∈ IRm the map
x → utG(x)u is convex. Then, if in addition G is continuously differentiable (C1),
these last assertions are also equivalent to

utG(y)u ≥ utG(x)u + ut DG(x)(y − x)u, ∀x, y ∈ IRn, ∀u ∈ IRm . (2.14)

2.3 Matrix properties review

We start this section recalling the well-known Debreu’s lemma.

Lemma 2.1 (Debreu’s lemma) . Let A � 0, we have that vt Bv < 0, for all
v ∈ Ker A \ {0} if and only if there exists r > 0 such that B + r A ≺ 0.

Consider a symmetric matrix A ∈ Sm . Let l0(A) and l+(A) be the number of
their null and nonnegative eigenvalues, respectively, and let E(A) ∈ IRm×l0(A) and
E+(A) ∈ IRm×l+(A) be matrices whose columns are orthonormalized eigenvectors
of A associated with their null and nonnegative eigenvalues, respectively.

The following relations are directly established

Im E(A) = Ker A ⊆ Im E+(A) = Im A+ + Ker A = Ker A−,

and hence

l0(A) = dim(Ker A) ≤ l+(A) = dim(Im A+)+ dim(Ker A) = dim(Ker A−),
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where A+ (A−) denotes the orthogonal projection of A ∈ Sm onto the cone Sm+
(Sm− ) of m × m positive (negative) semidefinite symmetric matrices. This is given
by

A+ := Q diag(λ1(A)
+, . . . , λm(A)

+)Qt ,

where Q is an orthogonal matrix such that its i th column is an eigenvector of A
associated with λi (A). Matrix A− is similarly stated.

So, if A � 0, then A = A− obtaining that Im E(A) = Im E+(A) and l0(A) =
l+(A) = dim(Ker A).

When x ∈ IRn , similar relations hold for E(G(x)) and E+(G(x)).
The following lemma is a direct consequence of the continuity of the eigenvalue

function λi (·).
Lemma 2.2 Consider a matrix Ã � 0. If Ak → Ã, then for all k sufficiently large,
we have that l+(Ak) ≤ l0( Ã).

The next lemma will be very useful in the rest of this article. Its proof appears
in Bonnans and Shapiro (2000, Example 3.140) and is included here in order to
make this work as selfcontained as possible.

Lemma 2.3 Consider a matrix Ã � 0. If Ak → Ã, then we can construct a matrix

Ek ∈ IRm×l0( Ã) whose columns are an orthonormal basis of the space spanned
by the eigenvectors associated with the l0( Ã) biggest eigenvalues of Ak, such that
Ek → E( Ã).

Proof Consider Ẽ := E( Ã) and l̃ := l0( Ã) = l+( Ã) (because Ã � 0). For a
given A, let e1(A), . . . , el̃(A) be a set of orthonormal eigenvectors of A associated
with their l̃ biggest eigenvalues λ1(A) ≥ · · · ≥ λl̃(A). Denote by L(A) the space
spanned by the eigenvectors e1(A), . . . , el̃(A) and let P(A) be the orthogonal
projection matrix onto L(A). Note that L( Ã) = Im Ẽ = Ker Ã.

It is known that the projection matrix P(A) is a continuous (and even
analytic) function of A in a sufficiently small neighborhood of Ã [see, for exam-
ple, Kato (1970, Theorem 1.8) and Golub and Van Loan (1996, Corollary 8.1.11)].
Consequently the function F(A) := P(A)Ẽ is also a continuous function of A
in a neighborhood of Ã, and moreover F( Ã) = Ẽ . It follows that for all A suffi-
ciently close to Ã, the rank of F(A) is equal to the rank of F( Ã) = Ẽ , i.e.,
rankF(A) = l̃. It means that the l̃ columns of F(A) are linearly independent when
A is sufficiently close to Ã. Now let U (A) be a matrix whose columns are ob-
tained by applying the Gram–Schmidt orthonormalization process to the columns
of F(A). The matrix U (A) is well defined and continuous in a neighborhood of
Ã. Even more, the matrices U (A) satisfy that their columns are orthonormalized,
i.e. U (A)tU (A) = Il̃ , and Im U (A) = L(A), for all A sufficiently close to Ã.
We also have that U ( Ã) = F( Ã) = Ẽ . Hence the theorem follows by setting
Ek := U (Ak). ��

From Lemmas 2.2 and 2.3 we get directly the following corollary concerning a
feasible set C = {x : G(x) � 0} where G : IRn → Sm is � convex and continuous.
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Corollary 2.1 Consider a point x̄ such that G(x̄) � 0. If xk → x̄ , then for all
k sufficiently large, we have that l+(G(xk)) ≤ l0(G(x̄)). Furthermore, we can
construct a matrix Ek ∈ IRm×l0(G(x̄)) whose columns are an orthonormal basis
of the space spanned by the eigenvectors associated with the l0(G(x̄)) biggest
eigenvalues of G(xk), such that Ek → E(G(x̄)).

The notions introduced in this subsection allow us to characterize Slater’s con-
dition: there exists x0 such that G(x0) ≺ 0, as follows.

Proposition 2.4 Suppose that G is a � convex map C1 on IRn. Then Slater’s
condition is equivalent to Robinson’s constraint qualification condition

for all x̄ such that G(x̄) � 0 there exists h̄ ∈ IRn such that G(x̄)+DG(x̄)h̄ ≺ 0.

(2.15)

Moreover, Robinson’s condition (2.15) is always equivalent to

for all x̄ such that G(x̄) � 0 there exists

h̄ ∈ IRn such that E(G(x̄))t DG(x̄)h̄E(G(x̄)) ≺ 0. (2.16)

Proof That Robinson’s condition (2.15) implies Slater’s condition is well-known
and follows directly from the differentiability of G and the convexity of the set
Sm− . This is true even when G is not � convex. Conversely, Slater’s condition
and inequality (2.14) implies in a straightforward way condition (2.15). Finally,
the equivalence between conditions (2.15) and (2.16) is due to Debreu’s lemma
(Lemma 2.1). ��

3 Penalty and barrier methods: description and convergence analysis

For the sake of simplicity, we consider here the optimization problem (P) described
in the introduction when C = E , i.e., problem (P) only contains semidefinite con-
straints. Then throughout this paper G: IRn → Sm is a � convex map C1 on IRn ,
f : IRn → IR is a C1 convex function, and we consider the optimization problem

(P) v = inf{ f (x) | x ∈ C},
where C = {x ∈ IRn : G(x) � 0}.

