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Abstract

A solution to the problem of speech recognition with signals corrupted by coders is presented. The coding-decoding

distortion is modelled as feature dependent. This model is employed to propose an unsupervised expectation-

maximization (EM) estimation algorithm of the coding–decoding distortion that is able to cancel the effect of coders

with as few as one adapting utterance. No knowledge about the coder is required. The feature-dependent adaptation

can give a word error rate (WER) 21% lower than the feature-independent model. Finally, when compared to the

baseline system, the reduction in WER can be as high as 70%.
Keywords: Speech recognition; Coding distortion; HMM compensation

1. Introduction

The mismatch between training and testing
condition is certainly the most important problem
to be solved to make speech recognition successful
in real applications. This mismatch can be due to
additive and/or convolutional noise, to speaker

HMM (hidden Markov models) means and
variances. These corrections may or may not
depend on the HMM state. However, all the
adaptation methods found in the specialized
literature do not explore the relationship between
the distortion that needs to be compensated and
the value of the feature parameters. This is
distortion resulted from low-bit-rate
adaptation to new testing corrections
ieved by estimating corrections to the

certainly due to the fact that the observed feature
parameters are those already distorted, while the
original clean signal is unobserved and hidden
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information.
The rapid growth of mobile networks and

Internet around the world has created the problem
of improving the recognition accuracy for speech
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distorted by low-bit-rate coders. GSM (global
system for mobile communications) and G.729
standards are certainly the most popular and this
paper focuses on estimating and compensating the
distortion of these coders in speech recognition.
This distortion cannot be solved by applying
cancelling/compensation techniques that employ
a model for additive and/or convolutional noise
[1], such as, spectral subtraction [2], Rasta [3],
PMC (parallel model combination) [4], and
(CMN) cepstral mean normalization. In [1]
weighted acoustic modelling based on average
distortion statistics provided a reduction of up to
70% in word error rate (WER) introduced by
GSM if the coder is known and fixed. MLLR
(maximum likelihood linear regression) has suc-
cessfully been applied to compensate for additive
noise and speaker adaptation [5]. However, there
is not any evidence in the specialized literature
suggesting that MLLR can lead to substantial
improvements with low-bit-rate coders. MLLR
builds a transform for the HMM parameters (the
Gaussian means and variances) using linear
regression so that the adapted parameters better
represent the test scenario. In blind RATZ [6] the
p.d.f. for the features of clean speech is modelled
as a summation of multivariate Gaussian distribu-
tions, and the EM algorithm is applied to estimate
the mismatch between training and testing condi-
tions. First, blind RATZ adapts the means and
variances within every Gaussian. Then, it estimates
the cepstral coefficients of the original unobserved
signal by using a modified minimum mean square
error. In [6] RATZ was applied to WSJ database
corrupted with additive noise leading to significant
reductions in WER by employing as many as 10,
40 or even 100 adapting utterances. In [7] a unified
approach to the acoustic mismatch problem was
proposed. A maximum likelihood state-based
additive bias compensation algorithm was em-
ployed in the context of the continuous density
HMM. This technique estimates the correction
parameters to compensate the means and var-
iances by applying the EM algorithm in combina-
tion with a parallel model combination transform.
This approach was applied on a supervised basis
and led to reductions between 50% and 70% in
WER using 42 or even 84 adapting utterances
(isolated words) to compensate for additive/con-
volutional noise and Lombard effect. In contrast,
the feature-dependent technique proposed in the
current paper adapts the HMM on an unsuper-
vised basis by considering the original uncoded
signal as a random variable, and by assuming the
coding–decoding distortion as independent of the
state and model, but dependent on the value of the
original uncoded cepstral coefficient. This assump-
tion dramatically reduces the number of para-
meters to estimate. Compared to the baseline
system, the proposed approach can lead to
reductions in WER as high as 70%.
Empirical observations suggested that the co-

ding–decoding distortion in cepstral coefficient n

in frame t could be modelled as

Oo
t;n ¼ Od

t;n þDn, (1)

where Oo
t;n and Od

t;n are the cepstral coefficients

corresponding to the original and coded–decoded
speech signal, respectively; Dn is the distortion
caused by the coding–decoding process with p.d.f.

