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Abstract

The tonal prosodic discontinuity estimation in Spanish is exhaustively modelled using HMM. Due to the high morpho-
logical complexity in Spanish, a relatively coarse grammatical categorization is tested in two sorts of texts (sentences from
newspapers and a theatre play). The estimation of the type of discontinuity (falling or rising tones) at the boundary of
intonation groups is assessed. The HMM approach is tested with: (a) modelling the observation probability with mono-
grams, bigrams and full-window probability; (b) state duration modelling; (c) discriminative analysis of intermediate and
final observation vectors and (d) penalization scheme in Viterbi decoding. The optimal configurations led to reductions of
3% or 5% in error detection. The estimation of the observation probability with monograms and bigrams leads to worse
results than the ordinary full-window probability, although they provide better generalization. Nevertheless, the perfor-
mance of the monograms and bigrams approximation can be enhanced if applied in combination with state duration
constraints.
1. Introduction

The intelligibility and naturalness of a text-to-
speech (TTS) system depend to a great extent on
its prosodic rendering. The main acoustic parame-
ters to be modulated are the intensity, the duration
and the tone or pitch. At the lexical level, prosody is
easily integrated, for example to generate the stress
patterns of isolated words. However, the prosody of
higher linguistic units can not be reduced to a mere
concatenation of lexical patterns. When parsing a
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sentence, a human hearer can recognize a succession
of phrases or clauses relying on acoustic cues that
are typically marked by pauses and tonal variations.
A TTS system should be able to produce such cues
for a better perceived phrasing, with a special regard
to intonation, since it is one of the most salient
aspects.

A major goal of a TTS prosodic component at
the sentence level is to assign a melodic contour to
the sentence, which requires that it is properly seg-
mented in intonation phrases. For some applica-
tions, as dialogue system, where the enunciated
text is controlled by an answering module, the seg-
mentation and the contour of each phrase can be
generated at the source, as an additional input to
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the prosodic component (Kochanski et al., 2003). In
the case of a free-text reading application, the task
requires first to automatically estimate, from the
text only, the expected positions where a proficient
reader would introduce distinctive segmenting cues.
Additionally, a prediction of the specific intonation
patterns at phrase boundaries is much helpful for
the final TTS synthesis.

This paper deals with a corpus based data-driven
estimation of the tonal discontinuities that occur at
the boundaries of intonation phrases. Both the posi-
tion and type of boundary are considered. A Span-
ish corpus was collected and annotated to train a
HMM model that is used to estimate the sought
variables. The technique is extendable to other lan-
guages and can be applied as a first processing step
for unrestricted text applications.

The typical prosodic patterns of Spanish at the
sentence level and the segmentation approaches that
may be applied to estimate them are explained in
Section 2. Section 3 is devoted to the specific
HMM model used in this work. Several experiments
using different configurations of the model and their
results are presented in Section 4. Section 5 provides
some concluding remarks.

2. Modeling prosodic discontinuities

The prosodic model followed in this paper to
describe Spanish intonation at the sentence level is
inspired by the general patterns proposed in (Nav-
arro, 1944). According to Navarro (1944), sentences
are usually divided in intonation groups or melodic

units that do not overlap from sentence to sentence.
The intonation group is the shortest possible speech
segment with individual meaning and with a given
melodic contour. Intonation groups can further be
subdivided into stress groups that depend mainly
on the lexical units of the utterance and on the
focus. Intonation groups generally coincide with
breath groups, defined as the sequence of connected
speech between two pauses. This can be explained
by assuming that intonation groups are undivided
units, so breathing is constrained to take place at
their boundaries. However, breathing itself is not a
prosodic marker and is not reliable enough to be
used for boundary detection purposes. Breathing
is constrained by intonation groups but not com-
pletely determined by them. It must be noticed also
that the length of pauses may certainly be affected
by the occurrence of breathing, which mars their
usefulness to classify boundary types.
According to the Autosegmental-Metrical, AM,
approach, intonation can be described by using an
abstract phonological representation level indepen-
dently of its phonetic implementation details
(Gussenhoven, 2002). An AM model has separate
tiers for segments and tones. The segmental struc-
ture has several hierarchical levels, ranging from
utterances and intonational phrases to syllables
and phonemes. Tones make reference to segments:
in Spanish, pitch accents are associated to syllables
and boundary tones to intonational phrases. This
article deals with the latter hierarchical level. There
is some controversy whether Spanish has only one
level of intonational phrasing or two (Beckman
et al., 2002). Generally, it can be assumed that phras-
ing levels are marked by the intensity of the prosodic
cues. However, such quantitative differences are dif-
ficult to model. In this paper a qualitative approach
considering only a single phrasing level is adopted to
address the segmentation problem. Fig. 1 shows the
intonation contours of several sentences. As can be
seen, some typical patterns are distinguishable. For
example, declarative sentences end with a falling
intonation and their intermediate intonation groups
with a raising intonation.

