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We have numerically investigated the behavior of driven non-cohesive granular media and found
that two fixed large intruder particles, immersed in a sea of small particles, experience, in addition
to a short range depletion force, a long range repulsive force. The observed long range interaction
is fluctuation-induced and we propose a mechanism similar to the Casimir effect that generates
it: the hydrodynamic fluctuations are geometrically confined between the intruders, producing an
unbalanced renormalized pressure. An estimation based on computing the possible Fourier modes
explains the repulsive force and is in qualitative agreement with the simulations.
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Granular materials have been extensively investigated
because of their complex dynamics [1]. Examples of this
include: pattern formation, Faraday waves, avalanches,
convection phenomena, segregation and many more. One
of the most active fields is the behavior of granular mix-
tures, e.g. Brazil nut effect [2] and its multiple varia-
tions [3]. In these experiments, the granular material is
composed of a mixture of two types of particles differ-
ing in mass or size. When the system is agitated, parti-
cles of different types may group together (demixing) or
stay mixed [4]. Phase diagrams for the mixing/demixing
transition have been constructed for different material
properties or experimental conditions. However, a fun-
damental question remains unanswered: Is the mixing or
demixing caused by an effective long range force between
the particles? If so, which is its origin? Let us note that
a long range force is difficult to justify a priori, as grains
interact only through a short ranged hard-core potential.

Recently, three experiments on driven granular mix-
tures [5, 6, 7], performed under very different experimen-
tal conditions, give a hint on how to answer the previous
question. These experiments have shown that thermody-
namic properties (like pressure [5], density [6] and veloc-
ity fluctuations [7]) are different in the regions between
the larger particles, versus the remaining, external, re-
gions. Consequently, the big particles modify some phys-
ical properties in the confined area between them. The
most likely reason is that the larger particles limit the
allowed wavevectors of the hydrodynamic fluctuations of
the small particles that surround the larger ones.

Forces arising from the confinement of a fluctuation
spectrum have attracted attention since the seminal work
of Casimir in 1948, who predicted the existence of an
attractive force between two metal plates, separated by
a vacuum, due to constraints on the quantum electro-
magnetic field in the gap imposed by the conducting
plates [8]. In fact, the concept of Casimir force is

more general and is common to systems characterized
by long-range fluctuations subject to a geometrical con-
straint which limits the long-wavelength portion of their
spectrum. Soft condensed matter provides examples of
Casimir forces, such us those arising in confined criti-
cal fluids, in liquid crystals and superconducting films,
where long-range correlations are the consequence of a
broken continuous symmetry [9]. Vibrated granular mat-
ter [10] and granular avalanches [11] provide other exam-
ples of physical system where correlations can become
long ranged, in spite of having short-range forces.

In this Letter we show that there is an effective long
range force between the large and heavy particles in a
granular mixture. Two ingredients are required: (i) long
range correlations and (ii) the confinement of the fluc-
tuation spectrum induced by the large particles in the
density, velocity and temperature fields.

We consider the driven granular model in [10, 12].
Grains are hard particles of diameter d and mass m and
their collisions are characterized by a constant normal
restitution coefficient α. To achieve a stationary state,
energy is supplied into the system by random forces act-
ing on all particles. The random forces Fi are modeled as
a white noise of intensity Γ: 〈Fi(t)Fk(t′)〉 = mΓδikδ(t −
t′). This system reaches a homogeneous stationary state
characterized by long range correlations, leading to the
renormalization of the energy density and collision fre-
quency due to the fluctuations at low wavevectors [10].

The system is composed of N grains put in a square
box with periodic boundary conditions. Besides the small
grains, two inelastic impenetrable and immobile large
hard disks (the intruders) of diameter D are placed, sep-
arated at a distance R. The coefficient of restitution
α is the same for all types of collisions. This granu-
lar mixture is studied using molecular dynamics simula-
tions. The grain-grain and grain-intruder collisions are
treated as usual, using an event-driven code. To take
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into account the random forces, a new type of event is
introduced: collisions between particles and a “thermal
bath”. The event results in a momentum p being in-
stantaneously transferred to the particle, where p is ran-
domly chosen by sampling a Gaussian distribution with
zero mean and given variance P 2

bath in each direction. In-
teractions with the thermal bath are scheduled for each
grain. When an interaction takes place for a particle,
its momentum gets updated and a new future event is
scheduled for the same particle, after a random interval
of time tnext, according to an exponential distribution
P (tnext) ∼ exp(−tnext/τbath). In the limit τbath → 0 and
Pbath → 0, this injection method converges to the white
noise force with Γ = P 2

bath/mτbath. In practice, the time-
scale for interaction with the thermal bath, τbath, is taken
smaller than the free-flight-time.

