
Consistency of Temporal XML Documents

Marcela Campo1 and Alejandro Vaisman2

1 Universidad de Buenos Aires
mcampo@dc.uba.ar

2 Universidad de Chile
avaisman@dcc.uchile.cl

Abstract. Different models have been recently proposed for representing
temporal data, tracking historical information, and recovering the state of
the document as of any given time, in XML documents. After presenting
an abstract model for temporal XML, we discuss the problem of the valida-
tion of the temporal constraints imposed by this model. We first review the
problem of checking and fixing isolated temporal inconsistencies. Then, we
move on to study validation of a document when many temporal inconsis-
tencies of different kinds are present. We study the conditions that allow to
treat each inconsistency isolated from the rest, and give the corresponding
proofs. These properties are intended to be the basis of efficient algorithms
for checking temporal consistency in XML.

1 Introduction

The problem of validating an XML document with respect to a set of integrity
constraints after an update occurs, has recently attracted the attention of the
database community. Many incremental validation techniques have been pro-
posed [2,3,10,14]. In the temporal XML setting, although several models exist
for representing, querying and updating temporal information [1,5,7,8], little at-
tention has been given to the problem of validating the temporal constraints
imposed by these models. In Temporal XML documents, the updates must take
as input (and return) a valid XML document, not only with respect to the usual
set of integrity constraints, but also with respect to the temporal constraints
defined by the model at hand. Further, more often than not, we will not be
working with documents built from scratch using update operations, but with
a pre-existent temporal XML document; thus, we will need to efficiently check
if this document verifies a set of temporal constraints, and, if not, provide the
user with tools for fixing the inconsistencies, if needed.

In this work we address the problem of validating a set of temporal constraints
in a temporal XML document. Although our proposal is based in the data model
introduced in [12] (discussed in more detail in Section 3), it could be extended to
other data models for temporal XML. After presenting and discussing the data
model, we characterize temporal inconsistencies in temporal XML documents.
We then introduce the problem of checking inconsistencies in a document, and
fixing individual inconsistencies. Then, we move on to a more realistic scenario,

c

M. Campo and A. Vaisman

where many inconsistencies could appear concurrently, and study the conditions
under which these inconsistencies could be teated isolated from each other. These
properties could then be embedded in efficient algorithms for fixing inconsisten-
cies in temporal XML documents. To the best of our knowledge, this is the first
contribution in this topic.

The remainder of the paper is organized as follows: in Section 2 we review
previous efforts in temporal semistructured/XML data. In Section 3 we introduce
the temporal data model. Section 4 presents the main kinds of inconsistencies
that may appear in a temporal XML document, and discusses how they can be
fixed. Section 5 addresses documents where more than one consistency condition
is violated. We conclude in Section 6.

2 Related Work

Some proposals have been recently presented addressing incremental validation
of XML documents. Kane et al [10] model XML constraints as rules, and present
a constraint checking mechanism for update operations, aimed at ensuring that
the result of an update leaves the XML document in a consistent state. Basically,
this is performed by rewriting an update query into a so-called safe update query.
Incremental validation of XML documents has also been studied in [2,3,14].

Chawathe et al proposed a historical model for semistructured data [4], that
extends the Object Exchange Model (OEM) with the ability to represent updates
and to keep track of them by means of “deltas”. Along the same lines, Oliboni et
al [13] proposed a graphical data model and query language for semistructured
data. Both works assume that the documents are consistent with respect to
the temporal constraints the models impose. Several data models for Temporal
XML have been proposed. All of them lack of a mechanism for checking the
underlying temporal constraints. In contrast, in this paper we study different
ways of tackling (temporal) consistency in temporal XML documents. Amagasa
et al [1] introduced a temporal data model based in XPath, but not a model for
updates, nor a query language taking advantage of the temporal model. Dyreson
[7] proposed an extension of XPath with support for transaction time by means
of the addition of several temporal axes for specifying temporal directions. Chien
et al [5] proposed update and versioning schemes for XML, through a scheme
where version management is performed by keeping references to the maximal
unchanged subtree in the previous version. A similar approach was also followed
by Marian et al [11]. Gao et al [8] introduced τXQuery, an extension to XQuery
supporting valid time while maintaining the data model unchanged. Queries are
translated into XQuery, and evaluated by an XQuery engine. Finally, Wang et
al have also proposed solutions based in versioning [16]. In this paper we will
work over a data model first introduced in [12].