The ordinary melodic contours of intonation
groups in Spanish are characterized by: an initial
rising until the first stressed syllable or the syllable
following it; then, a more or less uniform intona-
tion; and, depending on the type of intonation
group, different final tonal movements that contain
the main intonation information. In (Navarro,
1944) five such tonal movements were considered:
falling, half-falling, level, half-rising and rising.
However, from the practical point of view, classify-
ing tonal movements in those five categories is a
difficult task. Due to this fact, a more achievable
approach was adopted to recognize only two types
of final tonal movements: falling and rising. In
(Fant, 1984; Quilis, 1993) a similar binary distinc-
tion was adopted. However, it can be argued that
a more detailed specification of the phonetic
description within intonation groups is required
for a final TTS application in order to improve
naturalness. Nevertheless the abstract binary
description proposed here is useful to determine
what type of boundary must be generated.

Pauses are often optional; hence they are unreli-
able segmenting cues. Consequently, rather than
referring to breaks or pauses, as done by well
known segmenting approaches, this paper proposes
to base the analysis on the observed intonation



Fig. 1. Example of intonation contours in Spanish.
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discontinuities. Since there are not systematic differ-
ences at the beginning of Spanish intonation groups,
the discontinuities considered in this work are char-
acterized according to the typical tonal movements
of their final part that are reduced to two cases
(see Fig. 1): first, a falling-tone (ToBI label, L%);
or second, a rising-tone (ToBI label, H%).

Besides the perceptual relevance, tonal aspects of
prosody at the sentence level are also important
because they provide qualitative differences which
allow improving the discrimination of phrase
boundaries. Other prosodic markers such as the
duration of vowels or pauses also contribute to seg-
ment the utterances. However, some studies show
that it is difficult to use them to determine different
boundary types (Garrido et al., 1995). As stated in
(Garrido et al., 1995), ‘‘F0 resets seem to be the only
prosodic cue that behaves in a different way accord-
ing to the type of boundary’’ and ‘‘resets could be
then related to major boundaries’’. Moreover, this
intonation discontinuity is consistent with the
perceived initial rising tonal movement observed in
(Navarro, 1944) at the beginning of intonation
groups.

The purpose of the current paper is to estimate
intonation groups. The phonetic detail of how to
generate them, including other prosodic markers
besides tone, namely duration and amplitude, are
out of the scope of this study. Moreover, a final
TTS generation could be carried out using a rule
based approach adapted to the target language or
dialect. The underlying assumption is that the
knowledge about the type of boundary should sub-
stantially help to determine all the other relevant
parameters. The study presented in (Sosa, 1999)
can contribute to define those parameters. Particu-
larly, the use of L tones requires a detailed predic-
tive model as described in (Prieto, 1998).

2.1. Automatic sentence segmentation approaches

for TTS

In this paper, segmentation is defined as the
labelling procedure of each possible place of the text
(each word) to indicate the boundary condition. In
contrast to previous published approaches, the
model proposed in this paper does not deal with a
two-class pause problem, break and non-break, but
classifies word positions according to: label 0, non-
discontinuity; label 1, falling-intonation ending;
and, label 2, rising-intonation ending.

2.1.1. Knowledge-based approaches

The problem of automatically segmenting a text
into intonation groups can be solved using a knowl-
edge-based approach relying on rules generated by
case dependent analysis (Anderson et al., 1984). A
syntactic parser may be used to enhance this analy-
sis (Atterer, 2002). The underlying assumption is
that the prosodic segmentation reflects the syntactic
structure of the text. However, the semantic and
pragmatic aspects are very relevant but they can
hardly be modelled. The rules try to describe the
typical boundary conditions of the segments. Never-
theless, the detailed linguistic knowledge required
by case-dependent approaches is difficult to



Table 1
Punctuation marks and intonation discontinuities

Punctuation marks Intonation discontinuity

‘‘!’’ ; ‘‘.’’ ; ‘‘00.’’ ; ‘‘).’’ ; ‘‘-.’’ Falling-tone ending
‘‘?’’ Raising-tone ending
‘‘,’’ ; ‘‘;’’ ; ‘‘:’’ ; ‘‘. . .’’ , ‘‘00,’’ These punctuation marks

do not define the intonation
curve univocally
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manage, which in turn may lead to a lack of robust-
ness in real TTS systems. For instance, Spanish
shows a highly complex morphology where verbs
present many declinations. In contrast to knowl-
edge-based approaches, trainable data-driven mod-
els are generally preferred in such applications. A
comparative study for Spanish shows that data-dri-
ven techniques can provide good results (Agüero
and Bonafonte, 2003).

2.1.2. The CART model

Classification and regression trees, CART (Brei-
man et al., 1984), have been applied successfully
to this problem. A CART model is generated by
starting with a single node to induce a full decision
tree after a succession of appropriate incremental
expansions of the leaves. Each node of the tree
implements a simple partitioning rule using features
such as part-of-speech tags and punctuation. This
approach has been used for a local prediction of
the position of pauses in Spanish (Hirschberg and
Prieto, 1996). The main advantage of CART is the
fact that it allows to handle symbolic features. Also,
due to their hierarchical structure, in spite of a
potentially very large combinatory, CART leads
to compact solutions that can be interpreted as
nested if-then-else rules.