Hereafter, we choose as basic units d, m, and Γ. These
units define the time unit as t0 = (md2/Γ)1/3 and en-
ergy unit as e0 = (md2Γ2)1/3. We take the diameter
of the intruders D = 8d and the coefficient of restitu-
tion α = 0.8. We simulate systems of size L = 60 d and
L = 80 d, with the number density of the granular fluid
n = 0.366 d−2. Given the density, restitution coefficient
and noise intensity, the stationary temperature can be
computed using mean field models giving T0 = 1.84 e0,
and the collision frequency is ν0 = 3.03 t−1

0 . Hydrody-
namic fluctuations determine a stationary temperature
higher than T0 that depends on the system size [10]. For
L = 60 d, T = 2.43 e0 and for L = 80 d, T = 2.46 e0.
For every configuration, simulations were run for about
5 × 106 collisions per particle. We investigated the ef-
fective interaction between the intruders at a distance
R. For this purpose, we measured the component of the
total momentum transferred from the gas to intruders 1
and 2 along the line, parallel to the x-axis, joining their
centers, Pix (i = 1, 2) as an average over a time inter-
val τ = 33.4 t0 (corresponding to about 100 collisions per
particle). This procedure gives the “instantaneous” value
of the fluctuating force as F12 = 〈P2x − P1x〉/2τ , whose
time-average finally leads to the net effective force, F . In
the elastic case, α = 1, Γ = 0, F vanishes as expected,
whereas for α < 1, Γ 6= 0, F is definitively different from
zero, showing an effective force between intruders. The
average y-component of the force is compatible with zero
to numerical accuracy. Varying the noise strength, we
checked that the force is proportional to the granular
temperature, as can be deduced by dimensional analysis.

Figure 1 shows the relative force as a function of dis-
tance R for the two system sizes. The inset shows the
short range part of the relative force, that extends for
some small particle diameters, d, alternating between at-
traction and repulsion. At larger distances, a repulsive
force is observed with an interaction range much larger
than d and comparable with D or the box width (actu-
ally, due to the periodic boundary conditions, the force
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FIG. 1: Relative effective dimensionless force FD/T0 be-
tween the large particles as a function of the distance R be-
tween their centers. We plot simulations results for L = 60d
(open triangles) and for L = 80d (filled circles), together with
theoretical predictions (solid lines). Inset: short range region
showing the depletion forces. Note the difference in the ver-
tical scale, compared with the long-range part. Error bars in
the inset are smaller than the symbols.

must vanish at R = L/2, as seen from the simulations).

The oscillatory short range part is similar to the de-
pletion forces appearing in fluids that develop local lay-
ering structures [13, 14], which are usually explained
by entropic arguments based on equilibrium statistical
mechanics. Recent works [6, 15] suggest that depletion
forces might be at work in granular mixtures, so the con-
cept of entropic forces is applicable here. However, the
long range part cannot be due to a depletion mechanism
as it extends beyond the typical range of the depletion
forces, and because it is repulsive in all its range.

To elucidate the nature of this force, we analyzed the
probability distribution of the force over the intruders,
plotted in Fig. 2. There it is seen that fluctuations are
about 20 times larger than the average force, and there-
fore very long simulations are required. As the force
is proportional to the granular temperature, these large
fluctuations are not an artifact of a high temperature,
but an intrinsic property. Large fluctuations is a generic
signature of fluctuation-induced forces (see, e.g., [9, 16]).