Indeed, if we define D = {x ∈ IRn : F(x) � 0} when F(x) is the diagonal
matrix whose entries are given by the functions fi ’s (obviously F(·) is a � convex
map), then the constraint set C = D ∩ E is given by a convex operator that takes
its values in Sm− .

From now on we assume

(A1) The optimal set of (P), denoted by S, is nonempty and compact,
(A2) Slater’s condition holds, i.e. there exists x0 such that G(x0) ≺ 0.

Let r > 0 be a penalty parameter which will ultimately go to 0 and α : IR+ → IR+
such that

lim
r→0+ α(r) = 0 and lim inf

r→0+
α(r)

r
> 0. (3.1)
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We associate with each θ ∈ F the function
θ: Sm → IR∪{+∞} given by formula
(2.11), and define the function Hr : IRn → IR ∪ {+∞} by

Hr (x) = 
θ

(
G(x)

r

)

=
m∑

i=1

θ

(
λi (G(x))

r

)

, (3.2)

where λi (A) denotes the ith eigenvalue in nonincreasing order of A (λ1(A) is the
largest eigenvalue of A).

In this section, we study methods that consist of solving “approximatively” the
unconstrained minimization problems

(Pr ) vr = inf{φr (x) | x ∈ IRn}, where φr (x) = f (x)+ α(r)Hr (x).

(3.3)

It is worthwhile to note that when C = D we recover the methods introduced in
Auslender et al. (1997).

As in Auslender (1999) and Auslender et al. (1997), we consider two classes
of methods; θ ∈ F1 and θ ∈ F2.

Throughout, we denote by Sr the optimal set of (Pr ) and assume that

α(r) = r, if θ ∈ F1 and lim
r→0+

α(r)

r
= +∞, if θ ∈ F2. (3.4)

More precisely, we set

rk > 0, εk ≥ 0, γk > 0 with lim
k→∞ εk = lim

k→∞ γk = lim
k→∞ rk = 0. (3.5)

Solving approximatively (Prk ) means to compute xk ∈ IRn such that if we set
ηk := ∇φrk (xk) = ∇ f (xk)+ α(rk)∇Hrk (xk) then

||ηk || ≤ εk, ||ηk || · ||xk || ≤ γk . (3.6)

Note that if the optimal set Sk of (Prk ) is nonempty and compact, then any usual
descent method (gradient type, Newton or quasi-Newton type method) provides in
a finite number of steps a point xk satisfying the stopping rule (3.6). Consequently,
we will prove first that Sk is nonempty and compact. Indeed, it is true for all k
when θ ∈ F1, and for k sufficiently large when θ ∈ F2. The next proposition will
be a key result on this subject, and also for other purposes.

Proposition 3.1 For i = 1, . . . ,m and r > 0, let λ̃i (x) = λi (G(x)), hr
i (x) =

θ
(
λ̃i (x)

r

)
. Then

(i) λ̃i (·) and hr
i (·) are continuous functions on IRn.

(ii) (λ̃i )∞(d) > −∞, for all d.
(iii) (hr

i )∞(d) ≥ 0, for all d.
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(iv) λ̃1 is a convex continuous function on IRn and

(λ̃1)∞(d) ≤ 0 iff d ∈ C∞. (3.7)

Furthermore, hr
1 is an lsc proper convex function, and for each d ∈ IRn we

have

(hr
1)∞(d) = (h1

1)∞(d)
r

=
{
δIR−((λ̃1)∞(d)) if θ ∈ F1,

((λ̃1)∞(d))+
r if θ ∈ F2,

(3.8)

where δIR−(y) = {0, if y ≤ 0 ; +∞, if y > 0}.

Proof (i) Since λi (·) and G(·) are continuous, their composition λ̃i (·) is also
continuous. In order to prove that hr

1(·) is continuous, let y = limk→∞ yk ,
then since λ̃i (·) is continuous we have λ̃i (yk)/r → λ̃i (y)/r . If (λ̃i )(y)/r /∈
bd dom θ then, by continuity of θ on int dom θ , we have hr

i (yk) → hr
i (y). If

λ̃i (y)/r ∈ bd dom θ , that is, λ̃i (y)/r = η, the same limit holds thanks to the
property limu→η− θ(u) = +∞.

(ii) Let d ′ → d, t → +∞, and let x0 satisfy Slater’s condition (A2).
Since G is � convex, for each u ∈ IRn we get (cf. (2.14))

ut G(td ′)u ≥ ut G(x0)u + ut DG(x0)(td ′ − x0)u.

Taking u = ui such that ||ui || = 1 and G(td ′)ui = λi (G(td ′))ui , this last
inequality yields

λi (G(td ′))
t

≥ −||G(x0)||
t

− ||DG(x0)|| ·
∥
∥
∥
∥d ′ − x0

t

∥
∥
∥
∥ . (3.9)

Passing to the liminf in (3.9), we obtain

(λ̃i )∞(d) = lim inf
t→∞, d ′→d

λi (G(td ′))
t

≥ −||DG(x0)|| · ||d||.

(iii) Since θ is nondecreasing we have from (3.9) with G(·)/r instead of G(·) that

1

t
hr

i (td
′) ≥ 1

t
θ

(
t

r

[

−||G(x0)||
t

− ||DG(x0)|| ·
∥
∥
∥
∥d ′ − x0

t

∥
∥
∥
∥

])

.

