
Designing a product family of meshing tools

Marı́a Cecilia Bastarrica*, Nancy Hitschfeld-Kahler

Computer Science Department, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile

Abstract

Applying software engineering concepts can improve the quality of any software development, and this is even more dramatic for

complex, large and sophisticated software, such as meshing tools. Software product families are series of related products that make intensive

reuse of already developed components. Object-oriented design promotes reusability, so it is specially suited for designing the structure of

product families. In this paper we present an object-oriented design of a product family of meshing tools, where all family members share the

software structure. By instantiating the structure with particular algorithms and parameters, we can easily produce different tools of the

family. A good family design allows us not only to combine existing algorithms but also to easily incorporate new ones, improving software

family evolution. We show how the family design is used for the generation of finite element and finite volume meshing tools, as well as a

new tool for image processing.

Keywords: Meshing tools; Object-oriented design; Software product family
1. Introduction

Software engineering has matured as a discipline in the

last 30 years; it deals with techniques, methods and

methodologies for developing good quality software.

Developing complex software requires a software engin-

eering approach, otherwise development usually gets out of

control.

Software reuse is currently a trend in software develop-

ment that promotes productivity and high quality [21].

Software already developed and used can be incorporated in

new systems taking advantage of the savings in develop-

ment time and costs, and also counting on the properties of

the reused parts [7]. Complex systems could get the most

out of software reuse: very sophisticated algorithms need to

be developed only once, highly qualified people are paid for

doing the work once and then it can be reused in several

products, and debugging is mostly reduced to the task of

integration tests because integrated components are already

tested. Meshing tools are a very clear example of complex
* Corresponding author. Tel.: C56 267 843 65; fax: C56 268 955 31.

E-mail addresses: cecilia@dcc.uchile.cl (M.C. Bastarrica), nancy@

dcc.uchile.cl (N. Hitschfeld-Kahler).
systems that could be benefited with the reuse-oriented

development approach and it is shown in this paper. It is not

usual in meshing tool development to have a systematic

software reuse approach, even though ad hoc reuse is quite

common. This practice allows developers to identify

components that are common and potentially reusable in

successive versions and also in different but related

products.

The development of meshing technologies has become

an intense theoretical and practical research area. The study

of mesh generation issues, initially tackled by engineers,

physicists, end-users in general and some mathematicians,

has become also a field of interest for computational

geometers, computer scientists and interdisciplinary teams

both in academic and applied research centers.

In spite of its complexity, and perhaps due to its

complexity, only in the last years the development of

meshing software has been researched from the software

engineering point of view mainly applying object-oriented

design and programming. Some of the interesting published

work include the development of a software environment

for the numerical solution of partial differential equations

(Diffpack) [6], the design of generic extensible geometry

interfaces between CAD modelers and mesh generators

[17,20,25,28], the design of object-oriented data structures

and procedural classes for mesh generation [19],

http://www.elsevier.com/locate/advengsoft

M.C. Bastarrica, N. Hitschfeld-Kahler2
the computational geometry algorithm library CGAL [9],

the definition of an optimal OO mesh representation that

allows the programmer to build efficient algorithms

(AOMD) [22], and algorithms that can be used indepen-

dently of the concrete mesh representations [3], and a tool to

support these algorithms (GrAL, Grid Algorithms Library)

[4]. More recently, the use of formal methods for improving

reliability of mesh generation software has also been

addressed [8]; here, algebraic specifications are used in

order to produce reliable components that could be used to

build mesh generation software.

Several techniques for the refinement and improvement

of meshes in two and three dimensions have been

considered in the last 20 years. In particular, the use of

two related mathematical concepts-the longest-edge propa-

gation path of a triangle and its associated terminal-edge-,

have allowed the development of algorithms for dealing

with general aspects of the triangulation problem: triangu-

lation refinement problem, triangulation improvement

problem, and automatic quality triangulation problem [23,

24]. These mesh concepts have been later applied for the

improvement of obtuse angles [13,14], as well as for the

generation of approximate quality triangulations [26].

In this work we take advantage of our research

experience in the field of meshing, which includes the

development of algorithms and of several prototypes tested

in an academic setting [13,14,26], as well as the develop-

ment of an object-oriented mesh generator for semiconduc-

tor device simulation [12]. All these independent efforts are

combined in the tool family we are presenting.