This fact together with the known property of large
fluctuations in driven granular media, suggest that the
long range repulsion is a fluctuation-induced force as in
the Casimir effect [8, 9]. The confinement of the hy-
drodynamic fluctuations between intruders restricts the
allowed fluctuation modes to those with wavelengths
smaller than the gap size, whereas the spectrum of fluc-
tuations in the outer region allows smaller wavevectors
and forms a quasi-continuum, as illustrated in Fig. 3.
Consequently, the hydrodynamically-generated “radia-
tion pressure” between the intruders is different from the
one outside this inner region.

To describe the Casimir force originated by the fluc-
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FIG. 2: Probability distribution of the fluctuating force F12

at R = 20d, for L = 80d. The net effective force is obtained
as the average of this histogram. The average value is F =
0.223T0/D and the standard deviation is σF = 4.83T0/D,
that is about 20 larger than the average.

tuating hydrodynamic fields on the intruders we use an
approach similar to Ref. [10], where the pressure is renor-
malized in each point due to fluctuations that are com-
puted using fluctuating hydrodynamics. Instantaneously,
the pressure tensor at position r is given by

p∗(r) = p(n(r), T (r)) I + m n(r) u(r) u(r), (1)

where n and T , and u are the fluctuating density, tem-
perature, and velocity fields and I the identity ten-
sor, respectively. Moreover, p(n, T ) = TH(n) is the
usual thermodynamic pressure for hard disks [17] with
H(n) = n(1 + φ2/8)/(1 − φ)2, and φ = πnd2/4. As the
intruders are immobile, u vanishes at their surface, so
the contribution of the convective term in p∗ vanishes
and it becomes a scalar. This would not be the case if
the intruders were allowed to move.

Linearizing the hydrodynamic fields (n, T,u) around
the stationary values, (n0, T0, 0), we can expand the pres-
sure up to second order in the fluctuations δn and δT .
Its statistical average over the random noise is

〈p∗〉 = p0 + H1〈δT δn〉 + T0H2〈δn
2〉, (2)

where p0 = p(n0, T0), H1 = dH/dn|n0
, and

H2 = 1
2
d2H/dn2|n0

. The density-density and density-
temperature fluctuations appearing in (2) are difficult to
compute because it is needed to solve the fluctuating hy-
drodynamic equations with the full boundary conditions
imposed by the intruders. Alternatively, one could solve
the corresponding equation for the correlation functions
including the boundary conditions. A simpler estimation
of 〈p∗〉 can be obtained by employing the Fourier trans-
forms of the fluctuating fields δA(r) = V −1

∑

k
e−ik·rδAk

and the structure factors SAB(k) = V −1〈δAk δB−k〉 [10].
Expression (2) transforms into:

〈p∗〉 = p0 + V −1
∑

k

[

H1 SnT (k) + T0 H2 Snn(k)
]

. (3)
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FIG. 3: Sketch of the hydrodynamic fluctuations leading to
the Casimir-like force. In the gap between the intruders only
fluctuations of wavelength smaller than R − D are allowed,
while in the outer space the wavelengths can be larger.

The structure factors for the uniformly driven system
have been described in detail in [10]. The relevant con-
tribution comes from the region at small k, where they
show a power law dependence SAB(k) = S0

AB k−2. The
prefactors, S0

AB, depend on density, noise intensity, and
restitution coefficient α. These asymptotic expressions,
when inserted into (3), yield a sum C

∑

k
k−2, where the

coefficient C ≡ H1 S0
nT + T0 H2 S0

nn turns out to be neg-
ative for n < 0.73 d−2 and positive for larger densities.
Therefore, for n < 0.73 d−2 (the case of the simulations),
fluctuations produce a decrease of the local pressure. In
the gap between the intruders (region I according to Fig.
3) the number of possible k modes of low k is smaller
than outside (region II). The effect is that the pressure is
lower outside than inside, leading to an effective repulsive
force between the intruders. Furthermore, C is propor-
tional to the temperature, so is the Casimir force. The
sign of the force is reversed for densities n > 0.73 d−2,
which are too close to the freezing transition or random
close packing [18] to be observed in the simulations. Ex-
perimentally, analogous crossover is found by increasing
the driving intensity [7].

