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Abstract. In this paper we show that, for every Choquet simplex K and for every d > 1,
there exists a Zd -Toeplitz system whose set of invariant probability measures is affine
homeomorphic to K . Then, we conclude that K may be realized as the set of invariant
probability measures of a tiling system (�T , Rd ).

1. Introduction
The set of invariant probability measures of a dynamical system induced by a minimal
continuous action of Z on the Cantor set may have the affine-topological structure of an
arbitrary Choquet simplex. This was demonstrated by Downarowicz in [4] when he showed
that every Choquet simplex may be realized as the set of invariant probability measures of
a dyadic 0–1 Toeplitz flow. Later, Gjerde and Johansen in [8] provided an alternative proof
of the realization of a Choquet simplex, using the theory of dimension groups and the
characterization of the Bratteli–Vershik diagrams which corresponds to Toeplitz flows [8].
They stated that for any Choquet simplex K there exists a 0–1 Toeplitz flow with zero
entropy and full rational spectrum such that its set of invariant probability measures is
affine homeomorphic to K .

In this work we show that, for every Choquet simplex K and for every d > 1, there
exists a dynamical system induced by a Zd -action on the Cantor set whose set of invariant
probability measures is K . More precisely, we show that every Choquet simplex may
be realized as the set of invariant probability measures of a 0–1 Zd -Toeplitz system.
This Zd -Toeplitz system can be chosen to be an almost one-to-one extension of a product
of d one-dimensional 2-odometers, or an almost one-to-one extension of a product of d

one-dimensional universal odometers.
This paper is organized as follows. In §2, we give some basic definitions relevant for

the study of general flows. In §3 we recall the characterization of one-dimensional Toeplitz
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flows given by Gjerde and Johansen in [8] in terms of Kakutani–Rohlin partitions. In §4
we show that for a certain class of one-dimensional Toeplitz flow, the set of invariant
probability measures K can be expressed as an inverse limit using a special sequence
of matrices that we use in §5 to construct a Zd -Toeplitz system (d > 1) whose set of
invariant probability measures is K . We show that one can take the Zd -Toeplitz system
to be an almost one-to-one extension of a d-dimensional 2-odometer or an almost one-
to-one extension of a d-dimensional universal odometer. Finally, we conclude that every
Choquet simplex can be seen as the set of invariant probability measures of a tiling system
(�T , Rd).

Remark 1. At the time this paper was written, Downarowicz [6] announced that he had
found an easy effective method to construct a Zd -Toeplitz system whose set of invariant
probability measures was an arbitrary Choquet simplex. The method exposed here is
different and independent of the Downarowicz method.

2. Definition and background
Let d ≥ 1 and � = Zd or Rd . We denote by v̄ = (v1, . . . , vd) the elements in �

(if � = Z we can use n instead of n̄). By a topological dynamical system we mean a pair
(X,�) such that X is a metric compact space and � acts continuously on X. Given v̄ ∈ �

and x ∈ X we will identify v̄ with the associated homeomorphism and we denote by v̄ · x
the action of v̄ on x (if � = Z we can use the usual notation n · x = T n(x), where
T : X → X is the function induced by the action of 1 on X). The orbit of x ∈ X is the
set o(x) = {v̄ · x : v̄ ∈ �}, and the set of return times of x to a neighborhood V of x is
RV (x) = {v̄ ∈ � : v̄ · x ∈ V }. A topological dynamical system (X,�) is minimal if X

is the orbit closure of each of its points, and it is equicontinuous if the collection of the
maps defined by the group action is a uniformly equicontinuous family.

We say that (X,�) is an extension of (Y, �), or that (Y, �) is a factor of (X,�), if
there exists a continuous surjection π : X → Y such that π preserves the action, that is,
π(v̄ · x) = v̄ · π(x) for every x ∈ X and v̄ ∈ �. We call π a factor map. When the
factor map is bijective, we say that (X,�) and (Y, �) are conjugate. The factor map π is
an almost one-to-one factor map and (X,�) is an almost one-to-one extension of (Y, �)

by π if the set of points having one pre-image is residual (contains a dense Gδ set) in Y .
In the minimal case it is equivalent to the existence of a point with exactly one preimage.