Passing to the liminf in this last inequality and using formula (2.3) we get

(hr
i )∞(d) = lim inf

t→∞, d ′→d

hr
i (td

′)
t

≥ lim inf
t→∞, u→− 1

r ||DG(x0)||·||d||
θ(tu)

t

= θ∞
(

−1

r
||DG(x0)|| · ||d||

)

,

and, by virtue of the inequality θ∞ ≥ 0, it follows that (hr
i )∞(d) ≥ 0.
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(iv) Since λ̃1(x) = max{ut G(x)u; ‖u‖ = 1, u ∈ IRm} and since G is � convex,
we have that λ̃1(·) is convex as a supremum of convex functions. Further-
more, since C = {x : λ̃1(x) ≤ 0}, it follows from (2.9) that C∞ = {d :
(λ̃1)∞(d) ≤ 0} and then equivalence (3.7) holds.
So, by Proposition 2.2 we get that hr

i (·) is lsc, convex and proper. Moreover,
since θ∞ is positively homogeneous, and dom θ∞ is either equal to IR− or
IR, using again Proposition 2.2 we obtain

(hr
1)∞(d) =

{
1
r θ∞((λ̃1)∞(d)) if (λ̃1)∞(d) ∈ dom θ∞,
+∞ otherwise,

so that

(hr
1)∞(d) = (h1

1)∞(d)
r

.

Finally, equality (3.8) is a immediate consequence of these formulas and the
definition of θ∞. ��

Now we proceed to prove that the optimal set Sr is nonempty and compact. As
we mentioned before, this condition is enough to show that the rule defining the
point xk is implementable.

Theorem 3.1 (i) Suppose that either θ ∈ F1, or θ ∈ F2 and f∞(d) ≥ 0
for all d. Then Sr is nonempty and compact for all r > 0.

(ii) If θ ∈ F2 then Sr is nonempty and compact for all r > 0 sufficiently small.

Proof (i) By Proposition 3.1, we have (hr
i )∞(d) ≥ 0, for all d , i = 1, . . . ,m and

r > 0, and since φr (x) = f (x)+ α(r)
∑m

i=1 hr
i (x) we have from inequality

(2.8) and formula (3.8) that

(φr )∞(d) ≥ f∞(d)+ α(r)

r
(h1

1)∞(d) ∀d. (3.10)

Suppose that θ ∈ F1. We get from (3.10) and Proposition 3.1, part (iv) that

(φr )∞(d) ≥
{

f∞(d) if d ∈ C∞,
(φr )∞(d) = +∞ otherwise.

Hence, since S is nonempty and compact it follows from Proposition 2.1
that (φr )∞(d) > 0, for all d �= 0, which is equivalent to saying that Sr is
nonempty and compact.
Now suppose that θ ∈ F2 and f∞(d) ≥ 0, for all d . Inequality (3.10) and
Proposition 3.1, part (iv) imply again that (φr )∞(d) > 0, for all d �= 0, and
the same conclusion holds.

(ii) Assume that θ ∈ F2. We shall prove that Sr is nonempty and compact for
r > 0 sufficiently small. By contradiction, suppose the existence of sequences
rk → 0+, dk → d �= 0 such that

f∞(dk)+ α(rk)

rk
(h1

1)∞(dk) ≤ 0.
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Due to the lower semicontinuity of f∞ and (h1
1)∞, and the fact that lim infk→∞

α(rk )
rk

= +∞, we apply liminf to the last inequality to obtain (h1
1)∞(d) = 0

and f∞(d) ≤ 0. However, Proposition 3.1 tells us that (h1
1)∞(d) = 0 is

equivalent to d ∈ C∞ implying that f∞(d) ≤ 0 for some d ∈ C∞, d �= 0,
which is impossible because S is nonempty and compact. ��

Remark 3.1 (i) Note that if f is an extended lsc function satisfying that
inf{ f (x)|x ∈ IRn} > −∞, then condition f∞(d) ≥ 0, for all d , always holds.

(ii) When θ ∈ F2 and is strictly increasing (which is the case of all the current
examples), we can suppose, without loss of generality, that f∞(d) ≥ 0 for
all d . Indeed, if we set g(x) := θ( f (x)), then problem (P) is equivalent to
convex problem

(Ps) α = inf{g(x) | x ∈ C}
in the sense that problems (P) and (Ps) share the same optimal set. This is
due to the strict monotonicity of function θ . Hence condition g∞(d) ≥ 0 for
all d , follows from the fact that θ is nonnegative.

Theorem 3.2 Let {xk} be a sequence satisfying relations (3.6). Then, this sequence
is bounded and each limit point of this sequence is an optimal solution of (P).

Proof Let x0 be an arbitrary interior point of C (i.e. x0 satisfies Slater’s condition
(A2)). Since function x → φr (x) = f (x)+ α(r)Hr (x) is convex, it follows from
the definition of xk and ηk = ∇φrk (xk) (cf. (3.6)) that

f (xk)+ α(rk)H
rk (xk) ≤ f (x0)+ α(rk)H

rk (x0)+ 〈ηk, xk − x0〉,
Hence, as a consequence of the monotonicity of θ we get for k sufficiently large

f (xk)+ α(rk)

rk

m∑

i=1

rkθ

(
λi (G(xk))

rk

)

≤ f (x0)+ mα(rk)θ(λ1(G(x
0)))

+〈ηk, xk − x0〉. (3.11)

First, we proceed to prove that the sequence {xk} is bounded. We argue by contra-
diction. Without loss of generality we can assume that

||xk || → +∞, lim
k→∞

xk

||xk || = d �= 0,

Proposition 3.1, part (ii) says that (λ̃i )∞(d) > −∞. So, we define εi < (λ̃i )∞(d).
By formula (2.3) (see Remark 2.1) we have for all k sufficiently large

λ̃i (xk) = λ̃i

(
xk

||xk || ||xk ||
)

≥ εi ||xk ||.