This paper describes the design of a family of object-

oriented meshing tools for the generation of 2D triangu-

lations based on the Lepp-concept. One of the most

important requirements of this meshing tool family is

extensibility on several aspects that can evolve: strategies

for the generation of an initial mesh, new refinement and/or

improvement algorithms based on the Lepp-concept,

criteria for refinement or improvement of a mesh, and

strategies for the generation of the final mesh. Several

successful tools were built based on this design. The family

design allows the user to generate new tools by selecting

which strategy he/she wants to use for each mesh generation

step. Software developers are able to add a new strategy,

criteria or region shape by modifying only a few parts of the

source code, if any at all.

A product family approach analyzing commonalities and

variability of meshing tools has been used in [27]. Their main

focus is the variability of the input and output formats, and the

generation of the mesh as the whole. We take a complementary

approach treating each step of the mesh generation and

management processes as objects, and making it possible to

interchange different algorithms for refining, improving and

postprocessing the mesh. Other possible varying aspects are

considered out of this paper’s scope.

The paper is organized as follows. Section 2 presents the

concepts of software qualities and software product
families. Section 3 clearly states and explains the require-

ments for the meshing tool family. In Section 4, the

complete development cycle of the tool family and its

members is described: the methodology, analysis and

design, and implementation. Section 5 presents two already

published examples, now addressed as members of the

presented tool family. Section 6 shows the development of a

new tool. In Section 7, some of the results are presented, as

well as a description of our ongoing work.
2. Product families and good software design

A good implementation of a software system is not only

one that satisfies its functional requirements, but also

satisfies its non functional requirements. Functionality is the

definition of the output the system must produce, given a

certain input. But if other qualities were not important, any

monolithic built, slow performing and resource consuming

system would do, and this is not the case.

A quality attribute such as performance is quite popular

and recognized as important, i.e. efficient use of resources,

mainly response time, but also memory, disk and bandwidth

usage. Algorithms research has focused on improving this

attribute since more than four decades. However, with new

faster and cheaper computers, performance has been

deemphasized lately in favor of other qualities.

More recently, maintainability has become the most

important target with all its variants: modifiability, exten-

sibility, portability, and interoperability. Successful soft-

ware is always in need of changes: new functionality needs

to be added, new platforms are required, or change in the

algorithms implemented.

Software systems with an acceptable performance but

with a design and an implementation that does not help

evolution, e.g. with a very intricate implementation, are not

able to adapt to changing requirements, and when this is the

case, the complete system needs to be reconstructed.

Software reuse is also a highly desirable quality because

of the high productivity and quality it brings. Modifying

software can be seen as a form of reusing all the unchanged

parts. If software is well structured, this reuse can be done

more easily. Software classes or components are the most

obvious items to be reused, but all the other artifacts built in

the software development process can also be reused, e.g.

test cases, user interfaces, user manuals, software architec-

ture design, requirement specifications. We will use the term

component to refer to the reusable units from which

software systems are built.

Software families is a modern approach towards software

development based on planned massive reuse. A product

family is a set of products that are built from a collection of

reused elements in a planned manner [7]. Opportunistic

reuse does not usually work [5]; thus, reusable elements

should be developed, tested, documented, classified

and stored in such a way that reuse is promoted.

M.C. Bastarrica, N. Hitschfeld-Kahler
This development process is evidently longer and more

expensive than developing one product at a time, but if they

are reused enough times, it is still cost-effective. Experience

has shown that the costs of developing reusable elements is

paid off after the second or third product is built [30].

In this paper we take a software family approach for

developing a family of meshing tools. In [27], the

application of product family concepts in the development

of mesh generation tools has already been applied.
3. A Product family of meshing tools

Our effort was originally oriented towards generating an

extensible 2D triangulation tool [2,13,14]. However, the

flexibility achieved in the design let us restate our goal as to

build a tool family. A specification of a mesh generator

family architecture can be found in [1].

The main steps of any mesh generation process can be

summarized as follows:
†
 generation of an initial mesh that fits the domain

geometry;
†
 generation of an intermediate mesh that satisfies the

density requirements specified by the user;
†
 generation of an improved mesh that satisfies the quality

criteria;
†
 generation of the final mesh.

These steps can be identified as some of the main

commonalities among all members of the mesh generator

tool family.