An invariant probability measure of a topological dynamical system (X,�) is a regular
probability measure µ defined on B(X), the Borel σ -algebra of X, such that µ(v̄ · B) =
µ(B) for all v̄ ∈ � and B ∈ B(X). We denote by M�(X) the set of invariant probability
measures of (X,�). It is well known that M�(X) is a non-empty Choquet simplex [9],
that is, a metrizable compact convex set K in a locally convex space such that each p ∈ K

is represented by a unique probability measure supported on the set of extreme points
of K [12].

2.1. Odometers. Let d ≥ 1. A d-dimensional odometer (or a Zd -odometer) is a set G

defined by

G =
{
(gn)n≥0 ∈

∏
n≥0

Zd/Zn : πn(gn+1) = gn,∀n ≥ 0

}
,
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where (Zn)n≥0 is a decreasing sequence of subgroups isomorphic to Zd , and πn :
Zd/Zn+1 → Zd/Zn is the projection. The set G is a subgroup of the product group∏

n≥0 Zd/Zn. Moreover, it is a compact topological group if every Zd/Zn is endowed
with the discrete topology and

∏
n≥0 Zd/Zn with the product topology.

The projection τ : Zd → ∏
i≥0 Zd/Zi given by

τ (v̄) = (τn(v̄))n≥0,

where τn : Zd → Zd/Zn is the canonical projection, defines a continuous action of Zd on
G by

v̄ · (gn)n≥0 = τ (v̄)+ (gn)n≥0 for every v̄ ∈ Zd and (gn)n≥0 ∈ G.

The topological dynamical system (G, Zd ) is minimal and equicontinuous.
If (G1, Z), . . . , (Gd, Z) are d one-dimensional odometers, then the system (G, Zd ),

where G = G1 × · · · ×Gd and the action of Zd on G is given by

v̄ · (g1, . . . , gd) = (v1 · g1, . . . , vd · gd),

is conjugate to a Zd -odometer.
When d = 1 and Zn = 2nZ for all n ≥ 0, the odometer G is known as the 2-odometer

(or adding machine). If Zn = n!Z for all n ≥ 0, the odometer G is called the universal
odometer and its set of continuous eigenvalues is Q.

2.2. Toeplitz arrays and Toeplitz systems. Let � be a finite alphabet and let d ≥ 1.
An element x = (x(v̄))v̄∈Zd ∈ �Z

d
is called a Zd -Toeplitz array if, for every v̄ ∈ Zd , there

exists a subgroup Z ⊆ Zd isomorphic to Zd such that

x(v̄ + z̄) = x(v̄) for all z̄ ∈ Z.

A subgroup Z ⊆ Zd isomorphic to Zd for which the set

Per(x, Z) = {v̄ ∈ Zd : x(v̄) = x(v̄ + z̄),∀z̄ ∈ Z}
is not empty is called a group of periods of x. If, in addition, the subgroup Z is such
that Per(x, Z) ⊆ Per(x, Z′) implies Z′ ⊆ Z, we say that Z is a group generated by
essential periods† of x. For every group of periods Z there exists a group generated by
essential periods Z′ such that Per(x, Z) ⊆ Per(x, Z′) [3]. This ensures the existence
of a period structure of x, that is, a sequence (Zn)n≥0 of groups generated by essential
periods of x such that, for every n ≥ 0, the group Zn+1 is contained in Zn and such that
Zd = ⋃

n≥0 Per(x, Zn) (see [3] for more details). When d = 1, if Zn = pnZ then we
write pn instead of Zn.

The shift action of Zd on �Z
d

is defined by

w̄ · (x(v̄))v̄∈Zd = (x(v̄ + w̄))v̄∈Zd ,

and it is continuous if we consider � endowed with the discrete topology and �Z
d

with the product topology. A subset X ⊆ �Z
d

is said to be invariant if for all w̄ ∈ Zd

† When d = 1, the generating element of a such group is called an essential period [14]. We use the term group
generated by essential periods to be coherent with the case d = 1.
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one has w̄ · X = X. A subshift is the topological dynamical system induced by the
restriction of the shift action on a closed invariant subset of �Z

d
. A Toeplitz system is a

subshift (X, Zd) such that X is the orbit closure of a Toeplitz array. In general, we consider
Toeplitz systems which are generated by non-periodic Toeplitz arrays.