f Dn
ðDnÞ ¼ Nðmd

n ; v
d
nÞ, and is modelled as a Gaus-

sian distribution with mean md
n ¼ E½Dn� ¼

E½Oo
t;n �Od

t;n� and variance vd
n ¼ Var Dn½ �. The

HMM compensation is achieved by replacing the
output probability by its expected value in the
Viterbi algorithm [8], which in turn leads to

replacing the observed Od
t;n and variance with

E Oo
t;n

h i
¼ Od

t;n þ E Dn½ �, (2)

Vardh;s;g;n ¼ Varh;s;g;n þ vdn , (3)

where E½Oo
t;n� is the expected value of the unseen

cepstral coefficient, considered as a random vari-
able, in the original speech signal according to (1);

Vardh;s;g;n and Varh;s;g;n are, respectively, the com-

pensated and original variances in HMM h, state s,
Gaussian component g and coefficient n. Accord-

ing to Fig. 1 md
n ¼ E Dn½ � could be considered

independent of Oo
t;n when the speech signal is

processed with G.729 CS-CELP (conjugate struc-
ture-code excited linear prediction). However, this
model is not always accurate and this paper



ARTICLE IN PRESS

Fig. 1. Expected value of the coding–decoding errorE½Oo
n �Od

n � ¼ E½Dn� vs. Oo. The expected value is normalized with respect to the

range of Oo. The following coders are analysed: (A) 8 kbps CS-CELP; and, (B) 5.3 kbps G.723 and (C) 13 kbps GSM-FR. The cepstral

coefficients correspond to a static (1), a delta (12) and a delta-delta (23). The curves were obtained with 4500 utterances from 36

speakers.
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proposes that the coding–decoding distortion
should be modelled as feature dependent. This
approach has not been found in the specialized
literature, is interesting from both the theoretical
and practical points of view, and could be applied
to other adaptation problems.
2. Modelling the coding–decoding distortion as a

function of cepstral parameters

The model described by (1), (2) and (3) describes
well the distortion caused by the G.729 CS-CELP
coder. However, according to Figs. 2 and 3, the
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Fig. 2. Expected value of the coding–decoding errorE½Oo
n �Od

n � ¼ E½Dn� vs. Oo for the 13 kbps GSM-FR codec. The expected value is

normalized with respect to the range of Oo. The cepstral coefficients correspond to a static (1, 3, 5), a delta (12, 14, 16) and a delta-delta

(23, 25, 27). The curves were obtained with 4500 utterances from 36 speakers.
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mean distortion E Dn½ � ¼ E½Oo
t;n �Od

t;n� in the
GSM-FR (full-rate) and GSM-EFR (enhanced
full-rate) coders clearly depends on the value of the
cepstral coefficient. This dependence could be
modelled as

E Dn½ � ¼ E Oo
t;n �Od

t;n

h i
¼ BnOo

t;n þ An, (4)
where Bn and An are constants. The expected value
of the GSM (FR and EFR) coded–decoded distor-
tion depends on the uncoded speech feature.
Replacing (4) in (2) and applying the expected value,
E½Oo

t;n� can be expressed as (see the Appendix):

E Oo
t;n

h i
¼

Od
t;n þ An

1� Bn

. (5)
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Fig. 3. Expected value of the coding–decoding error E½Oo
n �Od

n � ¼ E½Dn� vs. Oo for the 12.2 kbps GSM-EFR codec. The expected

value is normalized with respect to the range of Oo. The cepstral coefficients correspond to a static (1, 3, 5), a delta (12, 14, 16) and a

delta–delta (23, 25, 27). The curves were obtained with 4500 utterances from 36 speakers.
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Observe that E½Od
t;n� ¼ Od

t;n because Od
t;n is an

observed value and is a constant. The coding–
decoding distortion variance,vdn , also depends on
the value of the uncoded speech feature as
seen in Fig. 4, although it seems to be more
constant than md

n ¼ E Dn½ �. Nevertheless, the
introduction of this dependence does not result
in analytical solutions in the EM estimation
algorithm employed here. Consequently, vdn
was supposed to be a constant as in (3),
but the HMM was compensated with (5) instead
of (2).
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Fig. 4. Variance of the coding–decoding error Var½Oo
n �Od

n � ¼ Var½Dn� vs. Oo. The following coders are analyzed: (A) 8 kbps

CS–CELP; and, (B) 13 kbps GSM-FR. The cepstral coefficients correspond to a static (1), a delta (12) and a delta-delta (23). The

curves were obtained with 4500 utterances from 36 speakers.
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3. Estimation of feature-dependent