The algorithms for generating an initial mesh receive as

input the geometry of the domain and generate the initial

mesh as output. We are interested in both, initial

triangulations that satisfy the Delaunay condition and

initial triangulations that do not satisfy this condition. The

initial mesh is the input of the refinement step that divides

coarse triangles into smaller ones until the refinement

criteria specified by the user are fulfilled in the indicated

region. The refined mesh is the input to the improvement

algorithm. The user specifies several regions with their

respective improvement criteria. We are interested in

refinement and improvement algorithms based on the

Lepp-concept [24]. The refinement and improvement

algorithms used at the moment are h-refinement. A proper

final mesh might have additional requirements that are

always applied to the whole mesh. For example, the

elimination of boundary/interface obtuse triangles is applied

if the finite volume method is used. This step can also be

empty.

Our product family should easily evolve in the following

aspects:
†
 strategies for the generation of initial meshes;
†
 strategies based on the Lepp and terminal-edge concepts;
†
 refinement and improvement criteria;
†
 strategies to generate proper final meshes;
†
 shape of the refinement and improvement regions.

These are the variations of the family members [27]. This

separation of concerns is the basis for the design of the

product family [16].

The incorporation of each new strategy, criterion or

region shape to generate a new family member should

normally not modify at all the source code, or should, in the

worst case, have a minimal impact.
4. Tool implementation

4.1. Methodology

One of the most difficult problems in the development of

a large object-oriented software system is the organization

of the complex relationships that exist among objects in the

application domain [11]. The object relationships can be

inheritance, aggregation, association and use. Objects with a

similar behavior are grouped into types and they are known

as instances of their types. Subtyping allows the developer

to build good type hierarchies. This is implemented in

programming languages through the concepts of classes and

inheritance. The idea is to model first the most general

concepts in term of types, and then subtypes are used for

concepts that are a specialization of a type. The most natural

way to recognize subtypes are subsets. Some authors [11]

recommend the use of inheritance only under the subtype

relationship. Other authors also recommend the use of

inheritance under generalization, limitation, variance and

reuse [18]; this last approach is not followed in our work.

Our design follows these guidelines: (a) the use of types

and inheritance for achieving software that is easy to

maintain, extend and understand [11], (b) the design of good

classes according to [18], and (c) the identification of design

patterns previously used in other applications [10].

4.2. Analysis and design

The mesh is modeled as a container object that holds the

mesh information and it can be considered as a commonality

among all family members. The Mesh class contains the

information about the mesh at hand; in our application it is a

2D triangulation composed of vertices, edges and triangles.

As part of its interface, the Mesh class provides methods to

access its constituent elements, to load a mesh from a file, to

store a mesh in a file, and some mesh validation methods.

Vertex, Edge and Triangle are also modeled as

classes; each of them providing their most concrete/ad hoc

functionality and also providing access to neighborhood

information within the mesh as part of their interface. For

example, the Vertex class contains the point coordinates

and provides access to its coordinates and the list of edges

Lepp_based_algorithm

Delaunay_improvement_algorithmRefinement_algorithm

Dummy_algorithmApproximate_improvement_algorithm

|| Apply(Mesh* , Criterion*, Region*)

|| Apply(Mesh* , Criterion*, Region*)

|| Apply(Mesh* , Criterion*, Region*)

|| Apply(Mesh* , Criterion*, Region*) || Apply(Mesh* , Criterion*, Region*)

Fig. 2. Class diagram for the Lepp-based algorithms.

M.C. Bastarrica, N. Hitschfeld-Kahler4
that share this point. The Edge class contains its endpoints

and provides operations to get its endpoints, to compute the

edge length, to insert a point between its endpoints and to

get the triangles that share it. The Triangle class contains

its vertices and edges, and provides operations to get its

vertices and edges, to get the longest edge and to compute

the minimum angle, among others.

The key decision is then how to organize the complex

processes associated to a mesh such as generating an initial

triangulation, and the refinement and improvement strat-

egies, among others. Should they be included as methods in

the Mesh object or handled as separate types? Should the

refinement/quality criteria be modeled as separate types or

should they be a method of the Triangle object?

We have decided to handle the mesh generation steps as

separate types following the strategy pattern [10] because

(1) there are several ways to implement the same process

and we want them to be interchangeable; (2) our software

should be extensible in order to be able to generate new

family members by incorporating new strategies and criteria

and doing very few modifications to the source code.