By dividing (3.11) by ||xk || we obtain from the last inequality

1

||xk || f

(
xk

||xk || ||xk ||
)

+ α(rk)

rk

m∑

i=1

rk

||xk || θ
(
εi ||xk ||

rk

)

≤ f (x0)

||xk || + m
α(rk)

||xk || θ(λ1(G(x
0))+ 〈ηk, xk − x0〉

||xk || .
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Taking the limit when k → +∞ and using relations (3.5) and (3.6) and formula
(2.3), we get

f∞(d)+ lim
k→∞

α(rk)

rk

m∑

i=1

θ∞(εi ) ≤ 0. (3.12)

Now recall that if θ ∈ F1, then α(r) = r , θ∞(−1) = θ∞(0) = 0 and θ∞(1) =
+∞. Then we obtain from (3.12) that

θ∞(εi ) = 0. (3.13)

In the case when θ ∈ F2, we have limk→∞ α(rk )
rk

= +∞, θ∞(−1) = θ∞(0) = 0
and θ∞(1) = 1, and therefore (3.13) also holds. Thus, inequality (3.12) implies
that f∞(d) ≤ 0. Furthermore, since θ∞ is positively homogeneous it follows from
(3.13) that εi ≤ 0. Hence, letting ε1 → (λ̃1)∞(d)we get that (λ̃1)∞(d) ≤ 0, which
is equivalent to d ∈ C∞ (cf. Proposition 3.1). This together with f∞(d) ≤ 0 and
d �= 0 implies a contradiction with the fact that the optimal solution set S is
nonempty and compact.

We have proven that the sequence {xk} is bounded. Now let x be an limit point
of the sequence {xk}. For simplicity of notation, we suppose that x = limk→∞ xk .
We shall show that x is an optimal solution of (P).

Let δ < f (x), δi < λi (G(x)) for all i = 1, . . . ,m. By continuity of functions
f and λi (G(·)), we have for all k sufficiently large that

δ < f (xk), δi < λi (G(xk)), ∀i = 1, . . . ,m.

Then, from inequalities (3.6) and (3.11), and the monotonicity of θ it follows

δ + α(rk)

rk

m∑

i=1

rkθ

(
δi

rk

)

≤ f (x0)+ mα(rk)θ(λ1(G(x
0)))+ (εk ||x0|| + γk).

(3.14)

On the other hand, the following relations are satisfied (cf. (3.1) and (3.5))

lim
k→∞ εk = lim

k→∞ γk = lim
k→∞α(rk) = lim

k→∞ rk = 0.

So, passing to the liminf in (3.14) we get

δ + lim
k→∞

α(rk)

rk

m∑

i=1

θ∞(δi ) ≤ f (x0),

which implies that θ∞(δi ) = 0, for all i , and also δ ≤ f (x0). In particular,
θ∞(δ1) = 0 which means that δ1 ≤ 0. Hence, by letting δ → f (x) and δ1 →
λ1(G(x)) we deduce that

x ∈ C and f (x) ≤ f (x0) ∀x0 ∈ int C.

Finally, continuity of f implies that f (x) ≤ f (u) for all u ∈ C , that is, x is an
optimal solution of (P). We thus obtain the desired result. ��
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4 Duality results

We associate with problem (P), defined in section 3, the following Lagrangian
functional

L(x,Y ) = f (x)+ Y · G(x), ∀x ∈ IRn, ∀Y ∈ Sm,

as well as the following dual functional

p(Y ) =
{

− inf{L(x,Y ) | x ∈ IRn} if Y � 0,
+∞ otherwise.

Thus the (Lagrangian) dual problem of (P) is given by

(D) γ = inf{p(Y ) | Y ∈ Sm}.
As in section 3, we suppose that f is a C1 convex function, G is � convex and
that Assumptions (A1) and (A2) and (3.4) still hold. Thus, if the primal path {xk}
satisfies the stopping rule (3.6), the convergence Theorem 3.2 still tells us that the
sequence {xk} is bounded and that each of its limit points is an optimal solution
of (P). It is also well known that there is no duality gap between (P) and (D), and
that the set T of optimal solutions of (D) is nonempty and compact under these
assumptions (see e.g., Bonnans and Shapiro 2000, Theorem 5.81). Furthermore,
the matrix Ȳ � 0 will be an optimal solution of (D) iff there exists x̄ ∈ C such that

∇x L(x̄, Ȳ ) = ∇ f (x̄)+ DG(x̄)t Ȳ = 0 and G(x̄) · Ȳ = 0. (4.1)

Note that, for a linear operator Ay := ∑n
i=1 yi Ai with Ai ∈ Sm , as DG(x), we

have for its adjoint operator At the formula:

At Z = (A1 · Z , . . . , An · Z)t, ∀Z ∈ Sm . (4.2)

Let

Yk = α(rk)

rk
(θ ′)◦

(
G(xk)

rk

)

= α(rk)

rk

m∑

i=1

θ ′
(
λi (G(xk))

rk

)

ek
i (e

k
i )

t , (4.3)

where (θ ′)◦ is the matrix function associated with θ ′, defined in (2.10), and ek
i ’s

are orthonormal eigenvectors of G(xk) associated with the eigenvalues λi (G(xk)).
Using the derivation rule given in Proposition 2.3, part (iii), we get

ηk = ∇ f (xk)+ DG(xk)
t Yk . (4.4)

The aim of this section is to prove that the sequence {Yk} is bounded and that each
limit point of this sequence is an optimal solution of the dual problem (D).

Theorem 4.1 Consider a sequence {xk} satisfying relations (3.6), and let {Yk} be
the sequence defined by formula (4.3). Then, {Yk} is bounded and each of its limit
points is an optimal solution of (D).
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Proof It was proven in Theorem 3.2 that the sequence {xk} is bounded and that
each of its limit points is an optimal solution of (P). Let x̄ be a limit point of {xk}
and l̄ := l0(x̄) be the number of the null eigenvalues of G(x̄). For simplicity we
suppose without loss of generality that limk→+∞ xk = x̄ .

Now by Lemma 2.3 there exist sequences of orthonormal vectors {ek
i }, i =

1, . . . ,m, which are eigenvectors of G(xk) associated with λi (G(xk)), converging
toward ēi such that the set {ēi: i = 1, . . . ,m} is an orthonormal eigenbasis of the
matrix G(x̄).