Due to the long range correlations, fluctuations in
regions I and II of Fig. 3 are correlated. However,
in order to numerically estimate the k-sums, we treat
these regions as being independent. This approximation
will overestimate the pressure difference and hence the
Casimir force. However it provides a rough estimation of
its numerical value. In detail, we perform the k-sum only
over the k-vectors allowed by the geometrical constraints.
In a rectangular box of size a×b, the x-component of the
k vectors is 2πnx/a and the y component is 2πny/b. It is
at this point where the difference between regions I and
II appears: a = R − D in region I and a = L − R − D
in region II, while b = D in both regions. Moreover, the
vector k = (0, 0) must be excluded from the sum, and we
introduce an ultraviolet cutoff, kc, beyond which hydro-
dynamics is not valid. We take the cutoff kc = 2π/d0,
where d0 = max(d, l0), and l0 is the mean free path of
the small particles.

In the limit of small k, with structure factors going
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as k−2, the pressure (3) can be analyzed asymptotically
in the cases a ≫ b (for particles at large distances) and
a ≪ b (for particles at short distances)

〈p∗〉 =

{

p0 + C a/b ; a ≫ b ≫ d0

p0 + C b/a ; b ≫ a ≫ d0.
(4)

Note that these asymptotic expressions for the renormal-
ized pressure do not depend on the cutoff distance, as
long as a and b are much larger than it. Finally, the effec-
tive force on the particle 2 is the difference of the forces at
the left and the right of the particle F2 = D [〈p∗I 〉 − 〈p∗II〉].
A negative value of C gives rise to a long range linear
repulsive force and a short range attractive force, at dis-
tances smaller than D. The opposite is obtained when C
is positive. Note that in this estimate the force depends
on the system size. This fact is related to the structure
of the fluctuations, that become larger for small wavevec-
tors. Therefore, increasing the system size, while keeping
R fixed, the fluctuations in region II become larger, de-
creasing even more the pressure in this region. However,
as mentioned, at long distances this approximation is not
completely valid.

The Casimir force can be computed numerically us-
ing the full expression of the structure factors [10], not
only the k−2 part. The computed force is shown in Fig. 1.
Note that the linear force dependence is preserved but the
attractive part is lost, mainly because the simulation box
is finite and corrections to the k−2 order are observed.
The computation using the k−2 part shows a small dif-
ference of about 10% compared to the full calculation.
The comparison with the simulations indicates that this
prediction overestimates, as expected, the Casimir force,
especially in the L = 80d case, but gives the same order
of magnitude and correct sign of the force. Moreover the
predicted force for L = 80d is larger that for L = 60d,
in agreement with the simulations. However, our the-
ory does not predict the saturation of the force observed
for R >

∼ 20d. Possible sources for this discrepancy are:
(a) hydrodynamic correlations between regions I and II
reducing the pressure difference, (b) geometrical factors
that arise from considering rectangular regions instead of
those bounded by circles, and (c) fixed intruders break
the Galilean invariance and may modify the structure
factors at very short wavelengths.

To summarize we have found that two intruders, im-
mersed in a sea of smaller granular particles driven by a
white noise force, experience a long range mutual repul-
sion. This repulsion has a dynamical origin and cannot
be explained by standard depletion forces. We have pro-
posed a mechanism based on the confinement of hydro-
dynamic fluctuations when the intruders are near. The
present effect is an example of repulsion determined by
fluctuation-induced forces instead of the standard attrac-
tion; a phenomenon which has been predicted to occur
also in polymers [19].

We claim that the force we observe is the granular ana-
log of the Casimir effect. We propose a novel method,
valid for non-equilibrium fluids, to compute Casimir
forces starting from the structure factors. The two key in-
gredients which render this effect manifest in the context
of granular gases are: (a) the occurrence of large low-k
fluctuations, originating in the coupling of nonconserving
noise with conserving hydrodynamic fields (conservation
of particle number and momentum in collisions) [10], (b)
the confinement of these fluctuations in a gap (the space
between the intruders), which is the common feature of
all instances of Casimir forces. The enhancement of the
low-k components plays the role of criticality in equilib-
rium molecular systems, where forces are induced by the
thermal fluctuations of a correlated fluid in a confining
geometry. Finally, these long-range forces might be re-
sponsible for segregation effects in vibrofluidized granular
mixtures of particles having different material properties.
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