We have identified four general algorithms: (a) Initial

mesh algorithm, (b) Refinement algorithm, (c) Improvement

algorithm, and (d) Final mesh algorithm. Algorithms (b) and

(c) apply a criterion over a region of the domain. There are

two different approaches towards improvement: Delaunay

improvement and approximate improvement. In our case,

the refinement and both types of improvement are subsets of

what we have called Lepp-based algorithms. Thus, we have

built an abstract class called Lepp_based_algorithm,

whose subclasses are the refinement, improvement and

approximate improvement algorithms. General algorithms

(a) and (d) are also implemented as abstract classes and

the different strategies for each of them are implemented

as subclasses. Each general algorithm has a

Dummy_algorithm as a subclass in order to be able to

create objects that do nothing. These objects are created and

used by default whenever the user wants to skip one of the

mesh generation steps.

Fig. 1 shows the class diagram that represents different

algorithms to generate an initial mesh: one subclass is to

generate Delaunay meshes and the other to generate any

triangulation. Since there are several algorithms to generate
Initial_mesh_algorithm

Delaunay_mesh_algorithm Mesh_algorithm

|| void Apply(Mesh* , Geometry*)

|| void Apply(Mesh* , Geometry*)|| void Apply(Mesh* , Geometry*)

|| void Apply(Mesh* , Geometry*)

Dummy_mesh_algorithm

Fig. 1. Class diagram for the initial mesh algorithms.
Delaunay triangulations, each one should be added as a

subclass of Delaunay_mesh_algorithm. In a similar

way, there are several algorithms to generate any triangu-

lation and each one should be a subclass of Mesh_algo-
rithm. Each subclass must implement the virtual method

Apply, which receives as input the geometry of the domain

and an empty Mesh object, builds the corresponding

initial triangulation and adds the vertices, edges and

triangles to the mesh object. Notice that there is also a

Dummy_mesh_algorithm that does not really generate

an initial mesh, but it allows the user to read an already

generated initial mesh; in this case the tool is used only for

improving and/or refining this initial mesh.

Fig. 2 shows the class diagram that represents all the

Lepp-based algorithms. Our application includes the

Refinement_algorithm, the Delaunay_impro-
vement_algorithm and the Approximate_impro-
vement_algorithm. Each subclass must implement the

virtual method Apply that receives a mesh, a criterion and

a region as input, and refines or improves the mesh until the

criterion is fulfilled in any triangle that intersects the region.

The changes on the mesh are stored in the input Mesh
object. Again, the Dummy_algorithm subclass is used

when non of the other Lepp-based algorithms is required.

The refinement or improvement criterion applied to a

mesh depends on the application problem. For example, for

finite element meshes, normally meshes without very small

angles are required. For finite volume meshes, small angles

are not a problem, but large angles and vertices with a high

number of edges converging to them must be avoided. We

have decided to organize the refinement and improvement

criteria in the same type hierarchy because they both depend

on the user needs.
Criterion

|| boolean Is_fulfilled(Mesh* , Triangle)

Minimum_angle

Minimum_angle(angle)

boolean Is_fulfilled(Mesh* , Triangle) boolean Is_fulfilled(Mesh* , Triangle)

Dummy_criterion

boolean Is_fulfilled(Mesh* , Triangle)

Dummy_criterion()

Maximum_longest_edge

Maximum_longest_edge(length)

boolean Is_fulfilled(Mesh* , Triangle)

Maximum_angle

Maximum_angle(angle)

Fig. 3. Class diagram for refinement and improvement criteria.

boolean Is_intersected(Mesh* , Triangle)

Whole_geometry

boolean Is_intersected(Mesh* , Triangle)

Segment

Circle

boolean Is_intersected(Mesh* , Triangle)

|| boolean Is_intersected(Mesh* , Triangle)

Region

Point

boolean Is_intersected(Mesh* , Triangle)

Fig. 4. Class diagram for regions.

Geometry Criterion

Initial_mesh_algorithm Final_mesh_algorithm Lepp_based_algorithm

RegionMeshuse

Fig. 5. Relationship among abstract classes.

M.C. Bastarrica, N. Hitschfeld-Kahler
Fig. 3 shows the class hierarchy diagram to model

criteria. The virtual method of the Criterion abstract

class is called Is_fulfilled. This method receives as

input the mesh and the triangle that must be checked, it

evaluates the mesh against the threshold value passed to the

Criterion object when it was created, and returns either

true or false. The class Triangle provides several

methods to ask for triangle properties related to the

evaluation of different criteria.