In order to prove that the sequence {Yk} is bounded, we will show that each

sequence
{
α(rk )

rk
θ ′

(
λi (G(xk))

rk

)}
Particularly, we will show that, for all i = l̄ +

1, . . . ,m, these sequences converge to 0. This will be very useful to conclude that
any limit point of {Yk} is a solution of (D).

First let us prove that

lim
t→−∞ θ

′(t) = 0. (4.5)

Indeed, since θ ′ is nonnegative and nondecreasing it follows that limt→−∞ θ ′(t) =
ε ≥ 0 and θ ′(u) ≥ 0, for all u ∈ dom θ . Now formula (2.7) implies

θ∞(−1) = sup{〈−1, θ ′(t)〉 : t ∈ dom θ} = −ε,
which together with the equality θ∞(−1) = 0 allows us to conclude (4.5).

Now we proceed to show that

α(rk)

rk
θ ′

(
λi (G(xk))

rk

)

→ 0, ∀i = l̄ + 1, . . . ,m. (4.6)

Lemma 2.2 tells us that l+(G(xk)) ≤ l0(G(x̄)) =: l̄. This implies that for k
sufficiently large we have

λi (G(xk)) ≤ λi (G(x̄))

2
< 0, ∀i = l̄ + 1, . . . ,m.

In the case when θ ∈ F1, we know that α(r) = r and limit (4.6) follows directly
from (4.5). Suppose then that θ ∈ F2. Since θ ′ is nonnegative and nondecreasing
the last inequality yields to

0 ≤ α(rk)

rk
θ ′

(
λi (G(xk))

rk

)

≤ α(rk)

rk
θ ′

(
λi (G(x̄))

2rk

)

. (4.7)

Also from the fact that θ is nonnegative and convex, we get

0 ≤ α(rk)

2rk
θ ′

(
λi (G(x̄)

2rk

)

(−λi (G(x̄))) ≤ α(rk)

[

θ(0)− θ

(
λi (G(x̄)

2rk

)]

≤ α(rk)θ(0),

which together with limk→∞ α(rk) = 0 and inequality (4.7) implies condition

(4.6). Now let us prove that, for all i = 1, . . . , l̄, the sequences
{
α(rk )

rk
θ ′

(
λi (G(xk))

rk

)}
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are bounded. We argue by contradiction. Since θ ′(·) ≥ 0 we can suppose without
loss of generality that

lim
k→∞µk = +∞ with µk :=

l̄∑

i=1

α(rk)

rk
θ ′

(
λi (G(xk))

rk

)

.

Then set

η̂k = 1

µk
∇ f (xk)+ DG(xk)

t




l̄∑

i=1

ξ i
kek

i (e
k
i )

t



 , with

ξ i
k := α(rk)

µkrk
θ ′

(
λi (G(xk))

rk

)

∈ [0, 1]. (4.8)

Dividing (4.4) by µk and using (4.6) we get

lim
k→∞ η̂k = 0. (4.9)

We can consider, passing to a subsequence if necessary, that each sequence {ξ i
k}

converges to some ξ̄ i ∈ [0, 1]. Moreover, since
∑l̄

i=1 ξ
i
k = 1 for all k, it follows

that
∑l̄

i=1 ξ̄
i = 1.

Letting k → +∞ in (4.8) and using that ek
i → ēi , condition (4.9) implies that

DG(x̄)t




l̄∑

i=1

ξ̄ i ēi (ēi )
t



 = 0, (4.10)

with ξ̄ i ≥ 0 satisfying that
∑l̄

i=1 ξ̄
i = 1. We will verify that (4.10) contradicts

Robinson’s condition (2.16) (which is equivalent to Slater’s condition). Indeed, by
definition of the adjoint operator, condition (4.10) can be written as

l̄∑

i=1

ξ̄ i (
ēi (ēi )

t) · DG(x̄)h =
l̄∑

i=1

ξ̄ i (ēi )
t [DG(x̄)h] ēi =0, ∀h ∈ IRn . (4.11)

Let h̄ be the direction appearing in Robinson’s condition (2.16). Since ξ̄ i ≥ 0 and
(ēi )

t
[
DG(x̄)h̄

]
ēi < 0 for all i = 1, . . . , l̄, we immediately get that every term of

the sum in (4.11) is equal to 0, and consequently ξ̄ i = 0 for all i = 1, . . . , l̄. This

contradicts the equality
∑l̄

i=1 ξ̄
i = 1. Hence, we have proven that the sequences{

α(rk )
rk
θ ′

(
λi (G(xk ))

rk

)}
are bounded for all i = 1, . . . , l̄. This together with (4.6)

implies the boundedness of {Yk}.
Finally, let Ȳ be a limit point of {Yk}. Since Yk � 0 (because θ is nondecreas-

ing), it directly follows that Ȳ � 0. On the other hand, condition (4.4) implies
that ∇x L(x̄, Ȳ ) = ∇ f (x̄)+ DG(x̄)t Ȳ = 0. Furthermore, from (4.6) and since the
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sequences
{
α(rk )

rk
θ ′

(
λi (G(xk))

rk

)}
are bounded for all i = 1, . . . , l̄, it follows that

Ȳ = ∑l̄
i=1 δ̄i ēi ēt

i with δ̄i ≥ 0, which implies

G(x̄) · Ȳ = 0.

Hence Ȳ satisfies optimality conditions (4.1). We thus conclude that Ȳ is an optimal
solution of (D). ��

5 Penalty methods with two parameters

We consider again in this section the convex optimization problem (P) defined
in section 3 and suppose assumptions (A1) and (A2). Additionally, we will also
suppose

(A3) f∞(d) ≥ 0, ∀d.

It was noted in Remark 3.1 that there is no loss of generality to make such an
assumption. In this section, we will only work with penalty functions θ that belong
to F2. In this way, for any real rk, βk > 0 we consider

prk (x) = rk Hrk (x) = rk

m∑

i=1

θ

(
λi (G(x))

rk

)

,

and we define

ψk(x) = f (x)+ βk prk (x).