coding–decoding distortion

Estimating the feature-dependent coding–
decoding distortion is equivalent to find the

vectors An, Bn and vdn . In this paper these

parameters are estimated with the EM algorithm
using a code-book, where every code-word corre-
sponds to a multivariate Gaussian, built with
uncoded speech signals. Inside each code-word cwj

the mean moj ¼ ½m
o
j;1;m

o
j;2; . . . ; m

o
j;n; . . . ;m

o
j;N � and var-

iance ðsoj Þ
2
¼ ½ðsoj;1Þ

2
ð;soj;2Þ

2; . . . ; ðsoj;nÞ; . . . ðs
o
j;N Þ

2
�

are computed, where N is the number of cepstral
coefficients and the dimension of the code-book. If
there are J code-words, the p.d.f. associated with
the frame Oo

t ¼ ½O
o
t;1;O

o
t;2; . . . ;O

o
t;n; . . . ;O

o
t;N � given

the uncoded speech signal model is [6]:

f ðOo
t =F

oÞ ¼
XJ

j¼1

gðOo
t =f

o
j ÞPrðcwjÞ, (6)

where Fo ¼ ffo
j j1pjpJg and fo

j ¼ ðm
o
j ;
Po

j Þ;

Pr cwj

� �
is the a priori probability of code-word j;

and
Po

j is the N-by-N covariance matrix that is
supposed diagonal. gðOo
t =f

o
j Þ is defined by

gðOo
t =f

o
j Þ

¼
1

ð2pÞN=2
Po

j

��� ���1=2
e
�ð1=2Þ Oo

t �m
o
j

� �t Po
j

� ��1
Oo

t �m
o
j

� �
.

ð7Þ

If An and Bn are considered independent of the
code-word or class, it is possible to show that the
coded–decoded speech signal is represented by

the model whose parameters are denoted by Fd ¼

ffd
j;tj1pjpJg, where fd

j;t ¼ ðm
d
j;t;
Pd

j Þ and,

mdj;n;t ¼ moj;n � E Dn½ � ¼ moj;n � BnOo
t;n � An (8)

ðsdj;nÞ
2
¼ ðsoj;nÞ

2
þ vdn . (9)

Applying the expected value to (8) and replacing

E½Oo
t;n� with (5), mdj;n;t can be written as

mdj;n;t ¼ moj;n � Zn An þOd
t;n

� �
� An, (10)
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where Zn ¼ Bn=ð1� BnÞ. In this paper An; Bn and

vdn are estimated with the maximum likelihood

criterion using adaptation utterances. The max-
imization of the likelihood does not lead to
analytical solutions, so the EM algorithm was

employed. Given an adaptation utterance Od

distorted by a coding–decoding scheme and

composed of T frames, Od ¼ ½Od
1 ;O

d
2 ; . . . ;

;Od
t ; . . . ; Od

T �, Od is also called observable

data. The unobserved data is Yd ¼ yd
1 ; y

d
2 ; . . . ;

�
yd

t ; . . . ; y
d
T � where yd

t is the hidden number that

refers to the code-word or density of the observed

frame Od
t . The EM algorithm defines the function

QðF; F̂Þ :

QðF; F̂Þ ¼ E log f ðOd;Yd=F̂Þ
� �

jOd;F
h i

, (11)

where F̂ ¼ ff̂j;tj1pjpJ; 1ptpTg and f̂j;t ¼

ðmdj;t;
Pd

j Þ denotes the parameters that are esti-

mated in an iteration by maximizing QðF; F̂Þ. The
maximization procedure corresponds to equalling

to zero the partial derivatives of QðF; F̂Þ
with respect to P̂r cwj

� �
, Ân and B̂n, which in

turn leads to the following algorithm (see the
Appendix):
0.
 Initialization:An ¼ 0, Bn ¼ 0 ðZn ¼ 0Þ and
vdn ¼ 0.
1.
 Start with F ¼ Fo, where F ¼ ffj;tj1pjpJ;
1ptpTg and fj;t ¼ ðm

o
j ;
Po

j Þ. Pr cwj

� �
is in-

itialized with the a priori probability of
codeword j in the uncoded speech model
defined in (6).
2.
 Compute PrðcwjjO
d
t ;fjÞ,

PrðcwjjO
d
t =fjÞ ¼

gðOd
t =fj;tÞ � PrðcwjÞPJ

k¼1gðOd
t =fk;tÞ � PrðcwkÞ

.