3 Temporal XML Documents

We will introduce the model through an example, depicted in Figure 1. This
is an abstract representation of a temporal XML document for a portion of a

Consistency of Temporal XML Documents

name
name4

1

0

2 3

Sales

name

Purchases

SusanJohn 36
46

5

name

Peter 30

name

employee

Company

name
salarysalary

salary

<0,20>
<0,10>

employee
employee

<31,Now>

employee

<0,30>

<10,Now>

20

<10,Now>

25

salary salary

<0,30>

Mary

name

<31,Now>
<0,10> <0,10> <10,Now><0,20>

Finance

Fig. 1. Example database

company involving departments and their employees. The database also records
salaries and, probably, other properties of the employees. Note that in this model,
employee’s nodes are not duplicated throughout time. For example, can see that
John and Peter worked for the Sales department in the intervals [0,10] and
[0,20] respectively, while Susan has been working for the Finance department
since instant “10”. When an edge has no temporal label, its validity interval
is assumed to be [0,Now] (i.e. the complete lifespan of the node). Thus, the
abstract representation of the temporal document presented in Figure 1 contains
the whole history of the company. We can then query the state of the database
at a certain point in time, or pose temporal queries like “employees who worked
for the Sales department continuously since the year 2000.” In [12] the authors
provided indexing schemes allowing efficient query evaluation techniques.

More formally, an XML document is a directed labeled graph, where we dis-
tinguish several classes of nodes: (a) a distinguished node r, the root of the
document, such that r has no incoming edges, and every node in the graph is
reachable from r; (b) Value nodes: nodes representing values (text or numeric);
they have no outgoing edges, and have exactly one incoming edge, from attribute
or element nodes (or from the root); (c) Attribute nodes: labeled with the name
of an attribute, plus possibly one of the ‘ID’ or ‘REF’ annotations; (d) Element
nodes: labeled with an element tag, and containing outgoing links to attribute
nodes, value nodes, and other element nodes. Each node is uniquely identified
by an integer, the node number, and is described by a string, the node label.
Edges in the document graph are constrained to be either containment edges or
reference edges. A containment edge ec(ni, nj) joins two nodes ni and nj such
that ni is either r or an element node, and nj is an attribute node, a value node
or another element node; a reference edge er(ni, nj) links an attribute node ni

of type REF, with an element node nj . We add the time dimension to document

M. Campo and A. Vaisman

graphs labeling edges with intervals. We will consider time as a discrete, linearly
ordered domain. An ordered pair [a, b] of time points, with a ≤ b, denotes the
closed interval from a to b. As usual in temporal databases, the current time
point will be represented with the distinguished word ‘Now’. The document’s
creation instant will be indistinctly denoted by the instant “0′′.

A temporal label over a a containment edge ec(ni, nj), is an interval Tec
rep-

resenting the time period when the element represented by nj was contained
in the element represented by ni. Our model supports transaction time of the
containment relation. Although we do not deal with valid time, it could be ad-
dressed in an analogous way. Analogously, for reference edges, Ter

represents
the transaction time of the reference edge er(ni, nj). We note that the full
model supports other kinds of nodes, like versioned and attribute nodes, that
we will not consider here. We will use Te.TO and Te.FROM to refer to the
endpoints of the interval Te. Two temporal labels Tei

and Tej
are consecutive

if Tej
.FROM=Tei

.TO + 1. The lifespan of a node is the union of the temporal
labels of all the containment edges incoming to the node. The lifespan of the
root is the interval [t0, Now].

Definition 1 (Temporal XML Document). A Temporal XML Document
is a document graph, augmented with temporal labels and versioned nodes, that
satisfies the following conditions: (1) The union of the temporal labels of the con-
tainment edges outgoing from a node is contained in the lifespan of the node. (2)
The temporal labels of the containment edges incoming to a node are consecutive.
(3) For any time instant t, the sub-graph composed by all containment edges ec

such that t ∈ Tec
is a tree with root r, called the snapshot of D at time t, denoted

D(t). (4) For any containment edge ec(ni, nj , Tec
), if nj is a node of type ID,

the time label of ec is the same as the lifespan of ni; moreover, if there are two
elements in the document with the same value for an ID attribute, both elements
are the same. In other words, the ID of a node remains constant for all the snap-
shots of the document. (5) For any containment edge ec(ni, nj , Tec

), if nj is an
attribute of type REF, such that there exists a reference edge er(nj , nk, Tr), then
Tec

= Ter
holds. (6) Given a reference edge er(ni, nj , Ter

), Ter
⊆ lnj

holds.

Note that the second condition in Definition 1 implies that we will be working
with single intervals instead of temporal elements. This assumption simplifies the
presentation and makes the implementations more efficient, although it imposes
some constraints on the model. Our definitions and theorems can be, however,
extended to the case of temporal elements, overriding the former limitation.
Discussion on this topic, and a more detailed description of the model, can be
found in [12]. We will also need the following definition:

Definition 2 (Continuous Path and Maximal Continuous Path). A con-
tinuous path with interval T from node n1 to node nk in a temporal document
graph is a sequence (n1, . . . , nk, T) of k nodes and an interval T such that there
is a sequence of containment edges of the form e1(n1, n2, T1), e2(n2, n3, T2),
. . . , ek(nk−1, nk, Tk), such that T =

⋂
i=1,k Ti. We say there is a maximal

Consistency of Temporal XML Documents

continuous path (mcp) with interval T from node n1 to node nk if T is the union
of a maximal set of consecutive intervals Ti such that there is a continuous path
from n1 to nk with interval Ti.