For every d ≥ 1, the family of Zd -Toeplitz systems coincides with the family of minimal
subshifts which are almost one-to-one extensions of d-dimensional odometers [3, 7].
Moreover, if x is a Toeplitz array in a Zd -Toeplitz system (X, Zd ), then the maximal
equicontinuous factor of (X, Zd ) is the odometer defined by any period structure of x.
When d = 1, the Toeplitz arrays are called Toeplitz sequences and the Toeplitz systems
are called Toeplitz flows. A Toeplitz flow which is an almost one-to-one extension of a
2-odometer is called a dyadic Toeplitz flow.

2.3. Minimal Cantor systems and Kakutani–Rohlin partitions. Let (X, T ) be a minimal
Cantor system. A clopen Kakutani–Rohlin (CKR) partition of (X, T ) is a partition P of X

of the following type:

P = {T jCk : 0 ≤ j < hk, 1 ≤ k ≤ l},
where l is a positive integer, C1, . . . , Cl are clopen subsets of X and h1, . . . , hk are positive
integers. The set {T jCk : 0 ≤ j < hk} is called the kth tower of P , and the integer hk is
called the height of the kth tower.

In [11] and [13], the authors show that for every minimal Cantor system (X, T ) there
exists a nested sequence of CKR partitions, i.e. a sequence of CKR partitions

(Pn = {T jCn,k : 0 ≤ j < hn,k, 1 ≤ k ≤ kn})n≥0

verifying:
(KR1) Cn+1 ⊆ Cn, where Cn =⋃kn

k=1 Cn,k ;
(KR2) Pn+1 is finer than Pn;
(KR3)

⋂
n≥0 Cn contains a unique point;

(KR4) the sequence of partitions spans the topology of X;
(KR5) for all 1 ≤ k ≤ kn and 1 ≤ k′ ≤ kn+1 there exists 0 ≤ j < hn+1,k′ such that

T jCn+1,k′ ⊆ Cn,k .
The incidence matrix between Pn and Pn+1 is the matrix An ∈Mkn×kn+1(N) defined by

An(i, j) = |{0 ≤ l < hn+1,j : T l(Cn+1,j ) ⊆ Cn,i}|,
for every 1 ≤ i ≤ kn, 1 ≤ j ≤ kn+1 and n ≥ 0. We call (An ∈ Mkn×kn+1(N))n≥0 the
sequence of incidence matrices associated to (Pn)n≥0.

3. Kakutani–Rohlin partitions of Toeplitz flows
Gjerde and Johansen in [8] show that the family of Toeplitz flows, in the one-dimensional
case, coincides with the family of expansive minimal Cantor systems (X, T ) which have
a nested sequence of CKR partitions such that the heights of the towers belonging to a
same level are equal. In order to show this result, given a Toeplitz sequence x0 ∈ �Z and
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its associated Toeplitz flow (X, T ), they constructed a nested sequence of CKR partitions
of X

(Pn = {T jCn,k : 0 ≤ j < hn,k, 1 ≤ k ≤ kn})n≥0,

in the following way:

Let (qn)n≥1 be a period structure for x and let p0,n be an essential period of x such
that x[0, n] = x[kp0,n, n + kp0,n] for every k ∈ Z and n ≥ 0. Let (hn)n≥1 be a new
period structure of x defined as follows: h1 is the least common multiple of p0,0 and q1.
For n > 0, hn+1 is the least common multiple of p0,hn−1 and qn+1. Then the sequence of
CKR partitions is given by k0 = 1, C0,1 = X, h0,1 = h0 = 1, and, for n ≥ 1,

hn,k = hn and Cn,k = {x ∈ Cn : x([0, hn − 1]) = wn,k} for all 1 ≤ k ≤ kn,

where Cn is the closure of {T mhnx0 : m ∈ Z} and Wn = {wn,1, . . . , wn,kn } is the subset of
words in x0 of length hn beginning with x0([0, hn−1 − 1]) = wn−1,1.

In this section we will focus our attention on the sequences of incidence matrices
associated to this kind of nested sequences of CKR partitions. In the next lemma we will
show that it is possible to make some little modifications to (Pn)n≥0 in order to obtain a
new nested sequence of CKR partitions whose associated sequence of incidence matrices
allows one to construct a Zd -Toeplitz system, with d > 1, whose set of invariant probability
measures is affine homeomorphic to MZ(X). First, we introduce some definitions.

If a1, . . . , an are n non-negative integers we set

�(a1, . . . , an) = (a1 + · · · + an)!
a1! . . . an! .

In other words, �(a1, . . . , an) is the multinomial coefficient associated to a1, . . . , an

(it represents the number of different ways to choose a1, a2, . . . , an elements in a set with
cardinal

∑n
i=1 ai).