2.1.3. Hidden Markov models (HMM)

HMM has widely been employed in speech rec-
ognition. HMM is a stochastic model where hidden
sequences of states, resulting from a Markovian
process, generate a sequence of observable outputs
according to a probability distribution (Huang
et al., 1990; Jelinek, 1998). In (Black and Taylor,
1997) the problem of estimating phrase boundaries
was addressed with HMM. Two states were consid-
ered: break and non-break. Each observation is a
vector that represents the syntactic context of a
word. A typical choice for the observation vector
is a narrow window of lexical items centred on the
position of the word where the boundary state is
evaluated. The components are chosen from a finite
set of lexical tags, which implies a finite, although
large, set of possible observations. The output prob-
ability is modelled with a discrete probability distri-
bution. The sequence of breaks and non-breaks is
estimated by using the Viterbi algorithm. The most
important advantage of HMM over CART is the
fact that the optimal assignment is evaluated over
the whole utterance rather than locally (Black and
Taylor, 1997).
2.2. Automatic part-of-speech (POS) tagging

for TTS

Automatic sentence segmentation approaches for
TTS require a proper linguistic tagging of the text in
order to characterize the syntactic contexts. Each
lexical unit of the text is labelled with the corre-
sponding lexical category. Words equally labelled
are expected to have the same grammatical behav-
iour. As a result of the automatic tagging process,
each sentence is represented by the sequence of the
lexical categories assigned to the words.

2.2.1. Punctuation marks and prosody

Punctuation marks do not belong to any syntac-
tic class, but from a prosodic point of view they help
to read a text and can be used as predictors of into-
nation group boundaries. However, in some cases
the punctuation mark does not determine the into-
nation discontinuity univocally and further model-
ling is also required. The deterministic rules for
intonation discontinuities extracted from the corpus
employed here are summarized in Table 1. The
problem of prosody discontinuity estimation within
punctuation marks is always much more difficult
and requires a more complex analysis. As can be
seen in Table 1, some punctuation marks (e.g. ‘‘!’’,
‘‘?’’, etc.) univocally determine the pitch contour
in the sentence. In contrast, the intonation disconti-
nuities are not deterministically predicted when the
sentences are ended by the following punctuation
marks: ‘‘;’’, ‘‘,’’ and ‘‘:’’.

In this paper, text is first divided into segments
bounded by punctuation marks, which in turn
define the type of intonation discontinuity in some
cases according to deterministic rules. Then, a
HMM based system is employed to break down
the bounded segments into sequences of intonation
groups and to evaluate the pitch curve within each
group. Moreover, the system also estimates the into-
nation curve in those cases when the punctuation
mark provides ambiguous information about the
intonation curve as shown in Table 1. The HMM
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techniques employed in the results reported here are
described in the following section.

3. HMM based prosodic discontinuity estimation

In contrast to Black and Taylor (1997), the
HMM system employed here makes use of three
states to model the intonation boundary conditions
(Fig. 1): 0, non-discontinuity; 1, falling-tone ending;
and 2, raising-tone ending. The HMM topology
employed to model the prosody discontinuities men-
tioned above is shown in Fig. 2. According to Fig. 1,
the states correspond to: state 0 (S0), absence of
intonation discontinuity; state 1 (S1), falling-tone
discontinuity; and, state 2 (S2), raising-tone discon-
tinuity. The HMM is defined by k = (A,B,p,/)
where

A ¼ ai;j ¼ Probðstate j at instant tjstate i
�

at instant t � 1Þg
B ¼ biðOtÞ ¼ ProbðOtjstate iÞf g
p ¼ pi ¼ Probðstate i at t ¼ 1Þf g
/ ¼ /i ¼ Probðstate i at t ¼ T Þf g

where T is the length of the observation sequence
O = [O1,O2, . . . ,Ot, . . . ,OT] that corresponds to a
text string or sentence after parameterization. As
mentioned above, the proposed technique is tested
with a Spanish database and the text strings or sen-
tences correspond to the text between two consecu-
tive punctuation marks as mentioned in Section
2.2.1. The parameterization procedure is described
as follows:

(P1) Every word and punctuation mark in the text
string is classified according to a lexical con-
vention. Consider W = [W1,W2, . . . ,Wt, . . . ,
WT] the sequence of words including punctua-
tion marks at the borders. After classification
W is represented by C = [C1,C2, . . . ,Ct, . . . ,
CT], where Ct denotes the category that corre-
spond to Wt. Eight categories were employed.
0 21

Fig. 2. HMM topology employed to model the intonation
discontinuities in Spanish.
In contrast to English, Spanish morphology is
very complex. Particularly, verbs in Spanish
have too many conjugations, which in turn
makes the accurate classification of every
word a difficult task from the automatic imple-
mentation point of view.

(P2) The string of categories resulted from step
(P1) is divided in windows. The window at
instant t, Ot, is defined as Ot = [Ct�1,Ct,Ct+1].
As mentioned above, eight categories were
employed, which leads to 83 = 512 possible
windows.

Given a observation sequence O = [O1,O2, . . . ,
Ot, . . . ,OT] and the HMM parameters k = (A,B,
p,/), the Viterbi algorithm (Huang et al., 1990; Jeli-
nek, 1998) is employed to estimate the optimum
sequence of states S* = [S1,S2, . . . ,St, . . . ,ST], where
St can be 0, 1 or 2 as described above and in Fig. 2.