4 Consistency in Temporal XML

In this section we will summarize previous results on the problem of checking
consistency, and fixing isolated inconsistencies. Details can be found in [15]. In
addition, we will give the definitions and concepts needed for studying the general
problem (i.e., multiple inconsistencies), that we discuss in the next section.

Definition 3 (Inconsistencies in Temporal XML). The constraints stated
in Definition 1 are violated if: (i) there is an outgoing containment edge whose
temporal label is outside the node’s lifespan; (ii) the temporal labels of the con-
tainment edges incoming to a node are not consecutive. Here, the inconsistency
may be due to a gap or an overlapping of the temporal labels of the edges in-
coming to a node; (iii) there is a cycle in some document’s snapshot; (iv) there
exist more than one node with the same value for the ID attribute. We will de-
note these types of inconsistencies as inconsistencies of type i, type ii, type iii,
and type iv. An Interval of Inconsistency, denoted II is the closed interval where
consistency conditions in Definition 3 are not satisfied.

As we will only consider temporal issues in this paper, we will only study incon-
sistencies of types i through iii. Also, we will work with documents containing
no IDREF or IDREFS attributes.

Example 1. Figures 2 (a) to (c) show examples of inconsistencies of types i
through iii, and their intervals. In Figure 2(a) II = [T4, Now]; in Figure 2 (b)
II = [T2, T4]; in Figure 2 (c) there is a cycle in every snapshot within the interval
II = [T4, T6].

Checking Consistency. Inconsistencies of types i and ii are checked using the
function lifespan(n), that, given a node n computes its lifespan. For inconsisten-
cies of type i, the algorithm checks, for each edge e, if Te is in lifespan(n). If there
is an inconsistency of type ii, lifespan(n) returns null. It can be shown that the
lifespan of a node can be computed with an order O(degin(n)∗ log(degin(n))),
where degin(n) is the number of edges incident to n. In the worst case (where
all edges in the graph are incident to the node), the order of the algorithm is
O(|E| ∗ log(|E|); in the average case (all nodes have the same number of in-
coming edges, i.e. |E|

|V |), this reduces to O(|E|
|V | ∗ log(|E|

|V |). In the best case (when
each node has only one incoming edge) the lifespan is computed in constant
time.

Inconsistencies of type iii are checked (with order O(|E| + |V |)) using the
following proposition.

M. Campo and A. Vaisman

root

n1

n2

[0,t3]

[t1,Now]

(a)

rootroot

n1 n3

[0,Now]

n2

[0,t1] [t5,Now]

[0,Now]

(b) (c)

n3

n2

n1

[t2,t3]

[t2,t6]

[t2,t6]
[t4,t6]

Fig. 2. (a) Inconsistency of type i; (b) Inconsistency of type ii; (c) Inconsistency of
type iii

Proposition 1. Let D be a Temporal XML document where every node has at
most one incoming containment edge in every time instant t; if there is a cycle
in some interval II in D, then, there exists a node ni such that Tmcp(ni) �=
lifespan(ni), where Tmcp(ni) is the temporal interval of the mcp between the
root and node ni.

Definition 4 (Deleting edges). Let D be a Temporal XML document, and let
e be a containment edge e(ni, nj , Te). We define three different kinds of deletion
of containment edges: (1) Physical Delete of an edge e is the deletion of e during
all the edge’s lifespan. (2) Delete e in an instant t ∈ Te, with three variants:
(a) Physical delete e, if Te.FROM = Te.TO = t; (b) make Te.TO = t − 1, if
Te.TO = t∧Te.FROM < t; (c) make Te.TO = t+1, if Te.TO = t∧Te.FROM >
t; (d) Create a duplicate of nj at instant t, and delete e in t (see below) if
Te.FROM < t < Te.TO. (3) Delete e in an Interval I is the deletion of the edge
e for each instant t, t ∈ I ∩ Te.

Duplication of a node n at instant td is performed as follows: (1) create a new
node nc, and, for all edges ej(n, ni, Tej

) outgoing from n, create a new edge
ek(nc, ni, Tej

); (2) delete (following Definition 4), all edges outgoing from n, for
all instant t ≥ td; (3) delete all edges outgoing from nc, for all instant t < td;
(4) for each edge ei(ni, n, Tei

) incident to n such that Tei
.TO ≥ t create a new

edge en(ni, nc, Tni
) with Tni

.FROM = t if t ∈ Tni
, and Tni

= Tei
otherwise; (5)

finally, delete all edges ei in the interval [t, Tei
.TO] if t ∈ Tei

. It can be shown
node duplication can be performed in O(degout(n) + degin(n)) ≈ O(|E|) time.

The first kind of deletion in Definition 4 is a physical deletion, that is, the
whole edge disappears. The second kind of deletion has different flavors. If the
edge is deleted in an instant that corresponds to a boundary of it interval of va-
lidity (Te), this boundary is incremented (decremented) in one time unit. Finally,
if the edge is deleted in an instant inside Te, the target node of the edge is split
into two, as explained above. Deletion during an interval is just a straightforward
generalization of the above.