The main computation of the forthcoming algorithm will be to solve approxima-
tively, at each iteration k, the unconstrained optimization problem

(Pk) vk = inf{ψk(x) | x ∈ IRn}.
Let Sk be the optimal set of (Pk), and let {εk} and {γk} be sequences such that

∀k : εk > 0, γk > 0, lim
k→∞ εk = lim

k→∞ γk = 0. (5.1)

As in Theorem 3.1, we can show that Sk is nonempty and compact for each k.
Hence, following the discussion of section 3, we can compute for each k a point
xk satisfying

||ηk || ≤ εk, ||ηk ||||xk || ≤ γk, where ηk = ∇ψk(xk). (5.2)

As we have seen before this can be done in a finite number of steps with any usual
descent method.

Now we proceed similarly to Gonzaga and Castillo (2003). The parameters
rk and βk play two different roles: rk always decreases in order to improve the
approximation of the function t → t+ by the mapping t → rkθ(t/rk), while βk is
a penalty weight that increases only at an infeasible iteration point xk .

The algorithm proposed in this article is the following:
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1. Let β0 = r0 = 1 and k = 0.
2. Compute xk satisfying (5.2).
3. Update rk+1 = rk

2 , and if xk is feasible then set βk+1 = βk , otherwise set
βk+1 = 2βk . Finally set k = k + 1.

When C = D and εk = 0 (that is, xk is an exact minimizer of (Pk)), our algorithm
coincides with the proposed one by Gonzaga and Castillo (2003). We refer the
reader to this article for a detailed discussion of this scheme.

In addition to the hypothesis made in this section, we denote by {xk}, {rk}
and {βk} the sequences generated by our algorithm. In this context, the following
convergence result holds.

Theorem 5.1 The sequence {xk} is bounded and all its limit points are optimal
solutions of (P).

Proof We start this proof establishing five conditions that will be important in the
sequel. First, by construction of the algorithm we have

1 ≤ βk, βkrk ≤ 1, ∀k. (5.3)

Second, since limt→−∞ θ(t) = 0 we obtain

lim
k→∞ θ

(
λi (G(x0))

rk

)

= 0, ∀i = 1, 2, . . . ,m, ∀x0 ∈ int C.

Consequently,

lim
k→∞βk prk (x0)= lim

k→∞βkrk

m∑

i=1

θ

(
λi (G(x0))

rk

)

=0, ∀x0 ∈ int C.

(5.4)

Third, since for all t > 0 the function r → r(θ(t/r)− θ(0)) is nondecreasing on
IR++, and since θ(0) ≥ 0, we deduce that

rθ(t/r) ≥ θ(t)− θ(0), ∀t ∈ IR, ∀r ∈ (0, 1]. (5.5)

Fourth, convexity of the function ψk and the definition of ηk := ∇ψk(xk) imply
that

f (xk)+ βk prk (xk) ≤ f (x0)+ βk prk (x0)+ 〈ηk, xk − x0〉, ∀x0 ∈ int C.

(5.6)

Finally, since θ is nonnegative we get from (5.2)–(5.4) and (5.6)

f (xk)+ rkθ

(
λ1(G(xk))

rk

)

≤ f (x0)+ µk(x
0),

with lim
k→∞µk(x

0) = 0, ∀x0 ∈ int C. (5.7)

Now let us show that the sequence {xk} is bounded. By contradiction, we can
suppose, passing to a subsequence if necessary, that

||xk || → +∞, lim
k→∞

xk

||xk || = d �= 0.
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By Proposition 3.1, part (ii) it follows that (λ̃1)∞(d) > −∞. Set α1 < (λ̃1)∞(d).
From formula (2.3) (see Remark 2.1) we have for all k sufficiently large

λ̃1(xk) = λ̃1

(
xk

||xk || ||xk ||
)

≥ α1||xk ||.

This together with the monotonicity of θ and inequality (5.7) yields to

f (xk)

||xk || + rk

||xk ||θ
(
α1||xk ||

rk

)

≤ f (x0)

||xk || + µk(x0)

||xk || .

By passing to the liminf in this last inequality we get

f∞(d)+ θ∞(α1) ≤ 0. (5.8)

Since f∞ and θ∞ are nonnegative we obtain that θ∞(α1) = 0, and consequently
f∞(d) = 0. Furthermore, due to relations θ∞(−1) = 0 and θ∞(1) = 1 it follows
that α1 ≤ 0. Then letting α1 ↑ (λ̃1)∞(d) it follows that (λ̃1)∞(d) ≤ 0, or equiva-
lently, d ∈ C∞. This together with f∞(d) ≤ 0, d �= 0 contradicts the fact that S
is nonempty and compact.

Let x̄ be a limit point of the sequence {xk}. For the sake of simplicity, we can
suppose that x̄ = limk→∞ xk .

Firstly, we proceed to prove that x̄ is feasible. This is obviously true if for all
k sufficiently large the iteration point xk is feasible for problem (P), i.e. xk ∈ C .
If this is not the case, we have from the construction of the algorithm

lim
k→∞βk = +∞. (5.9)

At the first iteration, the convexity of function ψ0 implies

f (x0)+ p1(x0) ≤ f (xk)+ p1(xk)+ 〈η0, x0 − xk〉. (5.10)

Using inequality (5.5) we get

rkθ(λi (G(xk))/rk) ≥ θ(λi (G(xk)))− θ(0), ∀i = 1, . . . ,m,

which yields to

prk (xk) ≥ p1(xk)− mθ(0).

Adding this last inequality to (5.10) we obtain

f (x0)+ p1(x0)− mθ(0) ≤ f (xk)+ prk (xk)+ 〈η0, x0 − xk〉,
deducing from relation (5.6) that

(βk − 1)prk (xk) ≤ βkrk

m∑

i=1

θ

(
λi (G(x0))

rk

)

+ ‖η0‖‖xk‖ + ‖ηk‖‖xk − x0‖ + K ,

where K is a constant. Hence, from the boundedness of {xk} and relations (5.1),
(5.2) and (5.4) we can give an upper bound K̂ for the right-hand side of the last
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inequality. Thus, from the fact that θ is nonnegative it follows for all k sufficiently
large that

rkθ

(
λ1(G(xk))

rk

)

≤ K̂

(βk − 1)
,

Passing to the liminf and using formula (2.3) and (5.9) we get θ∞(λ1(G(x̄))) ≤ 0.
As a consequence we conclude that λ1(G(x̄)) ≤ 0, that is, x̄ is feasible for problem
(P).