If A is a matrix in Ms×l , N(A, k) denotes the number of different columns of A which
are equal to its kth column, i.e.

N(A, k) = |{1 ≤ j ≤ l : A(·, j) = A(·, k)}|,
for all 1 ≤ k ≤ l.

LEMMA 2. Let (X, T ) be a one-dimensional Toeplitz flow. There exists a nested sequence
of nested CKR partitions of X

(Pn = {T jCn,k : 0 ≤ j < hn, 1 ≤ k ≤ kn})n≥0,

such that (hn)n≥1 is a period structure of x and whose sequence of incidence matrices
(An ∈Mkn×kn+1(Z

+))n≥0 satisfies, for all n ≥ 0,
(1) kn+1 ≥ 3;
(2) An is strictly positive;
(3)

∑kn

i=1 An(i, k) = hn+1/hn > 1, for each 1 ≤ k ≤ kn+1;
(4) for every 1 ≤ k ≤ kn+1,

N(An, k) ≤ �(An(1, k)− 1, An(2, k), . . . , An(kn, k)).
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Proof. Let x ∈ X be a Toeplitz sequence and let

(Pn = {T jCn,k : 0 ≤ j < hn, 1 ≤ k ≤ kn})n≥0

be a nested sequence of CKR partitions of (X, T ) constructed as in the beginning of this
section. Let (qn)n≥1 and (p0,n)n≥0 be the period structure and the sequence of essential
periods used to define the sequence of CKR partitions.

Since x is not periodic, kn ≥ 2 for all n > 0. This implies that, for every p ≥ 0, there
exists lp > 0 such that the number of words in x0 of length lp beginning with x0([0, p])
is greater than or equal to three. In fact, let m > 0 be such that hm−1 > p. If we take
lp = hm+1 then wm+1,1 and wm+1,2 belong to the set of words in x0 of length lp beginning
with x0([0, hm−1 − 1]) = wm−1,1. Since wm+1,1 and wm+1,2 begin with wm,1, and since
there must be at least one word in such a set beginning with wm,2, we deduce there are
at least three words in x0 of length lp (or l ≥ lp) beginning with wm−1,1 (and then with
x([0, p])). Using this property, we choose a suitable subsequence (qmn)n≥1 to redefine the
sequence (Pn)n≥0 in order that kn ≥ 3: we take m1 > 0 such that the number of words
in x0 of length h′1 beginning with w0,1, where h′1 is the least common multiple of p0,0

and qm1 , is greater than or equal to three. For n ≥ 1, we take mn+1 > mn such that the
number of words in x0 of length h′n+1 beginning with x([0, h′n − 1]), where h′n+1 is the
least common multiple of p0,h′n−1 and qmn+1 , is greater than or equal to three. This choice
ensures that the sequence (Pn)n≥0, defined with respect to (qmn)n≥0 as in the beginning of
this section, satisfies kn ≥ 3 for every n ≥ 1.

By minimality of (X, T ), we can choose a subsequence of (Pn)n>0 such that its
incidence matrices are strictly positive. Thus we get kn+1 ≥ 3 and An > 0 for all n ≥ 0.

Let An be the incidence matrix between Pn and Pn+1. Since hn,k = hn for every
1 ≤ k ≤ kn, the sum of all the entries of a column of An does not depend on the column.
More precisely, for all 1 ≤ k ≤ kn+1 one has

kn∑
i=1

An(i, k) = hn+1

hn

= dn.

Since the incidence matrices are strictly positive and kn ≥ 3 for every n > 0, this implies
that dn > 1 for every n ≥ 0.

Let 1 ≤ k ≤ kn+1. Every word in Wn+1 is a concatenation of dn words in Wn, where
the first word in this concatenation is always wn,1. Since wn+1,j 	= wn+1,k for all j 	= k,
it holds that N(An, k) is smaller than or equal to the number of different possible dn − 1
concatenations using exactly An(i, k) copies of wn,i , for each 1 ≤ i ≤ kn. This means that

�(An(1, k)− 1, An(2, k), . . . , An(kn, k)) ≥ N(An, k). �

From a nested sequence of CKR partitions of a Toeplitz flow one can determine its
set of invariant probability measures and its maximal equicontinuous factor. Let (X, T )

be a one-dimensional Toeplitz flow. If (Pn)n≥0 is a nested sequence of CKR partitions
satisfying the conditions of Lemma 2, and hn is the height of the towers in Pn, then the
maximal equicontinuous factor of (X, T ) is the odometer