A criterion is only evaluated for a particular triangle if

it is theoretically feasible and the intersection between the

triangle and the Region is not empty. Fig. 4 shows

the class hierarchy diagram to model the regions where

the refinement or improvement algorithms are applied.

The abstract class is called Region and its subclasses are

Point, Segment, Circle and Whole_geometry.

Region provides the virtual method Is_intersected
which is redefined in each subclass. Is_intersected
returns true if a triangle intersects the current region and

false if it does not. If a region is defined as a point, it

means that the triangle that contains this point or the

triangles that share this point will be checked when the

algorithm is applied. If the Whole_geometry region

is chosen, all the mesh triangles will be checked; in

this subclass, the method Is_intersected always

returns true.

The Final_mesh_algorithm is not explicitly

shown because it follows the same structure as the

Initial_Mesh_Algorithm. One of the subclasses

of Final_mesh_algorithm is the Non_obtuse_
boundary_algorithm. Although the elimination of

boundary obtuse angles could be seen as an improvement

algorithm, it is not included as an improvement algorithm

because it is a final step that is applied only over boundary

triangles of the whole domain; additionally, it is not a

Lepp-based algorithm. Any postprocess algorithm

should be implemented as a descendant of the

Final_mesh_algorithm.

The relationships among the abstract classes are shown

in Fig. 5. We have not included the subclasses in order to

keep the diagram simple and clear. There also exists a

Client class that forms part of all tools and models the

object that controls the order and the way user input

requirements are executed by creating and coordinating
the mesh generation steps, Mesh, Criterion,
Geometry and Region. The Geometry object encap-

sulates the representation of the input mesh geometry.
4.3. Implementation

For the implementation of the Mesh class we have

reused a CCClibrary developed at the Integrated System

Laboratories, ETH-Zurich [29]. This library manages a

complete mesh representation [22] and provides more

functionality than our application needs. However, reusing

this implementation allowed us to use basic methods of

classes Triangle, Edge and Vertex including

methods for direct access to adjacency relationships, and

the iterators over the triangles, edges, and vertices. The

mesh geometry is obtained as an input of all family tools

using the dfise format [15]; the initial_mesh_algo-
rithm reads the geometry and stores it as a mesh object.

Fig. 6 shows the general structure of all members of the

family of mesh generator. Each tool executes the same code

but behaves differently according to the instantiation of each

abstract class, following the idea of the template method

software pattern [10]. After the final_mesh_algo-
rithm is applied, the mesh can be stored into a file also in

the dfise format, the same as the input.

Notice that in the pseudocode in Fig. 6, the addition of

new strategies, region shapes and criteria does not modify

the source code, because of the use of polymorphism and

dynamic binding. Moreover, the addition of new criteria and

region shapes does not modify the definition of the Apply
method in the Lepp_based_algorithm class or its

implementation in the subclasses.

Fig. 7 shows a possible instantiation of all abstract

classes. In particular, the improvement algorithm is

instantiated as the Delaunay_improvement_algo-
rithm whose pseudocode is shown in Fig. 8.

Fig. 6. General structure of all tools of the family.

Fig. 7. Object initialization for generating a quality non-obtuse boundary mesh.

Fig. 8. Apply method of the Delaunay_improvement_algorithm class.

M.C. Bastarrica, N. Hitschfeld-Kahler6
The Apply method of the Delaunay_improve-
ment_algorithm class shown in Fig. 8 builds first the

bad_element list, which contains all the elements

(triangles in our application) that intersect the region and

that do not fulfill the criterion. Later, this method calls the

Improve method for each bad triangle in the list. Since the

improvement strategy based on the Lepp concept might
Fig. 9. The constructor and the method Is_ful
improve a set of triangles at each time and each improved

triangle may still not fulfill the criterion, we let the

Improve method to update the bad_element list by

deleting the improved triangles and adding the newly

created triangles that still do not fulfill the criterion.

To illustrate how little work is to adding a new criterion,

Fig. 9 shows the implementation of the constructor
filled of the Minimum_angle class.

(a) (b) (c)

Fig. 10. Example 1: (a) Geometry, (b) Delaunay triangulation, and (c)

Improved Delaunay triangulation using the minimum angle criterion,

2Z208.