3.1. Text tagging

The classification procedure described above is
based on a POS tagging of the texts. The grammat-
ical tags are required in the training and testing
procedures which implies that the tagging must be
carried out automatically and efficiently. There is a
trade-of between the number of categories used to
tag the texts, and the number of parameters that
need to be estimated in the observation probability.
As a consequence, a very detailed categorization
may require a large amount of training data to reli-
ably estimate the output probability. As mentioned
above, Spanish has a complex morphology which
makes the detailed text tagging a difficult task. To
avoid these problems a relatively coarse categoriza-
tion was chosen in this paper.

A frequency analysis of the words of the training
corpus, in accordance to Zipf law, showed that a
small subset of the words accounts for a substantial
part of the occurrences. It was found that the most
frequent occurrences generally belong to a closed set
of grammatical words (by opposition to content

words) that can be collected from a static lexicon.
Under the assumptions that prosody reflects syntax
and that the syntactic outline of a typical sentence
can be deduced mainly from the grammatical
words, the tagging was implemented by a look-up
table that relates words to syntactic or grammatical
functions. Words that do not belong to any cate-
gory in the table are classified as a non-defined cate-
gory. Each word and punctuation mark in the text
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string is automatically classified according to one of
the following categories:

Class 0: Non-defined category.
Class 1: Punctuation marks that do not define the

intonation curve (e.g. comma, colon,
semicolon).

Class 2: Punctuation marks that define the intona-
tion curve (e.g. ‘‘?’’, ‘‘!’’, full stop, etc.).

Class 3: Word ‘‘que’’.
Class 4: Demonstrative, possessive and indefinite

articles and adjectives (e.g. ‘‘el’’, ‘‘los’’,
‘‘un’’, ‘‘una’’, ‘‘mi’’, ‘‘tu’’, ‘‘nuestro’’,
‘‘algún’’, ‘‘cada’’, etc.).

Class 5: Conjunctions (e.g. ‘‘y’’, ‘‘pero’’, ‘‘o’’, etc.).
Class 6: Non-reflexive pronouns (e.g. ‘‘yo’’, ‘‘tú’’,

‘‘él’’, etc.).
Class 7: Prepositions (e.g. ‘‘de’’, ‘‘a’’, ‘‘con’’, etc.)

It is worth emphasizing that the polyvalent word
‘‘que’’ is considered apart due to its high frequency
in Spanish texts. Finally, grammatical word based
tagging is less sensitive to misclassification errors
and could also be applicable to other languages.
For instance, the morphological variability is very
high in Spanish. In contrast, although this variabil-
ity is much lower in English, content word classifica-
tion may be a significant source of mistakes due to
the fact that it depends on the semantic context,
which in turn is difficult to model.
3.2. Observation probability estimation with

monograms and bigrams

Modelling the observation probability bi(Ot) =
Prob(Otjstate i) requires a massive training database
as the number of grammatical categories increases.
For instance, the parameterization procedure
employed here is based on three-word windows. If
eight categories are used, the HMM observation
probability output is represented by a discrete prob-
ability distribution composed of 83 = 524 elements.
To counteract this fact, in this paper the output
probability was alternatively modelled with mono-
grams and bigrams that reduce the requirements
on size of the training database.
3.2.1. Using monograms approximation for the

observation probability

Considering that Ot = [Ct�1,Ct,Ct+1] and assum-
ing that words within a window are independent,
bi(Ot) = Prob(Otjstate i) could be approximated as
follows:

biðOtÞ ¼ ProbðCt�1;Ct;Ctþ1jstate iÞ
ffi ProbðCt�1jstate iÞ � ProbðCtjstate iÞ
� ProbðCtþ1jstate iÞ ð1Þ

where each term of the multiplication can be calcu-
lated independently of the others. The estimation of
bi(Ot) according to (1) requires less training data.
However, the independence assumption is probably
too strong and inaccurate in some cases.

3.2.2. Using bigrams approximation for the

observation probability

When compared to monograms, bigrams soften
the independence assumption but require more
training data. Employing the Markovian approxi-
mation, bi(Ot) could be approximated as follows:

biðOtÞ ¼ ProbðCt�1;Ct;Ctþ1jstate iÞ
ffi ProbðCt�1jstate iÞ
� ProbðCt�1;Ctjstate iÞ
� ProbðCt;Ctþ1jstate iÞ ð2Þ
3.3. State duration constraints

The probability transitions in HMM are defined
by constants that lead to geometric state duration
distributions in the ordinary Markov chains. How-
ever, the location of the pauses or intonation
discontinuities could be related to the length of the
breath or intonation groups. This fact suggests that
state duration constraints could improve the accu-
racy of the prosodic discontinuity estimation. This
attempts to model the fact that the speaker’s breath-
ing capacity may have an effect on the position of
prosodic breaks.