Consistency of Temporal XML Documents

n1

n2

n3

[16,35]

n4

n1

n2

n3

[16,35]

[31,50]

n4

[20,60]

[61,Now]

[20,60]

[30,40]

[0,30] [31,50]
[0,30]

[20,60]

(b)(a)

Fig. 3. Inconsistency of type i

Definition 5 (Temporal Label Expansion and Reduction). Given a con-
tainment edge e(ni, nj , Te), an expansion of Te to an instant t is performed
making Te.TO = t, if t > Te.TO, and Te.FROM = t, if t < Te.FROM .

Analogously, reducing the temporal label Te to an interval T ′ ⊂ Te implies
deleting e in the intervals [Te.FROM, T ′.FROM − 1], [T ′.TO + 1, Te.TO].

Given two intervals T1 and T1, if T1.TO > T2.TO we will say that T1 is greater
than T2, denoted T1 � T2. Analogously, if T1.TO < T2.TO, we say that T1

precedes T2, denoted T1 ≺ T2.

Definition 6 (Youngest (Oldest) Incoming Edge). Wewill denote youngest
edge incoming to a node n, ye(n), an edge whose temporal label is the largest (accord-
ing to the definition above) among all the temporal labels of the edges incoming to n.
Analogously we define the oldest edge incoming to a node n, oe(n), as an edge whose
temporal label is less than the labels of all the other edges incoming to n.

Fixing Inconsistencies of Type i. We study two ways of fixing the prob-
lem: (a) correction by expansion; and (b) correction by reduction. Correction by
expansion expands the lifespan of the inconsistent node until it covers the violat-
ing interval; for this task, if II � lifespan(n), ye(n) (i.e., the youngest incoming
edge) is chosen for expansion; if lifespan(n) � II , oe(n) is chosen. The problem
with this solution is twofold: on the one hand, we do not really know if the
containment relation actually existed in the new interval. An expert user will be
needed to define this. On the other hand, the expansion may introduce a cycle
(i.e., an inconsistency of type iii). In this case, expansion will not be a possible
solution. Correction by reduction shrinks the temporal label of the inconsistent
edge, in order to close II . The main idea here is to modify the temporal label
of the inconsistent edge, in order that it lies within the lifespan of the starting
node of such edge. Although no cycle can be introduced by this solution, new
inconsistencies of type i may appear in the ending node of the modified edge,
if this node has outgoing edges that cover the interval that has to be reduced;
moreover, inconsistencies of type ii may also be introduced if the deleted interval

M. Campo and A. Vaisman

was not in one of the lifespan’s extremes. Finally, note that reduction can be
propagated downward in cascade.

Example 2. Figure 3(a) shows an inconsistency of type i at node n2, where
II = [51, 60]. A correction by expansion will expand the youngest edge incom-
ing to n2, resulting in a new label [31, 60]. Note that an expansion may recur-
sively propagate the inconsistency upward in the path, until a consistent state
is reached. In the same example, the correction by reduction approach would
generate new inconsistencies of type i and ii. Reducing to [20,50] the interval
of the edge (n2, n3) in Figure 3 (a), introduces a gap in node n3. In the case
of Figure 3 (b), the same correction will make the temporal label of the edge
(n3, n4) lie outside the lifespan of node n3.

Fixing Inconsistencies of Type ii. In this case we have two possibilities: (a)
there is an overlapping of some of the temporal labels incoming to a node; (b)
the union of the temporal labels of the edges incoming to a node presents a gap.

For fixing overlapping it suffices just to delete one of the violating edges
in the interval of inconsistency. Closing the gaps has more than one possible
solution: (a) physically delete all incoming edges occurring after the gap (i.e.,
with temporal labels starting after the gap); (b) expand the temporal labels of the
edges, in order to close the gap (this could be performed expanding the temporal
labels of one or more of the edges involved); (c) duplicate the violating node
in a way such that the resulting incoming and outgoing edges have consistent
temporal labels. The first two options may introduce new inconsistencies of type
i (for example, if the violating node is n, there is an edge e(ni, n, Te), and Te is
expanded to T ′

e, the latter label may be outside the lifespan of ni). The third
option requires the node created to be semantically equivalent and syntactically
consistent. Fixing inconsistencies of type ii can be done in O(|E|)2 time [15].

Fixing Inconsistencies of Type iii. Inconsistencies of type iii involve cycles
occurring in some interval(s) of the document’s lifespan. In this case, again, we
have more than one possible way of fixing the inconsistency, basically consisting
in deleting (according to Definition 4) edges within the cycle. We may (a) delete
all containment edges involved in a cycle during the inconsistency interval II

(i.e., the interval when the cycle occurs); or (b) delete (within the interval of
inconsistency) one of the edges in the cycle. Given that this would introduce an
inconsistency of type i, this solution is only possible if there is at least one node
n in the cycle with more than one incoming containment edge ec(ni, n, Te), such
that Te lies outside II . Thus, besides deleting the edge, Te must be expanded in
order to prevent introducing a new inconsistence.