Secondly, we shall prove that x̄ is an optimal solution of (P). Since θ(·) ≥ 0
and inequality (5.7) we have

f (xk) ≤ f (x0)+ µk(x
0) ∀x0 ∈ int C.

We thus obtain at the limit that f (x̄) ≤ f (x0) for all x0 ∈ int C . Hence, continuity
of function f implies that x̄ is an optimal solution of (P). ��

In the next theorem we extend to our semidefinite framework the main result
of the article (cf. Gonzaga and Castillo 2003, Theorem 1). For this purpose, we
denote by F∗

2 the subset of functions θ ∈ F2 satisfying the inequality θ ′(0) > 0.
We remark that θ6 and θ7 belong to F∗

2 .
The following theorem says that for θ ∈ F∗

2 and k sufficiently large, the point
xk will be feasible. This result is important for optimization problems where fea-
sibility is a key issue. Of course, there are some examples of θ ∈ F1 (− log(x),
1/x ,…) for which xk is strictly feasible, but in these cases the starting point of
the numerical methods used to obtain xk must also be strictly feasible, which can
be a difficult task for some problems. Thanks to the next theorem this difficulty is
avoided when θ ∈ F∗

2 .

Theorem 5.2 Suppose in addition to hypothesis of Theorem 5.1 that θ ∈ F∗
2 . Then,

there exists k0 such that for all k ≥ k0, xk is feasible.

Proof We argue by contradiction. So, since {xk} is bounded, we can assume the
existence of a convergent but infeasible subsequence of {xk} (which for simplicity
will be also called {xk}). Hence, by construction of our algorithm, βk → +∞. Let
x̄ := limk→∞ xk . It follows from Theorem 5.1 that x̄ is an optimal solution of (P).

In the rest of this proof, we consider that k is large enough. If G(x̄) ≺ 0 then
by smoothness of the function G we get G(xk) ≺ 0, obtaining directly a contradic-
tion. We then suppose Im E(G(x̄)) = Ker G(x̄) �= {0}, that is, G(x̄) is singular.
By Proposition 2.4, Slater’s condition (A2) is equivalent to Robinson’s condition
(2.16), which can be written at x̄ as follows

There exists h̄ ∈ IRn and ρ > 0 such that E(G(x̄))t DG(x̄)h̄E(G(x̄)) ≺ −ρ Im,

where Im is the identity matrix in Sm .
Hence, continuity of DG(·) implies that

Et
k DG(xk)h̄Ek ≺ − 1

2ρ Im, (5.11)

where Ek ∈ IRm×l0(G(x̄)) are the matrices given by Corollary 2.1, i.e., the columns
of matrices Ek are the orthonormalized eigenvectors of G(xk) associated with their
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l0(G(x̄)) largest eigenvalues, and Ek → E(G(x̄)). Corollary 2.1 also tells us that
l+(G(xk)) ≤ l0(G(x̄)). Actually we have

λi (G(xk)) ≤ µ < 0, ∀ i = l0(G(x̄))+ 1, . . . ,m, (5.12)

where µ > µ̄ := max{λi ; λi = λi (G(x̄)) < 0}.
We proceed to compute the inner product 〈ηk, h̄〉 = ηt

k h̄, where ηk = ∇ψk(xk)

and h̄ is the vector appearing in (5.11).
From the derivation rule given in Proposition 2.3, part (iii) we get

∇ prk (xk)
t h̄ =

m∑

i=1
θ ′

(
λi (G(xk))

rk

)

ci (xk) · DG(xk)h̄

=
m∑

i=1
θ ′

(
λi (G(xk))

rk

)

(ek
i )

t
(
DG(xk)h̄

)
ek

i ,

(5.13)

where ci (xk) := ek
i (e

k
i )

t and vectors ek
i ’s are the columns of Ek such that each ek

i
corresponds to the eigenvector of G(xk) associated with λi (G(xk)).

Condition (5.13) implies that 〈ηk, h̄〉 = ∇ f (xk)
t h̄ + βk

∑m
i=1 θ

′
(
λi (G(xk ))

rk

)

(ek
i )

t (DG(xk)h̄)ek
i , which can be rewritten as

−〈ηk, h̄〉
βk

+ ∇ f (xk)
t h̄

βk
+

m∑

i= l0(G(x̄))+1

θ ′
(
λi (G(xk))

rk

)

(ek
i )

T (
DG(xk)h̄

)
ek

i

= −
l0(G(x̄))∑

i=1

θ ′
(
λi (G(xk))

rk

)

(ek
i )

T (
DG(xk)h̄

)
ek

i . (5.14)

Taking the limit when k → +∞ we have that the terms −〈ηk ,h̄〉
βk

and ∇ f (xk)
t h̄

βk
converge toward 0 due to relations (5.1) and (5.2), and βk → +∞. By (5.12),
we obtain λi (G(xk)/rk) → −∞ for all i = l0(G(x̄)) + 1, . . . ,m. This together
with the limit limt→−∞ θ ′(t) = 0 implies that θ ′(λi (G(xk)/rk)) → 0 for all
i = l0(G(x̄))+ 1, . . . ,m. Then we deduce that the entire left hand side of (5.14)
converges toward 0.