As proposed in (Yoma et al., 2001), in this paper
state duration modelling is also included in the
Viterbi algorithm by means of the generalization
of transition probabilities:

as
i;j ¼ Probðstþ1 ¼ jjst ¼ st�1 ¼ � � � ¼ st�sþ1 ¼ iÞ ð3Þ

where s is the number of frames in state i up to time
t. Consider that di,j(s) is the probability of duration
in state i is equal to s and the following state is j. If
i = 0, then j = i = 0, or j = 1 or j = 2 given the
topology shown in Fig. 2. Notice that state 1 and
2 have duration equal to 1 by definition:
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d1;0ðsÞ ¼ d2;0ðsÞ ¼ dðsÞ ð4Þ
where d(s) is the Dirac impulse function. As a con-
sequence, the transition probabilities as

0;j and as
0;0

can be estimated by Yoma et al. (2001):

as
0;1 ¼

d0;1ðsÞ
D0ðsÞ

ð5Þ

as
0;2 ¼

d0;2ðsÞ
D0ðsÞ

ð6Þ

as
0;0 ¼

D0ðsÞ � d0;1ðsÞ � d0;2ðsÞ
D0ðsÞ

ð7Þ

where D0(s) is the probability of state 0 being active
for t P s:

D0ðsÞ ¼
X1
t¼s

½d0;1ðtÞ þ d0;2ðtÞ� ð8Þ

From (4) and the topology in Fig. 2, it is easy to
show that:

as
1;1 ¼ as

2;2 ¼ 0; for any s ð9Þ

as
1;0 ¼ as

2;0 ¼
1; if s ¼ 1

0; if s P 2

�
ð10Þ

The state duration distributions d0,1(s) and d0,2(s)
were modelled with the discrete gamma distribution
given by

d0;jðsÞ ¼ K0;j � e�a0;j�s � sp0;j�1 ð11Þ

where j = 1 or j = 2, a0,j > 0, p0,j > 0 and K0,j a
normalizing term. The mean duration (E0,j(s)) and
the variance (Var0,j(s)) were computed by means
of directly observing the training data. The param-
eters a0,j and p0,j were estimated by

a0;j ¼
E0;jðsÞ

Var0;jðsÞ
ð12Þ

p0;j ¼
E2

0;jðsÞ
Var0;jðsÞ

ð13Þ

In contrast to the conditional transition probability
in (3), the transition probabilities in the ordinary
HMM topology are represented by constants: a0,0,
a0,1 and a0,2. Again, observe that a1,0 = 1, a2,0 = 1
and a1,1 = a2,2 = 0.

As discussed above, every text segment is broken
down into intonation groups. Those segments are
always ended by punctuation marks. As a conse-
quence, punctuation marks coincide with pauses
and determine the intonation curve in some cases.
To model this situation the state duration distribu-
tions d0,1(s) and d0,2(s) were normalized at OT,
where T is the length of the observation sequence,
according to:

d0;1ðsÞ þ d0;2ðsÞ ¼ 1 ð14Þ
3.4. State parameters and punctuation marks

The observation probability distribution in states
1 and 2 is strongly affected by punctuation marks
that determine the intonation discontinuity in some
cases as mentioned in Section 2.2.1. It was observed
that punctuation marks tend to dominate the esti-
mation of bi(Ot) = Prob(Ot j state i.) and mask the
appearance of intonation discontinuities within the
sentence. To overcome this limitation, two output
probabilities were defined for every state: one
between marks; and, other at the border of a sen-
tence where the end punctuation mark is included
in the last observation vector OT, where T is the
length of the sentence.

3.5. Penalizing states 1 and 2 in the Viterbi

algorithm

The a priori probability of intonation discontinu-
ities on an inner word is much lower than the a
priori probability of not having a pause. To com-
pensate this fact, an additive penalization coeffi-
cient, in the log-likelihood domain, was introduced
in the Viterbi algorithm to penalize a transition
from state 0 to state 0. This coefficient substantially
improved the accuracy of the intonation discontinu-
ity HMM estimates.

4. Experiments and results

In order to evaluate the methods presented here,
two types of text were employed to test the
approach in different cases: 434 and 412 sentences
from local newspapers and a theatre play, respec-
tively, were selected. Theatre plays offer a greater
variety of prosodic patterns, especially compared
to the strong declarative trend of news texts. The
segregate analysis based on more than one type of
data is not a common practice in the specialized
literature. This strategy allows evaluating methods
and techniques in different contexts and should lead
to more conclusive results.

The following procedure was adopted to anno-
tate the texts: first the texts were recorded by a pro-
fessional actress who also teaches speech techniques
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in a drama school; second, the database was broken
down into sentences bounded by punctuation
marks; then, the segments were manually analysed,
classified and labelled according to the pitch con-
tours shown in Fig. 3. The recorded sentences were
processed to extract the fundamental frequency F0
along the utterances by employing ‘‘Speech Filing
System’’ (Huckvale, 2001). Then, unvoiced seg-
ments were linearly interpolated to obtain a contin-
uous F0 curve. Later, the pitch contour was
estimated by band-pass filtering the F0 curve. The
filter was designed to reduce the effect of tonal
movements at very short and long temporal scales,
such as syllable stress and the general falling ten-
dency observed along intonation groups (Prieto,
1998). The main difficulty was to isolate the sought
sentence level intonation contours from word stress.
This is why a human intervention was needed. The
decision of rising or falling intonation was made
according to both the pitch curve and a direct
perceptual judgement of the putative boundaries.
It is worth emphasizing that rather than using a gen-
eric, standard and elaborate approach, such as ToBI
(Silverman et al., 1992), a straightforward and sim-
plified word aligned markup was applied. The loca-
tion of each detected final tonal movement is
aligned to the word were the phenomenon takes
place. As a final step, the intonation employed by
the actress was revised and validated by two male
speakers that had not pursued any formal training
on vocal techniques. Despite this fact, their knowl-
edge about the speech production procedure was
enough to allow them to discriminate between rising
and falling intonation. The purpose of this revision
was to guarantee that the database could be consid-
ered representative of ordinary prosodic features.
‘‘Vocal technique’’ denotes here the skill to optimize
the use of lungs capacity to increase the breath
group length. The validation process is described
as follows: first, each sentence was read by both
validation speakers in order to perceptually estimate
the intonation discontinuities; second, these discon-
tinuities were compared with those obtained by the
professional actress. As a result of this final stage, a
. Voy a Ir a
2 0 7 0 7