M.C. Bastarrica, N. Hitschfeld-Kahler
and the method Is_fulfilled of the Minimum_an-
gle class. The constructor initializes the instance variable

threshold_valuewith the minimum angle specified by

the user. In order to implement the method Is_ful-
filled, a method that computes the minimum angle of a

triangle must either be available in the Triangle class or

be added to it. The addition of a new criterion as a subclass

of the Criterion class might require to add a new

method to the Triangle class if the triangle property that

the new criterion evaluates is not already available.
5. Application examples

In order to illustrate the meshing tools that can be

generated as part of the family, Fig. 10(a) shows the

geometry of a comma, Fig. 10(b) shows an initial

triangulation that satisfies the Delaunay condition, and

Fig. 10(c) an improved triangulation (using the Lepp-based

algorithm) where each triangle has a minimum angle greater

than or equal to 208.

The algorithms used in this example tool are

the Delaunay_algorithm for generating the initial

mesh, the Delaunay_improvement_algorithm
for the improvement of the mesh with the criterion

Minimum_angle, applying the algorithms to

the Whole_geometry. The instantiation of the tool in

this example is shown in Fig. 11.

Fig. 12(a) shows a more complicated geometry with

material interfaces. The tool in this case receives as input a

Delaunay triangulation with 3342 points; Fig. 12(b) shows

only part of it. In this case there are two different

improvement criteria to be applied: a maximum angle gZ
1208 (the largest angle of each triangle on the mesh must be

less than or equal to 1208) and a maximum edge-vertex
Fig. 11. Mesh and algorithm initializ
connectivity cZ10 (the maximum number of edges

converging to a vertex must be less than or equal to 10).

The result of applying both criteria is shown in Fig. 12(c).

Finally, the mesh passes through a post-process algorithm to

eliminate obtuse angles opposite to boundary or interface

edges (Fig. 12(d)).

The algorithms applied in this example are the

Dummy_algorithm for the initial mesh provided

that the initial Delaunay mesh is already generated.

The Delaunay_improvement_algorithm is

used with the Maximum_angle and the Maximum_
edge_vertex_connectivity criteria applied over

the Whole_geometry for improving it. Finally, the

Non_obtuse_boundary_algorithm is used as a

post process. The initialization is shown in Fig. 13.
6. Building a new member of the family

This section shows how to build a new tool, in particular,

a tool to generate triangulations to represent images and

extract some information about them: images, in this case,

represent tree sections and the triangulations are intended to

help identify and count tree rings. This new tool seems a

priori different from the ones we have already described but

it follows the same structural pattern. We did not need to

add new meshing strategies for this application, we have just

added new refinement criteria as subclasses of the

Criterion class mentioned above. The constructor of

each of the new criteria receives as parameters the name of

the file that contains the image and a set of threshold values.

The method Is_fulfilled analyzes the part of the

image under the triangle and returns true in case the

criterion is fulfilled or false otherwise.

Since we were interested in finding regions of an image

with high intensity variation, we have implemented

a criterion called Intensity_variation. In this

case, the threshold parameters are the maximum intensity

variation allowed in each triangle and the minimum size of

the triangle. A target triangle is refined until the intensity

variation associated to it is less than or equal to the specified

maximum intensity variation or if the limit size of the

triangle was reached. Then, the Is_fulfilled method

gets the minimum and maximum allowed intensities of

the pixels under the target triangle and returns true

if the difference between them is less than or equal to
ation for the comma example.

Fig. 13. Mesh and algorithm initialization for the complex geometry example.

Fig. 12. Example 2: (a) Geometry, (b) Delaunay triangulation of a densified geometry, (c) Improved triangulation, and (d) Non obtuse boundary/interface

triangulation.

Fig. 14. (a) Image (b) the mesh over the image.

M.C. Bastarrica, N. Hitschfeld-Kahler8

Fig. 15. Mesh and algorithm initialization for an image.

M.C. Bastarrica, N. Hitschfeld-Kahler
the maximum intensity variation and returns false if it is

greater than this value or if the limit size of the triangle was

reached.

In order to illustrate this application, Fig. 14(a) shows an

image and Fig. 14(b) shows a corresponding mesh. The

intensity in gray scale in this image varies between 0 and

256. The parameters for the refinement criterion are, 128 as

the intensity variation threshold and 5 pixels as the

minimum edge size for the triangle. The first mesh is

generated inside a rectangle defined by the size of the image.