We will obtain a contradiction by showing that the right hand side of (5.14) is
strictly positive. Indeed, condition (5.11) implies that (ek

i )
t (DG(xk)h̄)ek

i < −ρ/2
for i = 1, . . . , l0(G(x̄)), and since θ is nondecreasing, θ ′(·) ≥ 0 and l+(G(xk)) ≤
l0(G(x̄)) it follows that

−
l0(G(x̄))∑

i=1

θ ′
(
λi (G(xk))

rk

)

(ek
i )

t (
DG(xk)h̄

)
ek

i ≥ ρ

2

l0(G(x̄))∑

i=1

θ ′
(
λi (G(xk))

rk

)

≥ ρ

2

l+(G(xk))∑

i=1

θ ′
(
λi (G(xk))

rk

)

≥ ρ

2
θ ′(0)l + (xk).
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But θ ′(0) > 0 (because θ ∈ F∗
2 ) and xk is infeasible, i.e. l+(xk) ≥ 1. Hence the

right-hand side of (5.14) has a strictly positive lower bound. The theorem follows. ��
As for penalty and barrier methods with one parameter we can associate with

the sequence {xk} a sequence {Yk} of dual multipliers defined by

Yk = βk(θ
′)0

(
G(xk)

rk

)

= βk

m∑

i=1

θ ′
(
λi (G(xk))

rk

)

ek
i (e

k
i )

t , (5.15)

where (θ ′)0 is the matrix function associated with θ ′, defined in (2.10), and ek
i ’s

are orthonormal eigenvectors of G(xk) associated with the eigenvalues λi (G(xk)).
Then we have

ηk = ∇ψk(xk) = ∇ f (xk)+ DG(xk)
t Yk . (5.16)

As in section 4, we prove in the next thorem that the sequence {Yk} is bounded
with each of its limit points being an optimal solution of (D).

Theorem 5.3 Suppose that the assumptions of Theorem 5.2 are satisfied.
Consider a sequence {xk} satisfying relations (5.2), and let {Yk} be the sequence
defined by formula (5.15). Then, {Yk} is bounded and each of its limit points is an
optimal solution of (D).

Proof By Theorems 5.1 and 5.2 we can assume, without loss of generality, that
the sequence {xk} converges to an optimal solution x̄ of (P) and for k sufficiently
large xk is feasible and βk = β ≥ 1. Since xk is feasible and by the monotonicity
of θ ′(·), we have that θ ′(λi (G(xk))/rk) ≤ θ ′(0) for all i , which proves that the
sequence {Yk} is bounded.
Let Ȳ be a limit point of {Yk}. The proof is now similar to the one given in Theorem
4.1. Since Yk � 0, it directly follows that Ȳ � 0. On the other hand, condition
(5.16) implies that ∇x L(x̄, Ȳ ) = ∇ f (x̄)+ DG(x̄)t Ȳ = 0.

Let l̄ := l0(G(x̄)) be the number of null eigenvalues of G(x̄). Since limt→−∞
θ ′(t) = 0 (cf. (4.5)), we get

βkθ
′
(
λi (G(xk))

rk

)

→ 0 ∀i = l̄ + 1, . . . ,m, (5.17)

and since the sequences
{
βkθ

′
(
λi (G(xk))

rk

)}
are bounded for all i = 1, . . . , l̄, it fol-

lows that Ȳ = ∑l̄
i=1 δ̄i ēi ēt

i with δ̄i ≥ 0, which implies that G(x̄) · Ȳ = 0.Hence Ȳ
satisfies optimality conditions (4.1). We thus conclude that Ȳ is an optimal solution
of (D). ��

Acknowledgements Héctor Ramírez was Partially supported by Ecos-Conicyt C00E05.

References

Auslender A (1999) Penalty and barrier methods: a unified framework. SIAM J Optim 10:211–
230

Auslender A (2003) Variational inequalities over the cone of semidefinite positive matrices and
over the Lorentz cone. Optimization methods and software, pp 1–18



Penalty and barrier methods for convex semidefinite programming

Auslender A, Teboulle M (2003) Asymptotic cones and functions in optimization and variational
inequalities. Springer monographs in mathematics, Springer, Berlin Heidelberg New York

Auslender A, Cominetti R, Haddou M (1997) Asymptotic analysis of penalty and barrier methods
in convex and linear programming. Math Opers Res 22:43–62

Bhatia R (1997) Matrix analysis. Springer graduate texts in mathematics, Springer, Berlin
Heidelberg New York

Bonnans JF, Shapiro A (2000) Perturbation analysis of optimization problems. Springer series
in operations research, Springer, Berlin Heidelberg New York

Ben-Tal A, Nemirowskii A (2002) Lectures on modern convex optimization, analysis, algorithms,
and engineering applications. MPS-SIAM series on optimization, SIAM, Philadelphia

Ben-Tal A, Zibulevsky M (1997) Penalty-barrier methods for convex programming problems.
SIAM J Optim 7:347–366

Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed com-
plementary problems. Compt Optim Appl 5:97–138

Cominetti R, Dussault JP (1994) A stable exponential penalty method with superlinear conver-
gence. JOTA 83:285–309

Den Hertzog D, Roos C, Terlaky T (1991) Inverse barrier method for linear programming. Report
91–27, Faculty of Technical Mathematics and Informatics, Delft University of Technology,
Netherlands

Frisch KR (1995) The logarithmic potential method of convex programming. Memorandum of
May 13, 1995, University Institute of Economics, Oslo, Norway

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn, The Johns Hopkins University
Press, Baltimore

Gonzaga C, Castillo RA (2003) A nonlinear programming algorithm based on non-coercive
penalty functions. Math Program Ser A 96:87–101

Graña Drummond LM, Peterzil Y (2002) The central path in smooth convex semidefinite pro-
gramming. Optimization 51:207–233

Kato T (1970) Perturbation theory for linear operators. Springer, Berlin Heidelberg New York
Lewis AS (1996) Convex analysis on the Hermitian matrices. SIAM J Optim 6:164–177
Nesterov YN, Nemirovski AS (1994) Interior point polynomial algorithms in convex programing.

SIAM, Philapdelphia
Polyak RA (1992) Modified barrier functions (theory and methods). Math Prog 54:177–222
Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton
Seeger A (1997) Convex analysis of spectrally defined matrix functions. SIAM J Optim

7:679–696
Vandenbergue L, Boyd S (1995) Semidefinite programming. SIAM Rev 38:49–95
Xavier AE (1992) Hyperbolic penalization, PhD thesis, COPPE - Federal University of Rio de

Janeiro, Rio de Janeiro, Brazil (in Portuguese)