[2,0,7] [0,7,0] [7,0,7] [0,7,0]

0 0 0 0

Text:

Categories:

Observations:

States:

Fig. 3. Example of observati
low percentage of labelling was modified. In fact, it
was observed that professional speakers are able to
increase the duration of breath groups regardless of
punctuation marks.

Each word was associated to a label that indi-
cates the prosodic tonal variation observed at its
end (Fig. 3): 0, no tonal discontinuity; 1, falling-tone
ending; and 2, raising-tone ending. Cases 1 and 2
indicate that the corresponding word ends an into-
nation group. It is worth emphasizing that label 0
is never observed at the end of an intonation group.

The newspapers and theatre play data were split
into training and testing databases: training, 237
and 202 sentences, respectively; testing, 197 and
210 sentences, respectively. As a consequence two
HMMs were trained: one with the newspaper data
and the other with the theatre play text. After train-
ing, both testing databases were processed by the
corresponding HMM based system to evaluate the
intonation discontinuities. The estimates were com-
pared to the reference labels and the following rates
were computed:

Correct position within segments (CPS): percent-
age of discontinuities positions correctly esti-
mated within the segments without taking into
consideration the type of the discontinuities (i.e.
allowing confusions between labels 1 and 2).
Correct type within segments (CTS): percentage
of labels 1 and 2 correctly estimated within the
segments.
Correct type at the end of segments (CTE): per-
centage of labels 1 and 2 correctly estimated at
the end of the segments.
Correct position (CP): percentage of discontinu-
ities positions correctly estimated considering
both inner and end positions, without taking into
consideration the type of the discontinuities.
Correct type (CT): percentage of labels 1 and 2
correctly estimated considering both inner and
end positions.
Non-discontinuity error within segments
(NDES): percentage of labels 0 incorrectly detec-
ted as 1 or 2 within the segments.
Santiago en la tarde .
0 7 4 0 2

[7,0,7] [0,7,4] [7,4,0] [4,0,2]

2 0 0 1

on and state sequence.
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The rates related to inner positions (i.e. CPS,
CTS and NDES) depend only on the HMM esti-
mates. On the other hand, CTE strongly depends
on the deterministic rules associated to punctuation
marks. Finally, CP and CT are a function of both
HMM estimates and deterministic rules. It is worth
highlighting that the rates that do not take into con-
sideration the misclassification between label 1 and
2 (i.e. CPS, CP and NDES) allow to compare the
results presented here with those shown in the liter-
ature on the problem of pause detection.

As mentioned above, in this paper HMM is sys-
tematically evaluated as a tool to estimate intona-
tion discontinuities and several configurations are
tested: C1, corresponds to the baseline system where
the observation probability output is directly com-
puted as a discrete probability distribution com-
posed of (No. of grammatical categories)window size

elements as mentioned in Section 3; C2, the observa-
tion probability is evaluated with the monogram
approximation as described in Section 3.2.1; C3,
the observation probability is evaluated with the
bigrams approximation as described in Section
3.2.2; C4, indicates that temporal restrictions were
introduced in the Viterbi algorithm as explained in
Section 3.3; and C5, two output probabilities
were defined at state 1 and 2 as described in Section
3.4.
Fig. 4. CPS vs. penalization coefficient in Viterbi with news data: C
In order to evaluate the optimum penalization
coefficient, the objective function

E2 ¼ d � ð1� CPSÞ2 þ ð1� dÞ �NDES2 ð15Þ
was maximized. CPS and NDES are defined above,
and d is the percentage of intonation discontinuities
in the training texts. In the news text d = 2.2%, and
in the theatre play sentences d = 6.9%. This differ-
ence in d is certainly a result of the speaker’s interpre-
tation skills. It is worth emphasizing that (15) is the
weighted Euclidean distance to the optimum point
[(1 � CPS) = 0; NDES = 0] where the weighting fac-
tors are d and 1 � d. This error measure attempts to
give a higher weight to the error 1 � CPS than to
NDES. Figs. 4 and 5, obtained with news sentences,
show CPS and NDES vs. the penalization coefficient,
respectively, with the following combined configura-
tions: C1C4C5; C2C4C5; and, C3C4C5. As can be
seen, the lower the penalization coefficient the higher
CPS and NDES. Surprisingly, monograms and
bigrams estimations of the observation probability,
C2 and C3, respectively, give higher CPS (and
CTS) than C1 in Fig. 4 when the penalization coeffi-
cient is low. This is due to the fact that C2 and C3 are
less precise than C1 but they provide better general-
ization capability. This generalization becomes more
important when the penalization increases in module
and the influence of the observation probability is
1C4C5 (solid); C2C4C5 (dotted); and C3C4C5 (dot-dashed).