(12)
3.
 Estimate P̂r cwj

� �
with

P̂r cwj

� �
¼

1

T

XT

t¼1

Pr cwj=Od
t ;fj;t

� �
. (13)
4.
 Estimate Ân with

Ân ¼

XT

t¼1

XJ

j¼1
P̂rðcwj=Od

t ;fj;tÞ
mo

j;n�Od
t;n�ZnOd

t;n

� �
s2

j;n

0
@

1
A

ðZn þ 1Þ
XT

t¼1

XJ

j¼1

P̂rðcwj=Od
t ;fj;tÞ

s2
j;n

� � :

(14)
5.
 Estimate Ẑn with

Ẑn

¼

XT

t¼1

XJ

j¼1
P̂rðcwj=Od

t ;fj;tÞ
mo

j;n�An�Od
t;n

� �
ðAnþOd

t;nÞ

s2
j;n

0
@

1
A

XT

t¼1

XJ

j¼1

P̂rðcwj=Od
t ;fj;tÞðAnþOd

t;nÞ
2

s2
j;n

� �

ð15Þ

and make B̂n ¼ Ẑn=ð1þ ẐnÞ.

6.
 Update m̂dj;n;t 1ojoJ; 1onoN, and 1otoT

with (10).

7.
 Estimate ŝ2j;n for each code-book

ŝ2j;n ¼

XT

t¼1
P̂rðcwj=Od

t ;fj;tÞ Od
t;n � m̂dj;n;t

� �2
XT

t¼1
P̂rðcwj=Od

t ;fj;tÞ
.

(16)
8.
 Estimate v̂dn :

v̂dn ¼

XJ

j¼1
ŝ2j;n-ðs

o
j;nÞ

2
h i

P̂rðcwjÞXJ

j¼1
P̂rðcwjÞ

. (17)
9.
 Estimate the following convergence rates:

DAn ¼
An � Ân

��� ���
Ân

, (18)

DBn ¼
Bn � B̂n

�� ��
B̂n

, (19)

Dvdn ¼
vdn � v̂dn
�� ��

v̂dn
. (20)
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clean speech coding-decoding 
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HMM adaptation on an 
utterance-by-utterance 

basis
Update parameters:

PrðcwjÞ ¼ P̂rðcwjÞ

An ¼ Ân; Bn ¼ B̂n; Zn ¼ Ẑn, s2j;n ¼ ŝ2j;n, and
vdn ¼ v̂dn .
 utterance
11.
HMM based 
ASR

Recognition 
output

Fig. 5. Block diagram of the coding–decoding distortion

compensation and recognition process proposed in this paper.
If convergence was reached, stop iteration;
otherwise, go to step 2. Convergence is defined
by the following condition:

AnpCT and BnpCT and vdnpCT; (21)

where CT is the convergence threshold and
1onoN.
Note that the maximization of QðF; F̂Þ does not
lead to an analytical solution for v̂dn , which in turn

was estimated with (17). According to (17) v̂dn is
estimated as the averaged difference between the
adapted and original code-word variance, s2j;n and
ðsoj;nÞ

2, respectively. This averaged difference is
weighted by the code-word probability Pr cwj

� �
.

Finally, if Zn ¼ 0, the distortion model does not
incorporate the relationship with the original
cepstral uncoded parameters and the compensa-
tion is feature independent.
4. Experiments

The compensation method was tested with
speaker-independent continuous speech recogni-
tion experiments using LATINO-40 database [9].
This database is composed of 40 Latin American
native speakers, each reading 125 sentences from
newspapers in Spanish. The training utterances
were 4500 uncoded clean sentences provided by 36
speakers and context-dependent phoneme HMMs
were employed. The vocabulary has almost 6000
words. The testing database was composed of 500
utterances provided by 4 testing speakers (two
females and two males). Each context-dependent
phoneme was modelled with a 3-state left-to-right
topology, with 8 multivariate Gaussian densities
per state and diagonal covariance matrices.
Trigram language modelling was employed. The
frame energy plus ten Mel frequency cepstral
coefficients (MFCC), and their first and second
time derivatives were computed. The 500 testing
uncoded signals were coded and decoded with the
8 kHz G.729 CS-CELP, 13 kHz GSM-FR,
12.2 khz GSM-EFR and 5.3 khz G.723 coders to
create the corrupted database. Fig. 5 shows a
block diagram with the proposed compensation
scheme. The techniques that were employed are
indicated as follows: baseline, unmatched HMM
trained with uncoded speech signals and without
compensation; feature-independent compensation,
unmatched HMM compensated with the EM
algorithm presented here that estimates only An