The algorithms applied in this example is first the

Mesh_algorithm to generate a partition of the rectangle

into two triangles and then the Refinement_algo-
rithm for the refinement of the mesh according to the

Intensity_variation criterion. The object initializa-

tion of this example is shown in Fig. 15.
7. Conclusions

The object-oriented design described in this paper and

applied in the examples has allowed us to build an

extensible and easily configurable family of meshing

tools. Each new family tool is defined by instantiating a

different combination of the existing classes for each

processing step, as well as refinement and/or improvement

criterion. It may be the case that a new algorithm or criterion

should be created if it does not already exist. The rest of the

code remains unchanged. The only exception might happen

when adding a new refinement or improvement criterion,

because its computation might require to add a new method

in the Triangle class or any of its constituent elements for

calculating the value associated with the new criterion

metric.

We achieved the reusability and maintainability require-

ments without sacrificing performance dramatically. It is

known that 2D meshing tools do not generally have an

uncontrolled use of resources, neither memory nor proces-

sing time. Moreover, the use of an object-oriented language

such as CCCfor the implementation provides a perform-

ance comparable to the one that can be achieved using

standard C. In the family of meshing tools presented in

Section 4, the shared architecture is the one shown in Fig. 5,

and the reused components are the extensible class

hierarchies of Figs. 1–4. Combining different instances of

each class hierarchy we can obtain different particular
members of the tool family. Combining the Delaunay_
mesh_algorithm, Refinement_algorithm and

Delaunay_improvement_algorithm, with the

Minimum_angle criterion, we would get a finite element

meshing tool. Instead, if we change the criterion for

the Maximum_angle and add a postprocess

Non_obtuse_boundary_algorithm, we have a

finite volume method tool.

In the development of meshing tools, we take advantage

of early definition of the architecture for setting object

interfaces so that their implementation can be achieved in

parallel. Thus, the product family approach can also

enhance the development process.
7.1. Ongoing and future work

We have already developed criteria related with the

geometry of the triangle like minimum angle and maximum

edge length, and criteria that also require extra information,

such as image properties. Similarly, we could also develop

other criteria such as those related with the error in the

numerical solution or related to the physical values of the

domain.

The tool family design can be extended to include

algorithms not based on the Lepp concept and also meshes

not exclusively formed by triangles. Currently we are

working in the implementation of 3D tools.

All these similar but different meshing tools form our

tool family, and component reuse will be fundamental for

the quality of the results and the productivity of the

development process.
Acknowledgements

The second author thanks Prof. Wolfgang Fichtner for

his hospitality at the ETH-Zurich during the development of

part of this research. Also thanks to Luis Villablanca for

explaining the use of the mesh representation library, to

Bruce Simpson for lending us the geometry of example 1,

and to Jens Krause for example 2. Finally, we would like to

thank our anonymous reviewers for valuable comments on

our manuscript. The work of Nancy Hitschfeld-Kahler was

partially supported by Fondecyt Project No 1030672.

M.C. Bastarrica, N. Hitschfeld-Kahler10
References

[1] Bastarrica MC. Base Architecture in a Software Product Line. In

Proceedings of the XXVIII Latin American conference of informatics,

CLEI’2002, page 119, Montevideo, Uruguay, November, 2002 [in

Spanish].

[2] Bastarrica MC, Hitschfeld-Kahler N. An Evolvable Meshing Tool

through a Flexible Object-Oriented Design. In Proceedings of the 13th

international meshing roundtable, pages 203–212, Williamsburg,

Virginia, September, 2004. Sandia National Laboratories.

[3] Guntram B. Generic software components for scientific computing.

PhD Dissertation, TU Cottbus; 2000.

[4] Guntram B. A generic toolbox for the grid craftsman. Proceedings of

the 17th GaMM-Seminar Leipzig on construction of grid generation

algorithms. 2001. pp. 1–28.

[5] Bosch J. Design and use of software architectures. Adopting and

evolving a product line approach. 1st ed. Wokingham, UK: Wesley;

2000.

[6] Bruaset A, Langtangen H. A Comprehensive set of tools for solving

partial differential equations; Diffpack; 1996. citeseer.nj.nec.com/

bruaset96comprehensive.html.

[7] Clements P, Northrop LM. Software product lines: Practices and

patterns. 1st ed.: Wesley; 2001.

[8] ElSheikh AH, Smith SW, Chidiac Samir E. Semi-formal design of

reliable mesh generation systems. Adv Eng Software 2004;35(12):

827–41.

[9] Fabri A. CGAL—the computational geometry algorithm library. In

Proceedings of the 10th annual international meshing roundtable,

California, USA, October, 7–10; 2001.