5 Interaction Between Inconsistencies

So far we have studied document inconsistencies isolated from each other. In a
real-world scenario, it is likely that more than one inconsistency appears in a
document. In this section we tackle this problem. First, we need some definitions.

Consistency of Temporal XML Documents

Definition 7 (Expansion paths). We denote youngest parent of a node n,
the origin node of ye(n). The oldest parent of a node is the origin node of oe(n).
A path of oldest (youngest) parents between two nodes ni, nj is a path where
each node is the youngest (oldest) parent of the next node in the path. We will
denote these paths expansion paths.

Definition 8 (Area of Influence). We will call Area of Influence of an in-
consistency I, denoted Ainf (I), the union of all the nodes affected by the possible
solutions to the inconsistencies studied in Section 4. An affected node is a node
changed as a consequence of fixing an inconsistency, i.e., a node such that (a)
an incoming or outgoing node was deleted; (b) a temporal label of an incoming
or outgoing edge was expanded or reduced.

For an inconsistency I of type i, the Area of Influence of I is the set of nodes
composed of: the inconsistent node n, all the nodes in the expansion paths of n,
and all the nodes ni in the document such that there is a continuous path from
n to ni during IIi

(the interval of inconsistency of I).
The Area of Influence of an Inconsistency of type ii is only composed of the

inconsistent node n. Given that the solution for this kind of inconsistency is the
duplication of the node, only the edges are affected (and a new node will be
created).

The Area of Influence of an Inconsistency of Type iii during an Interval of
Inconsistency II is composed of: (a) all the nodes ni in the cycle (corresponds to
the solution of deleting all nodes in the cycle); (b) all nodes nj such that there
is a continuous path from ni to nj with interval T ⊇ IIiii

(a consequence of the
above); (c) all the nodes in the expansion path of each node in the cycle, with
temporal label less than II ; (corresponds to the solution of deleting only one
edge in the cycle).

Example 3. Figure 4 (a) shows an example of an inconsistency of type i over node
n3. The possible solutions are, as we have seen before, correction by reduction
or by expansion. The former affects all nodes belonging to a path with origin in
n3, in the interval [t3, t10] (i.e., n4 and n6). Expansion would affect all nodes in
the path of youngest parents of n3, i.e, n2 and n1. Then, the area of influence is
the set: {n1, n2, n4, n6, n3}.

Figure 4 (b) depicts the area of influence of a cycle between nodes n2, n3, n4

and n5. If all of them are deleted, node n7 will also be affected, because it is
reached from n3 within the cycle’s interval. In fact, all nodes, except n2 will be
physically deleted. Deleting only the ending node of one inconsistent edge in the
cycle implies deleting node n2 (we delete e(n5, n2, T52)), expanding the intervals
of the path of youngest parents of n2, i.e., n1 is also affected.

If more than one inconsistency appears in a temporal XML document, the order
in which we solve them will have an impact on the document that we will finally
obtain. We would like to identify, at low cost, sets of inconsistencies that do
not interfere with each other. In this case, we would be able to fix them in any
order, and the result will be the same. The notion of area of influence allows us
to identify such sets.

M. Campo and A. Vaisman

(b)

n4

n6

n5

[0,t1]

[t2,t4]

[t2,t4]

[t2,t4]

root

n1

n2

n3

[0,Now]

[0,t5]

[0,t5]

n4

[t3,t10]

n5 n6

(a)

[t3,t10]
[t3,t5]

root

n1

n2

n3

n7

[0,Now]

[0,t1]

[t2,t4]

[t2,t4]

Fig. 4. Inconsistencies of Types i and iii - Area of influence

Intuitively, given any pair of inconsistencies (of any type), I1 and I2, we say
that I1 and I2 interfere with each other if their areas of influence have non-empty
intersection. Conversely, if Ainf (I1) ∩ Ainf (I2) �= φ, we say that I1 and I2 are
isolated from each other. Given a set of n inconsistencies I1, ..., In, we denote
the set composed of the nodes in Ainf (I1) ∩ Ainf (I2)... ∩ Ainf (In), the Area of
Interference of I1, ..., In, denoted Ai(I1, I2, ...In)

Definition 9 (Classification of Interferences). Given a set of inconsisten-
cies I = {I1, ..., In} such that Ainf (I1) ∩ Ainf (I2)... ∩ Ainf (In) �= φ we denote
their interference Irrelevant if we can fix them in any order and obtain the same
result (i.e., everything happens as if they were isolated). On the contrary, if this
property does not hold, we denote the interference relevant.

Example 4. Figure 5 (a) shows two irrelevant inconsistencies of type ii over the
same node. In both cases, the solution will be node duplication. However, it is
easy to see that the result will be the same, no matter which one we address in
the first place. Figure 5 (b) shows a cycle interfering with an inconsistency of
type i. The cycle cannot be corrected by expansion because it involves nodes in
the potential path of youngest parents of the inconsistency of type i.