and vdn by making Bn ¼ Zn ¼ 0; feature-dependent

compensation, unmatched HMM compensated
with the proposed EM algorithm that computes
An; Bn and vdn ; matched-HMM, HMM trained
with speech signals that were coded and decoded;
CMN, unmatched HMM with cepstral mean
normalization; CVN/CMN, unmatched HMM
with cepstral variance normalization (CVN) [10]
and CMN; RATZ, unmatched HMM compen-
sated with blind RATZ according to [6]; super-

vised-ML, unmatched HMM where the means and
variances of the coding–decoding distortion, md

n

and vdn , respectively, were estimated with the
maximum likelihood criterion employing forced
Viterbi alignment. feature-independent compensa-

tion and feature-dependent compensation computed
the coding–decoding distortion on a sentence-by-
sentence basis. The code-book was composed of
256 code-words and was generated with the
uncoded training signals. The default value of
the convergence threshold, CT, in (21) was made
equal to 0.01. Due to practical restrictions, the
maximum number of iterations in the EM algo-
rithm was 20. The results are shown in Tables 1–3.
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Table 1

WER (%) with signals processed with 8 kbps G.729 CS-CELP, 13 kbps GSM-FR, 12.2 kbps GSM-EFR, 5.3 kbps G.723 coders

CODER Baseline Matched-HMM CMN CVN/CMN Feature-

independent

compensation

Feature-

dependent

compensation

GSM-FR 7.0 6.5 6.4 5.9 3.5 2.7

GSM-EFR 8.9 7.7 8.6 5.6 2.7 2.2

G.729 CS-CELP 11.2 7.5 10.3 5.9 3.4 3.0

G.723 12.0 9.5 10.0 7.3 3.4 2.7

Clean 5.9 5.9 5.9 5.8 2.6 2.0

Table 2

Comparison of the real time performance of feature-dependent compensation with feature-independent compensation. The codebook size

was made equal to 8, 32 and 256 code-words or Gaussians. The signals were processed with the 12.2 kbps GSM-EFR coder

Codebook size: 8 code-

words

Codebook size: 32

code-words

Codebook size: 256

code-words

WER (%) feature-independent compensation 4.5 4.4 2.7

WER (%) feature-dependent-compensation 3.9 3.8 2.2

Times real time feature-independent compensation 1.0 3.8 26.4

Times real time feature-dependent compensation 1.3 4.9 45.0

Times real time feature-dependent compensation

(CT in (21) was increased to make WER

approximately equal to the one given by feature-

independent compensation)

0.2 1.6 21.5

Table 3

Comparison of feature-dependent compensation with RATZ and supervised-ML. AdU denotes the number of adapting utterances. The

signals were processed with the 12.2 kbps GSM-EFR coder

Feature-dependent compensation RATZ Supervised_ML

AdU ¼ 1 AdU ¼ 10 AdU ¼ 10

WER (%) 2.7 7.1 8.3

Times real time (CT in (21) was increased to make

WER approximately equal to the one given by

feature-independent compensation)

21.5 25.2 0.4

N. Becerra Yoma, C. Molina 
The baseline system with uncoded speech gave a
WER equal to 5.9%.

As can be seen in Table 1, the GSM-FR, GSM-
EFR, G.729 CS-CELP and G723 coders gave
WER equal to 7.0%, 8.9%, 11.2% and 12.0%,
respectively, in experiments with the baseline
system (baseline). In matched conditions,
matched-HMM, WER was reduced by 19% on
average when compared to baseline. This result is
consistent with the one presented in [1]. CMN gave
an average reduction of 9% in WER. This low
improvement is due to the fact that the coding–
decoding distortion model is different from the one
for convolutional noise, which can be substantially
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suppressed with CMN. CVN/CMN provided a
higher improvement than matched-HMM and
CMN: the average reduction in WER was 35%
when compared to baseline. This must result from
the fact that CVN/CMN attempts to normalize
the mean and variance, which is more consistent
with the coding–decoding distortion model
employed here. Moreover, the combination
CVN/CMN was applied on a sentence-by-sentence
basis and was more effective than matched-HMM

to cancel the coding–decoding distortion that is
speaker dependent.