G =
{
(gn)n>0 ∈

∏
n>0

Z/hnZ : πn(gn+1) = gn, ∀n > 0

}
,
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because (hn)n>0 is a period structure of x [14]. The set of invariant probability measures
MZ(X) is affine-homeomorphic to{

(v̄n)n≥0 ∈
∏
n≥0


n : Anv̄n+1 = v̄n, ∀n ≥ 0

}
,

where


n =
{
v̄ ∈ (R+)kn :

kn∑
k=1

vk = 1

hn

}
,

and (An ∈ Mkn×kn+1(N))n≥0 is the sequence of incidence matrices associated to
(Pn)n≥0 [10].

Remark 3. This representation of MZ(X) can be deduced from Proposition 3.2 of [10],
using the projective limit representation of (X, T ) obtained from (Pn)n≥0.

Remark 4. In the rest of this paper we will use the sequence of nested CKR partitions
(Pn)n≥1 instead of (Pn)n≥0, in order to skip the trivial partition P0. This is equivalent to
taking (P ′)n≥0, where P ′n corresponds to the partition Pn+1 in the original sequence.

4. A Choquet simplex from a sequence of matrices
In this section we give a special description of the set of invariant probability measures and
the maximal equicontinuous factor of a one-dimensional Toeplitz flow (X, T ). We express
MZ(X) and the corresponding odometer, using a sequence (dn)n≥0 of positive integers.
Furthermore, this sequence will be necessary to construct a Zd -Toeplitz system whose
set of invariant probability measures is affine-homeomorphic to MZ(X) and such that its
maximal equicontinuous factor is the Zd -odometer G× · · · ×G.

PROPOSITION 5. Let d > 1. Let (X, T ) be a one-dimensional Toeplitz flow and let G be
the odometer which is its maximal equicontinuous factor. Let

(Pn = {T jCn,k : 0 ≤ j < hn, 1 ≤ k ≤ kn})n≥0

be a sequence of nested CKR partitions of X verifying conditions of Lemma 2. If, in
addition, the sequence of partitions satisfies

for every m,n ≥ 0 there exists l ≥ 0 such that hnhm divides hl,

then there exist a sequence of positive integers (dn)n≥0 and a sequence of positive integer
matrices (An ∈Mkn×kn+1(N))n≥0 satisfying for all n ≥ 0:
(C1) kn ≥ 3;
(C2) for every 1 ≤ j ≤ kn+1,

kn∑
i=1

An(i, j) =
(

dn+1

dn

)d

with
dn+1

dn

≥ 6;

(C3) for every 1 ≤ i ≤ kn and 1 ≤ j ≤ kn+1,

An(i, j) ≥
(

dn+1

dn

)d

−
(

dn+1

dn

− 2

)d

;
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(C4) for every 1 ≤ k ≤ kn+1,

N(An, k) ≤ �(An(1, k)− 1, An(2, k), . . . , An(kn − 1, k)),

such that MZ(X) is affine homeomorphic to{
(xn)n≥0 ∈

∏
n≥0

{
v̄ ∈ (R+)kn :

kn∑
i=1

vi = 1

dd
n

}
: Anxn+1 = xn,∀n ≥ 0

}
,

and G is conjugate to the odometer defined by{
(gn)n≥0 ∈

∏
n≥0

Z/dnZ : πn(gn+1) = gn, ∀n ≥ 0

}
.

To prove this proposition we need the following technical lemma.

LEMMA 6. Let a1, . . . , an be n positive integers and let a =∑n
i=1 ai . If n ≥ 3 and c > 2a

then
�(ca1, . . . , can−1) ≥ �(a1, . . . , an).