In what follows, we will study the conditions that state when an interference
is irrelevant. Detecting irrelevant interferences through the propositions below,
constitutes the basis of an efficient solution to the problem of fixing a document
with multiple temporal inconsistencies. We will not address relevant interferences
in this paper.

Irrelevant Interferences. In the propositions below, we will be using a simple
metric, namely the number of changes needed to fix an inconsistency, where a
change could be: (a) the expansion of an interval; (b) the reduction of an interval;

Consistency of Temporal XML Documents

root

n1

n3

n2n4

[0,t1]

[t2,t5][t2,t5]

[t2,t5]

[t4,t6]

(b)

root

n2

n1

n3 n4

[0,Now]

[0,t10]
[t15,t20]

[t27,t30]

[t21,t25]

[0,t10] [t18,t23]

(a)

Fig. 5. Relevant and Irrelevant interferences

(c) the duplication of a node; (d) the physical deletion of an edge. For simplicity,
we give the same weight to each change. We denote this metric κ. When there
is more than one possibility for fixing an inconsistency, this metric will define
which method we will use (i.e., the one with the smallest κ). In particular, in
Section 4 we proposed two methods for fixing inconsistencies of type i: correction
by expansion and correction by reduction. We denote κr and κe the number of
changes required by a correction by reduction and expansion, respectively.

Definition 10 (Expansion Area). We call Expansion Area of an inconsis-
tency I, denoted Ae(I) the set of nodes belonging to the expansion path(s) that
compose the Area of Influence of I. Analogously, we call the Reduction Area
of I, denoted Ar(I) the set of nodes in all the mcps that compose the Area of
Influence of I. It follows that, for inconsistencies of types i and iii, Ainf (I) =
Ae(I) ∪ Ar(I).

Proposition 2. Let I1, I2 be two inconsistencies of type i, with intervals T1 and
T2, respectively. If Ae(I1) ∩ Ar(I2) = Ae(I2) ∩ Ar(I1) = φ, then, I1 and I2 can
be solved by expansion, in any order.

Now, we will give a set of propositions that allows us to determine if two incon-
sistencies occurring in the same document are irrelevant or not. We will address
all possible combinations of inconsistencies, starting from concurrent inconsis-
tencies of the same kind. For the sake of space will only give the proof of some
of the propositions.

Proposition 3 (Inconsistencies of type i). Let I1, I2 be two inconsistencies
of type i, with intervals T1 and T2, respectively. Their interference is irrelevant
if at least one of the following holds:

M. Campo and A. Vaisman

a. κr(I1) < κe(I1) ∧ κr(I2) < κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
b. κr(I1) > κe(I1) ∧ κr(I2) > κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
c. Ai(I1, I2) = Ar(I1) ∩ Ar(I2) ∧ T1 ∩ T2 = φ.
d. Ai(I1, I2) = Ae(I1)∩Ar(I2)∧T1 ≺ T2 (for a path of youngest parents,T1 � T2

for a path of oldest parents)

Condition (a) means that the number of changes needed to fix each inconsistency
by reduction is less than the number of changes required to fix it by expansion,
and the expansion area of one of them does not intersect with the expansion
area of the other. Condition (b) is analogous.

Proof. Condition a. If the interference is not irrelevant, fixing one inconsistency
would affect the remaining one. Suppose we fix I1 and I2 in that order. We know
that κr(I1) < κe(I1), so we must choose reduction for I1. This implies that
the number of changes required for I2 can never be increased by this process,
because Ar(I1) ∩ Ae(I2) = φ. Thus, reduction will be the also the choice for I2.
We arrive to the same conclusion following the order I2, I1. Thus, the interference
is irrelevant.

Condition b. Again, suppose we fix I1 and I2 in that order. We know that
κr(I1) > κe(I1), so we must choose expansion for I1. This choice can never
increase the number of changes that will be produced expanding I2. Thus, I2

will also be fixed by expansion. Moreover, the expansion path remains the same.
Thus, the interference is irrelevant.

Condition c. If the order is I1, I2, and I1 is corrected by expansion, the solution
for I2 is not changed because Ae(I1) is not in the area of interference. I1 is
corrected by reduction Ar(I2) and Ae(I2) remain unchanged. This is also true
for the order I2, I1.

Condition d. If the order is I1, I2, and we correct I1 by reduction, the nodes in
Ar(I2) are not affected because Ar(I2) �∈ Ai(I1, I2). If I1 is fixed by expansion,
the nodes in Ar(I2) are not affected because T1 ≺ T2, and can only be expanded
to T1.TO, they are not modified in the interval of inconsistency of I2. The same
occurs if the order is I2, I1.

Proposition 4 (Inconsistencies of type ii). Let I1, I2 be two inconsistencies
of type ii, with intervals T1 and T2, respectively. Their interference is always
irrelevant unless I1 and I2 are both overlappings with a common edge, such that
the intersection between the time labels of all edges involved is not empty.