Also in Table 1, feature-dependent compensation

gave an average reduction in WER equal to 72%
and 57% when compared to Baseline and CVN/

CMN, respectively. CVN/CMN strongly depends
on the utterance length and does not make use of
any model. On the other hand, feature-dependent

compensation employs the information provided
by the adapting utterance itself, the p.d.f. of the
uncoded cepstral coefficients given by (6), and the
model for coding–decoding distortion expressed in
(4). Actually, the highest improvement was
achieved with feature-dependent compensation that
led to WER equal to 2.7%, 2.2%, 3.0% and 2.7%
with the GSM-FR, GSM-EFR, G.729 CS-CELP
and G723 coders, respectively. When compared to
feature-independent compensation, feature-depen-

dent compensation gave a reduction in WER of
23%, 19%, 12% and 21% with the GSM-FR,
GSM-EFR, G.729 CS-CELP and G723 coders,
respectively. Observe that the lowest improvement
took place in experiments with G.729 CS-CELP
where the difference between the feature-depen-
dent and -independent models is less relevant
according to Section 2 and Fig. 1. These reduc-
tions in WER strongly validate the model pro-
posed in this paper. Significance analysis with the
McNamar0s test [11] shows that the improvements
presented in Table 1 due to feature-dependent

compensation, when compared to feature-indepen-

dent compensation, are significant (po0.1).
As can be seen in Table 1, feature-dependent

compensation and feature-independent compensa-

tion, with only one adaptation utterance, drama-
tically reduced the effect of the GSM-FR, GSM-
EFR, G.729 CS-CELP and G723 coders, and gave
a WER lower than the baseline system with
uncoded speech. This result is probably due to
the fact that the approach proposed here also
provides an adaptation to testing condition
beyond the type of codification. The estimation
of the vectors An; Bn, and vdn may also provide a
speaker adaptation effect, for instance. When
compared to the baseline system, feature-depen-

dent compensation reduces the averaged difference
between WER with distorted speech and clean
signal from 3.9% to 0.7%. In other words, the
proposed method substantially improves the ro-
bustness to coding–decoding distortion.
The EM algorithm employed in feature-indepen-

dent compensation and feature-dependent compensa-

tion demands a high computational load. An
exhaustive analysis to reduce the computational
load of the EM estimation procedure is out of the
scope of this paper. However, Table 2 presents
results when the number of code-words or Gaus-
sians in (6) was reduced from 256 to 8. The
experiments were done with a PC Pentium IV
2.4GHz.When compared to 256 code-words, the
model with 8 Gaussians or code-words gave a WER
77% higher, but the computational load was 35
times lower. This result suggests that the algorithm
proposed here can be optimized from the computa-
tional complexity point of view. Notice that, despite
the fact that WER provided by feature-dependent

compensation with 8 code-words is higher than the
one with 256 Gaussians, this WER is still lower
than the one given by the techniques in Table 1.
Observe also that feature-independent compensation

has a lower computational load than feature-

dependent compensation with the same convergence
criterion. However, feature-dependent compensation

has a lower computational load if the convergence
criterion, CT in (21), is softened to achieve the same
WER as the one given by feature-independent

compensation. This is due to the fact that the model
employed by feature-dependent compensation is
more accurate and the adaptation algorithm con-
verges with fewer iterations.
Table 3 presents a comparison with RATZ and

supervised-ML. Observe that both methods require
a high number of adapting utterances, AdU. In the
experiments reported here, AdU was made equal
to 10 with RATZ and supervised-ML in order to
achieve significant reductions in WER when
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compared to baseline. This is consistent with [6] in
the case of RATZ and with [7] in the case of
Supervised-ML, although in [7] the adaptation
procedure employed the forward–Backward algo-
rithm. When compared to RATZ and supervised-

ML, feature-dependent compensation in Table 1
gave a reduction in WER equal to 70% and 74%,
respectively, with only one adapting utterance.
This must be due to the fact that RATZ attempts
to estimate the original cepstral coefficient, does
not compensate the HMM by considering the
original signal as a random variable, and does not
employ a model for coding–decoding distortion. In
the case of supervised-ML, the estimation is done
by directly computing the means and variances of
the coding–decoding distortion, md

n and vdn , respec-
tively, without any assumption about the distribu-
tion of cepstral coefficients in uncoded speech as in
(6) and about the coding–decoding distortion as in
(4). As far as computational load is concerned,
feature-dependent compensation can be more effi-
cient than RATZ and also has a WER that is 62%
lower. This results from the more accurate model
employed by feature-dependent compensation that
allows the estimation algorithm to converge faster
than feature-independent compensation and RATZ.