Fig. 5. NDES vs. penalization coefficient in Viterbi with news data: C1C4C5 (solid); C2C4C5 (dotted); and C3C4C5 (dot-dashed).
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less relevant. On the other hand, NDES (Fig. 5) also
increases because there are more detected discontinu-
ities and the probability of misclassification of a non-
pause also increases. However, the increase in CPS is
higher than in NDES. This behaviour is emphasized
in the sentences from theatre play, as can be seen in
the ROC curves of Figs. 6 (news data) and 7 (theatre
play data) that present CPS vs. NDES. According to
these figures, the difference between C1, C2 and C3 is
lower in theatre than in news text.

In the ROC curves shown in Figs. 6 and 7, the
best method is the one that provides the dominant
curve, i.e. the highest CPS for a given NDES.
According to these figures, the observation probabil-
ity estimation C1 gives usually the lowest discontinu-
ity detection error for a given NDES. Nevertheless,
C1 is comparable to C2 and C3 if NDES is higher
than 20% in the news sentences and higher than
10% in the theatre play text. Moreover, the improve-
ment due to C1 is less significant in Fig. 7 where the
text data corresponds to a theatre play. As men-
tioned above, C2 and C3 are less precise than C1
but they provide better generalization capability.
This generalization becomes more important when
the penalization increases in module and more dis-
continuities tend to be inserted. Due to the fact that
the percentage of pauses in theatre play data is
higher than in news sentences, this higher generaliza-
tion capability provided by monogram and bigrams
output probability is more noticeable in text from
theatre play (i.e. where the speaker introduced more
intonation discontinuities).

The C1 vs. C1C4, C2 vs. C2C4 and C3 vs. C3C4
configurations were compared in Tables 2 and 3.
According to these results, the introduction of tem-
poral restrictions (C4) was effective to reduce the
cost function E defined in (15) with news and the-
atre play sentences. As can be seen in Tables 2
and 3, the best improvement takes place with C2
(5% or 6% in E) where the observation probability
was estimated with monograms. However, when
applied in combination with C5, the average reduc-
tion in E due to C4 was approximately equal to 7%
and 11% with monogram (C2) and bigrams (C3),
respectively.

Also in Tables 2 and 3, the effect of C5 on its own is
hardly significant. This is due to the fact that employ-
ing two observation probabilities to discriminate
between intermediate and end observation vectors
is not relevant if penalization coefficient is optimized.
Notice that every row in Tables 2 and 3 are optimized
with respect to this penalization factor. As a conse-
quence, discriminating between intermediate and
end vectors enhances the probability of observing
an intonation discontinuity. This is the same effect
achieved with the penalization coefficient, which in



Fig. 6. Receiver operating characteristic (ROC) curves for CPS vs. NDES with news data: C1C4C5 (solid); C2C4C5 (dotted); and
C3C4C5 (dot-dashed).

Fig. 7. Receiver operating characteristic (ROC) curves for CPS vs. NDES with theatre play data: C1C4C5 (solid); C2C4C5 (dotted); and
C3C4C5 (dot-dashed).
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turn ends up masking C5. Finally, with C1, the ten-
dency observed when C4 was applied in combination
with C5 is less evident than the improvements
achieved with C4 only.



Table 2
Results with news text (%)

Model CPS
(%)

CTS
(%)

CTE
(%)

CP
(%)

CT
(%)

NDES
(%)

E

c1 31.82 28.79 77.34 82.89 71.10 3.52 0.1078
c2 25.76 21.21 76.56 81.37 68.82 6.96 0.1307
c3 13.64 9.09 76.56 78.33 65.78 3.22 0.1331
c1c4 31.82 30.30 75.00 82.89 70.34 3.37 0.1073
c2c4 21.21 21.21 76.56 80.23 68.82 4.03 0.1245
c3c4 15.15 15.15 71.09 78.71 64.64 3.30 0.1311
c1c5 31.82 30.30 77.34 82.89 71.48 3.52 0.1078
c2c5 21.21 21.21 52.34 80.23 57.03 6.15 0.1327
c3c5 19.70 19.70 53.12 79.85 57.03 4.47 0.1280
c1c4c5 40.91 39.39 75.00 85.17 72.62 5.64 0.1045
c2c4c5 15.15 15.15 71.09 78.71 64.64 1.9 0.1284
c3c4c5 25.76 25.76 71.09 81.37 67.30 5.27 0.1228

Every row is optimized with respect to the penalization coefficient
to minimize the error function E.

Table 3
Results with theatre play text (%)

Model CPS
(%)

CTS
(%)

CTE
(%)

CP
(%)

CT
(%)

NDES
(%)

E

c1 47.73 23.86 77.86 84.41 65.76 10.41 0.1697
c2 28.41 7.95 77.86 78.64 61.02 5.75 0.1954
c3 30.68 7.95 77.86 79.32 61.02 8.13 0.1977
c1c4 44.32 25.00 77.86 83.39 66.10 7.21 0.1615
c2c4 40.91 12.50 63.57 82.37 55.59 10.05 0.1826
c3c4 38.64 12.50 63.57 81.69 55.59 11.96 0.1978
c1c5 43.18 26.14 62.86 83.05 59.32 8.04 0.1677
c2c5 34.09 18.18 62.14 80.34 56.61 9.41 0.1950
c3c5 28.41 15.91 62.86 78.64 56.27 5.02 0.1935
c1c4c5 40.91 20.45 62.86 82.37 57.63 6.58 0.1672
c2c4c5 43.18 19.32 62.86 83.05 57.29 8.95 0.1720
c3c4c5 46.59 19.32 62.86 84.07 57.29 9.32 0.1662