Proposition 4 states that the only case when the two inconsistencies interfere in
a relevant fashion is when, given three edges incident to a node (i.e., there is a
common edge), e1(n1, n, T1), e2(n2, n, T2), e3(n3, n, T3), it holds that T1∩T2 �= φ,
and T1 ∩ T3 �= φ.

Proof. We have four possibilities: (1) I1 and I2 are gaps over a node n; (2) I1

and I2 are overlappings not involving a common edge; (3) there is a common
edge (i.e., I1 and I2 involve just three edges; (4) I1 is a gap and I2 is an overlap.

Case (1). Let lifespan(n1) = [T1, T2] ∪ [T3, T4] ∪ [T5, T6], with T2 <
T3 − 1, T4 < T5 − 1. Solving I1 creates a new node n1c, such that we will have

Consistency of Temporal XML Documents

lifespan(n1) = [T1, T2], and lifespan(n1c) = [T3, T4]∪ [T5, T6]. Clearly, fixing I2

will only affect n1c. The same occurs if we first fix I2.
Case (2). Let e1(ni, n1, T1), e2(nj , n1, T2), e3(nk, n1, T3), e4(nl, n1, T4) be edges

such that T1∩T2 �= φ ∧ T3∩T4 �= φ ∧ T1∩T2∩T3∩T4 = φ; also, e1 �= e2 �= e3 �= e4.
Fixing the first inconsistency, one of the two edges in the intersection interval.
This, clearly, does not affect the remaining inconsistency, and the interference is
irrelevant.

Case (3). Let e1(ni, n1, T1), e2(nj , n1, T2), e3(nk, n1, T3), be edges such that
T1 ∩ T2 �= φ ∧ T2 ∩ T3 �= φ ∧ T1 ∩ T3 = φ. If T2 is reduced in one of the
inconsistencies, the other one is not affected. As we did not assume any order,
this happens when choosing the orders I1, I2 or I2, I1.

Case (4). It is clear that a gap and an overlap cannot occur during the same
interval. If we first fix the gap (via node duplication), the overlap will remain in
one of the nodes and will be fixed as if the gap never existed. If we, instead, fix
the overlap first, the gap will not be affected. Thus, the interference is irrelevant.

Now we will address cycles (inconsistencies of type iii). In Section 4 we presented
two solutions to the problem of fixing a cycle: (a) removing all edges in the cycle,
which implies changing the lifespan of the nodes in the cycle, and may produce
new inconsistencies of type i and ii, that will be fixed by reduction and node
duplication, respectively. All the nodes affected belong to the reduction area of
the inconsistency. Thus, in what follows we will denote this solution, correction
by reduction, like in Section 4. Analogously, solution (b) (removing one edge in
the cycle, if possible), potentially generates an inconsistency of type ii, and, as it
was explained, an inconsistency of type i, which are corrected by expanding the
intervals of one of the edges. Thus, all of the affected nodes are in the expansion
area of the inconsistency, and we will also denote this solution correction by
expansion.

Proposition 5 (Inconsistencies of type iii). Let I1, I2 be two inconsistencies
of type iii, with intervals T1 and T2, respectively. Their interference is irrelevant
if at least one of the following holds:

a. κr(I1) < κe(I1) ∧ κr(I2) < κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
b. κr(I1) > κe(I1) ∧ κr(I2) > κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
c. Ai(I1, I2) = Ae(I1) ∩ Ar(I2) ∧ T1 ≺ T2.
d. Ar(I1, I2) = Ar(I1) ∩ Ar(I2) ∧ T1 ∩ T2 = φ.
e. Let n1 be the only node belonging to the cycle in I1. Then, (Ae(I2)∩Ar(I1) =

n1 ∨ (Ae(I2) ∩ Ar(I1) = φ) ∧(Ar(I2) ∩ Ae(I1) = φ ∧ T1 ∩ T2 = φ)

Conditions (a) and (b) are analogous to the ones in Proposition 3, considering
the definition of correction by reduction and correction by expansion for incon-
sistencies of type iii. Condition (e) means that the only node in the Area of
Interference is a node belonging to I1, is in the reduction area of I2 but not in
the expansion area of I2, and the inconsistency intervals are disjoint.

Proof. (sketch) For conditions (a) and (b), the proofs are similar to Proposition
3. For condition (c) the proof is based on showing that, for instance, for the

M. Campo and A. Vaisman

order I1, I2, reduction for solving I1 does not affect the nodes in Ar(I2), because
Ar(I1) �∈ Ai(I1, I2). Expanding, instead, affects the nodes in Ar(I2), but there
is no node added to or deleted from Ar(I2), because T1 ≺ T2. We proceed anal-
ogously for the order I2, I1. The proof of condition (d) has a similar mechanism:
expanding does not affect, because the expansion areas are not in the area of
interference. Eliminating a cycle (reduction) of I1 (I2) affects the nodes in Ar(I2)
(Ar(I1)), but in different intervals (because T1 ∩ T2 = φ.) The idea is analogous
for condition (e).