Supervised-ML is the technique that requires the
lowest computational load, but it provides the
poorest results and is a supervised approach,
which in turn imposes serious restrictions on its
applicability.
5. Conclusion

The feature-dependent compensation method
proposed here dramatically compensates for the
coding–decoding distortion, and can give a reduc-
tion in WER of 23%, 19%, 12% and 21% with
GSM-FR, GSM-EFR, G.729 CS-CELP and G723
coders, respectively, when compared to the feature
independent approach. When compared to the
baseline system, the reduction in WER is as high
as 70%. Moreover, the model employed by the
feature-dependent compensation is more accurate
than the one used by the feature-independent
technique, and makes the adaptation algorithm
converge in fewer iterations and give the same
WER. As a consequence, the computational load
requirement is reduced. This reduction depends on
the number of code-words or Gaussians employed
to model the distribution of cepstral coefficients in
uncoded speech. It is worth emphasizing that the
exhaustive analysis to decrease the computational
load of the proposed method is out of the scope of
the current paper.
In contrast to other methods already published

in the specialized literature, the proposed techni-
que is suitable for telephone dialogue systems
because it needs only one adapting utterance. This
is consistent with the fact that the coding–decod-
ing distortion is speaker dependent. Moreover, a
speaker adaptation effect may also take place,
which in turn contributes to reduce WER in some
circumstances. Finally, reducing the computa-
tional load of the estimation algorithm, the
feature-dependent computation of the coding–de-
coding distortion variance, and the joint compen-
sation of additive noise and coding–decoding
distortion are proposed as future work.
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Appendix A

A.1. Given the model for the coding–decoding
distortion:

E Oo
t;n

h i
¼ Od

t;n þ E Dn½ �. (A.1)

According to the model proposed in this paper, the
expected value of the coding–decoding distortion
is given by

E Dn½ � ¼ E Oo
t;n �Od

t;n

h i
¼ Bn �O

o
t;n þ An (A.2)

Replacing (A.2) in (A.1)

E Oo
t;n

h i
¼ Od

t;n þ BnOo
t;n þ An (A.3)
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Taking the expected value of (A.3)

E Oo
t;n

h i
¼ Od

t;n þ BnE Oo
t;n

h i
þ An. (A.4)

As a consequence, E½Oo
t;n� can be written as

E Oo
t;n

h i
¼

Od
t;n þ An

1� Bn

. (A.5)

A.2. Given the function QðF; F̂Þ expressed by
(11) it can be shown that QðF; F̂Þ can be
decomposed in two terms [12]

G ¼
XT

t¼1

XJ

j¼1

PrðcwjjO
d
t ; F̂Þlog P̂rðcwjÞ

� �
(A.6)

and

H ¼
XT

t¼1

XJ

j¼1

PrðcwjjO
d
t ;FjÞlog f ðOd

t jcwj ; F̂jÞ

� �
:

(A.7)

The probabilities P̂rðcwjÞ are estimated by means
of maximizing G with the Lagrange method [12]

P̂r cwj

� �
¼

1

T

XT

t¼1

Pr cwjjO
d
t ;fj

� �
. (A.8)

The expressions (14) and (15) to estimate the
distortion parameters An and Bn (or Zn ¼

Bn=ð1� BnÞ) defined in (4) are derived by applying
to H the gradient operator with respect to Ân and
Ẑn, and setting the partial derivatives equal to zero

qH

qðÂnÞ
¼ 0, (A.9)

qH

qðẐnÞ
¼ 0 (A.10)

where Ân and Ẑn are the estimated parameters
after one iteration of the EM algorithm. However,
the coding–decoding distortion variance, vdn , can-
not be estimated as in (A.9) and (A.10). This
procedure does not lead to an analytical solution
for vdn , and (17) described in Section 3 was
adopted. Observe that (16) to estimate ŝ2j;n is also
derived by equalling the partial derivative to zero

qH

qðŝ2j;nÞ
¼ 0 (A.11)
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