Every row is optimized with respect to the penalization coefficient
to minimize the error function E.
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The ROC curves that show CTS vs. NDES with
C1, C1C4, C1C4, C1C5 and C1C4C5 are shown in
Figs. 8 and 9 with news and theatre data, respec-
tively. As can be seen in Fig. 8, C1C4, C1C5 and
C1C4C5 are clearly superior to the base line config-
uration C1. Surprisingly, the combination of C4 and
C5 does not lead to better results. This could be due
to fact that C4 and C5 are complementary methods
and the NDES errors introduced by both
approaches are not completely overlapped. This
Fig. 8. Receiver operating characteristic (ROC)
behaviour is even more acute in Fig. 9 where
C1C4C5 provided a lower performance than C1C4
and C1C5. Notice that the best result is achieved
with C1C4 when NDES is low, although C1C5 is
also comparable to C1C4 when NDES increases.

The results presented here suggest that the fea-
ture vectors employed by the HMM based system
did not provide enough information to reliably pre-
dict the type of boundary. The feature vectors
depend on the part-of-speech (POS) tagging and
curves for CTS vs. NDES with news data.



Fig. 9. Receiver operating characteristic (ROC) curves for CTS vs. NDES with theatre play data.
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the window size. Adopting a more detailed POS
could lead to a higher accuracy in the estimation
intonation discontinuity. However, increasing the
width of the local analysis window not necessarily
should result on a lower estimation error. The size
of the training database exponentially increases with
the size of the window. This problem is even more
severe if a detailed POS tagging is adopted.

5. Conclusions

In this paper the intonation discontinuity detec-
tion in Spanish was methodically studied using
HMM. A relatively coarse grammatical categoriza-
tion was employed within two types of texts
(sentences from newspapers and a theatre play) read
by the same speaker with different styles. The
Viterbi-based estimation algorithm also evaluated
the type of discontinuity at the boundary of the
intonation groups. The HMM observation proba-
bility was modelled with monograms and bigrams,
besides the ordinary full-window probability, to
soften the requirements concerning the database
size. State duration modelling was applied to the
three-state topology employed here. Also, interme-
diate and final observation vectors were separately
analysed from the observation probability and state
duration constraints points of view. Finally, a
penalization coefficient in the Viterbi decoding was
also evaluated with all the configurations tested in
this paper.

The results presented here suggest that state dura-
tion constraints can lead to improvements of 5% or
6% in a function error that incorporates the error in
discontinuity and non-discontinuity detection. Also,
both types of error are strongly affected by the penal-
ization coefficient whose optimal value is dependent
on the configurations employed. Moreover, an inter-
action among the approaches tested here was
observed. For instance, the discrimination of inter-
mediate and final observation vectors is usually
positive but interferes with the Viterbi penalization
coefficient and does not necessarily lead to better
results if applied in combination with state duration
constraints. The optimal configurations led to reduc-
tions of 3% and 5% with news and theatre text,
respectively, when compared to the baseline system.
Finally, the estimation of the observation probability
with monograms and bigrams leads to worse results
than the ordinary full-window probability, although
they provide better generalization capability.
However, the result of monograms and bigrams
approximation can be improved when applied in
combination with state duration constraints. It is
worth emphasizing that monograms and bigrams
estimations could be employed to address the
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problem of evaluating observation probability of
larger windows.

The results show that the type of a prosodic
boundary is much more difficult to predict than
the position of this discontinuity. This must be
due to the fact that the short-term analysis based
on the three-element-window used by the HMM
system does not provide enough information. A
high accuracy estimation of intonation discontinu-
ity would only be achieved by employing a global
structure knowledge that can not be determined
locally. Particularly, according to Navarro (1944)
utterances are divided in tensive and distensive
branches with contrasted rising and falling bound-
ary tones. Nevertheless, unravelling such global
structure is a task that could be beyond the auto-
matic procedures employed here. Semantic and
pragmatic modelling are the missing components
that can certainly play a key role in that direction.
A relatively better performance was achieved with
the newspaper sentences, which can be explained
by their more uniform grammatical structure and
more neutral reading style.

The task addressed in this paper is very difficult.
It is worth emphasizing that the prosodic segmenta-
tion provided by human readers is constrained by
the syntax of the text. However, actual segmenta-
tion also depends on semantic and pragmatic
factors, as well as the reader’s preferences. Many
places where syntactic constraints allow to intro-
duce a non-mandatory segment boundary are not
chosen to be emphasized, and the readers’ decisions
are not necessarily consistent. Consequently, several
correct segmentations could be possible depending
on the text. Due to the fact that in this paper the
prosodic boundaries are estimated only from syn-
tactic information, and validated using a single
reading as a reference, the method is prone to gen-
eralization errors. The intonation discontinuity
detection could be improved by incorporating lan-
guage modelling that takes into account implicit
contextualized semantic knowledge. Finally, the
results discussed here could certainly be generalized
to other languages.
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