[10] Gamma E, Helm R, Hohnson R, Vlissides H. Design patterns:

Elements of reusable object oriented software. Wokingham, UK:

Wesley; 1995.

[11] Halbert DC, O’Brien PD. Using types and inheritance in object-

oriented programming. IEEE Software 1987;5(4):71–9.

[12] Hitschfeld N, Conti P, Fichtner W. Mixed element trees: A

generalization of modified octrees for the generation of meshes for

the simulation of complex 3-D semiconductor devices. IEEE Trans

CAD/ICAS 1993;12:1714–25.

[13] Hitschfeld N, Rivara MC. Automatic construction of non-obtuse

boundary and/or interface delaunay triangulations for control volume

methods. Int J Numer Methods Eng 2002;55:803–16.

[14] Hitschfeld N, Villablanca L, Krause J, Rivara MC. Improving the

quality of meshes for the simulation of semiconductor devices using

Lepp-based algorithms. Int J Numer Methods Eng 2003;58:333–47.

[15] Integrated systems engineering AG. df-ISE, 6.0 edition; 1999. Zurich,

Switzerland.
[16] Krueger CW. Using separation of concerns to simplify software

product family engineering. In Dagstuht Seminar No. 01161, Dagstuhl

Castle, Wadern, Germany, April, 2001.

[17] Merazzi S, Gerteisen E, Mezentsev A. A generic CAD-mesh

interface. In Proceedings of the 9th Annual International Meshing

Roundtable, pages 361–370. New Orleans, USA, October, 2–5;

2000.

[18] Meyer B. Object-oriented software construction. 2nd ed., Upper

Saddle River, NJ: Prentice Hall; 1997.

[19] Anton V, Mobley JR, Hawkings TCM. An object-oriented design

for mesh generation and operation algorithms. In Proceedings of

the 10th annual international meshing roundtable. Newport Beach,

California, USA, October 7–10; 2001.

[20] Panthaki M, Sahu R, Gerstle W. An object-oriented virtual geometry

interface. In Proceedings of the 6th annual international meshing

roundtable, pages 67–81. Park City, Utah, USA; 1997.

[21] Parnas D. On the design and development of program families. IEEE

Trans Software Eng 1976;SE-2(1):1–9.

[22] Remacle J-F, Shephard MS. An algorithm oriented mesh database. Int

J Numer Methods Eng 2003;58:349–74.

[23] Rivara MC. New longest-edge algorithms for the refinement and/or

improvement of unstructured triangulations. Int J Numer Methods

Eng 1997;40:3313–24.

[24] Rivara MC, Hitschfeld N, Simpson RB. Terminal-edges delaunay

(small-angle-based) algorithm for the quality triangulation problem.

Comput Aided Des 2001;33:263–77.

[25] Simpson RB. Isolating geometry in mesh programming. In Proceed-

ings of the 8th international meshing roundtable, pages 45–54, South

Lake Tahoe, California, October, 1999.

[26] Simpson RB, Hitschfeld N, Rivara MC. Approximate Shape Quality

Mesh Generation. Eng Comput 2001;17:287–98.

[27] Smith S, Chen C-H. Commonality analysis for mesh generating

systems. Technical Report CAS-04-10-SS, Department of Comput-

ing and Software, McMaster University, October 2004.

[28] Tautges TJ. The common geometry module (CGM): A generic,

extensible, geometry interface. In Proceedings of the 9th annual

international meshing roundtable, pages 337–347, New Orleans,

USA, October 2–5; 2000.

[29] Villablanca L. Mesh generation algorithms for three-dimensional

semiconductor process simulation. PhD thesis, ETH Zürich, Series in

Microelectronics, Vol. 97, 2000. PhD thesis published by Hartung-

Gorre Verlag, Konstanz, Germany.

[30] Weiss DM, Lai Chi Tau R. Software product-line engineering: A

family based software development process. Wokingham, UK:

Wesley; 1999.

http://citeseer.nj.nec.com/bruaset96comprehensive.html
http://citeseer.nj.nec.com/bruaset96comprehensive.html

	Designing a product family of meshing tools
	Introduction
	Product families and good software design
	A Product family of meshing tools
	Tool implementation
	Methodology
	Analysis and design
	Implementation

	Application examples
	Building a new member of the family
	Conclusions
	Ongoing and future work

	Acknowledgements
	References