Proposition 6 (Inconsistencies of types i and ii). Let I1, I2 be two incon-
sistencies of types i and ii, respectively, with intervals T1 and T2. Their inter-
ference is irrelevant if one of the following holds:

a. I2 is in the reduction area of I1, and I2 is not an overlapping or T2∩T1 = φ.
b. If I2 is a gap, it occurs on a node in the expansion area of I1 (i.e., Ai(I1, I2) =

Ainf (I2)), and T2 ∩ T1 = φ.

Proposition 7 (Inconsistencies of types i and iii). Let I1, I2 be two in-
consistencies of types i and iii, respectively, with intervals T1 and T2. Their
interference is irrelevant if one of the following holds:

a. The number of changes needed for performing correction by reduction of I1

and I2 is less than the number of changes needed for performing correction
by expansion over the same inconsistencies, and their areas of expansion
and reduction have an empty intersection.

b. The number of changes needed for performing correction by expansion of I1

and I2 is less than the number of changes needed for performing correction
by reduction over the same inconsistencies, and their areas of expansion and
reduction have empty intersection.

c. If there is n in I1 belonging to Ar(I2), then T1 ∩ T2 = φ.
d. If there is n in I2 belonging to Ae(I1), then T1 ∩ T2 = φ.

Proposition 8 (Inconsistencies of types ii and iii). Let I1, I2 be two in-
consistencies of types i and iii, respectively, with intervals T1 and T2. Their
interference is irrelevant if I1 is a gap, and the node where it occurs is not in
the expansion path of I2.

6 Conclusion

We have studied the problem of validating a set of temporal constraints in a tem-
poral XML document, based in the data model presented in [12]. We proposed
methods for checking the presence of inconsistencies in a document, and fixing
them. We studied individual and combined inconsistencies, and state a set of con-
ditions that make irrelevant the interference between them (i.e., each one can
be treated and fixed independently from any other one). These conditions can
be incorporated into algorithms for efficiently performing the fixing procedure.

Consistency of Temporal XML Documents

This work can be a good starting point for studying and reasoning about tem-
poral constraints with indeterminate dates, of the types presented in [6,9].

Acknowledgements. This work was supported by the Millennium Nucleus
Center for Web Research, Grant P04-67-F, Mideplan, Chile.

References

1. T. Amagasa, M. Yoshikawa, and S. Uemura. A temporal data model for XML
documents. In Proceedings of DEXA Conference, pages 334–344, 2000.

2. A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of xml
documents. ACM Transactions on Database Systems, 29(4):710–751, 2004.

3. D. Barbosa, A.O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas. Efficient
incremental validation of XML documents. In ICDE, pages 671–682, 2004.

4. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured
data. In Theory and Practice of Object Systems, Vol 5(3), pages 143–162, 1999.

5. S. Chien, V. Tsotras, and C. Zaniolo. Efficient management of multiversion docu-
ments by object referencing. In Proceedings of the 27th International Conference
on Very Large Data Bases, pages 291–300, Rome, Italy, 2001.

6. C. Dyreson and R. Snodgrass. Supporting valid-time indeterminacy. ACM Trans-
actions on Database Systems, 23(1):1–57, 1998.

7. C.E. Dyreson. Observing transaction-time semantics with TTXPath. In Proceed-
ings of WISE 2001, pages 193–202, 2001.

8. C. Gao and R. Snodgrass. Syntax, semantics and query evaluation in the τXQuery
temporal XML query language. Time Center Technical Report TR-72, 2003.

9. F. Grandi and F. Mandreoli. Effective representation and efficient management of
indeterminate dates. In TIME’01, pages 164–169, 2001.

10. B. Kane, H. Su, and E. Rundensteiner. Consistently updating XML documents
using incremental constraint check queries. In WIDM, pages 1–8, 2002.

11. A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric management
of versions in an XML warehouse. In Proceedings of the 27th VLDB Conference,
pages 581–590, Rome, Italy, 2001.

12. A.O. Mendelzon, F. Rizzolo, and A. Vaisman. Indexing temporal XML documents.
In Proceedings of the 30th International Conference on Very Large Databases, pages
216–227, Toronto, Canada, 2004.

13. B Oliboni, E. Quintarelli, and L. Tanca. Temporal aspects of semistructured data.
Proceedings of the Eight International Symposium of Temporal Representation and
Reasoning, pages 119–127, 2001.

14. Y. Papakonstantinou and V. Vianu. Incremental validation of XML documents.
In ICDT, pages 47–63, 2003.

15. F. Rizzolo and A. Vaisman. Temporal XML documents: Model, index and imple-
mentation. Submitted, 2006.

16. F. Wang and C. Zaniolo. Temporal queries in xml document archives and web
warehouses. In Proceedings of the 10th International Symposium on Temporal
Representation and Reasoning (TIME’03), pages 47–55, Cairns, Australia, 2003.

	Introduction
	Related Work
	Temporal XML Documents
	Consistency in Temporal XML
	Interaction Between Inconsistencies
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