Proof. It is well known that for all pairs of non-negative integers a and b it holds that

�(a′, a − a′)�(b′, b − b′) ≤ �(a′ + b′, a + b − (a′ + b′)), (4.1)

for every 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b. Furthermore, if a1, . . . , an are n non-negative
integers such that

∑n
i=1 ai = a, one has

�(a1, . . . , an) =
n∏

i=1

�

(
ai, a −

i∑
j=1

aj

)
. (4.2)

Suppose that a1, . . . , an are n ≥ 3 positive integers and c ∈ N is such that c > 2a, where
a =∑n

i=1 ai .
Since c > 2a ≥ 2, from (4.1) and (4.2) one gets

�(ca1, . . . , can−1) ≥ �(a1, . . . , an)
�((c − 1)a1, . . . , (c − 1)an−1)

�(an, a − an)
. (4.3)

Equation (4.2) implies

�((c − 1)a1, . . . , (c − 1)an−1) =
n−1∏
i=1

�

(
(c − 1)ai, (c − 1)(a − an)−

i∑
j=1

(c − 1)aj

)

= �((c − 1)a1, (c − 1)(a − an − a1))

×
n−1∏
i=2

�

(
(c − 1)ai, (c − 1)(a − an)−

i∑
j=1

(c − 1)aj

)
.

Because
∏n−1

i=2 �((c − 1)ai, (c − 1)(a − an)−∑i
j=1(c − 1)aj ) ≥ 1, we get

�((c − 1)a1, . . . , (c − 1)an−1) ≥ �((c − 1)a1, (c − 1)(a − a1 − an)). (4.4)

By setting a′ = an, b′ = (c − 1)a1 − an and b = (c − 1)(a − an) − a in Equation (4.1)
(since c > 2a, we have 0 ≤ b′ ≤ b) one gets

�((c − 1)a1, (c − 1)(a − a1 − an)) ≥ �(an, a − an). (4.5)

Finally, by (4.3)–(4.5) we deduce the result. �
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Proof of Proposition 5. Let (Bn ∈ Mkn×kn+1(N))n≥0 be the sequence of incidence
matrices associated to (Pn)n≥0. Since this sequence satisfies conditions of Lemma 2, for
every n ≥ 0 one has:
(1) kn ≥ 3;
(2) Bn is strictly positive;
(3)

∑kn

i=1 Bn(i, k) = hn+1/hn > 1, for each 1 ≤ k ≤ kn+1;
(4) for every 1 ≤ k ≤ kn+1,

N(Bn, k) ≤ �(Bn(1, k)− 1, Bn(2, k), . . . , Bn(kn, k)).

We set qn = hn+1/hn for all n ≥ 0. We choose the sequence (dn)n≥0 as a subsequence of
(hn)n≥0 defined as follows.

For n = 0 we choose n0 ≥ 0 and we put d0 = hn0 . For n > 0, we set dn = hmn ,
where hmn is such that hndn−1 divides hmn , such that hmn/dn−1 ≥ 6 and such that
ln−1 = (hn−1/hn)(hmn/dn−1) satisfies the following:

qd
n−1 −

(
qn−1 − 2

ln−1

)d

≤ qd−1
n−1 .

Since (dn)n≥0 is a subsequence of (hn)n≥0, they determine the same odometer [5]. Thus,
we get

G =
{
(gn)n≥0 ∈

∏
n≥0

Z/dnZ : πn(gn+1) = gn, ∀n ≥ 0

}
.

Let n ≥ 0. Consider the diagonal matrix Mn ∈Mkn×kn (Q) given by

Mn(i, i) = mn for all 1 ≤ i ≤ kn,

where

m0 = h0

dd
0

and mn+1 = mnqn

(lnqn)d
.

Let An = MnBnM
−1
n+1. We have

An(i, j) = mn

mn+1
Bn(i, j) = ldnqd−1

n Bn(i, j),

for every 1 ≤ i ≤ kn and 1 ≤ j ≤ kn+1. We will show that An satisfies (C1), (C2), (C3)
and (C4).

Since Bn is in Mkn×kn+1(N), with kn ≥ 3, and mn/mn+1 = ldnqd−1
n is a positive integer,

the matrix An is in Mkn×kn+1(N). This proves that An is a positive integer matrix that
verifies (C1). Condition (C2) is also verified owing to

kn∑
i=1

An(i, k) = (lnqn)
d =

(
dn+1

dn

)d

> 1,

for all 1 ≤ k ≤ kn+1.
Since the entries of Bn are greater than or equal to 1, for all 1 ≤ i ≤ kn and

1 ≤ j ≤ kn+1,

An(i, k) = mn

mn+1
Bn(i, j) ≥ mn

mn+1
= ldnqd−1

n .
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Thus,

An(i, k)

(lnqn)d − (lnqn − 2)d
≥ (ln)

dqd−1
n

(lnqn)d − (lnqn − 2)d
= qd−1

n

qd
n − (qn − (2/ln))d

≥ 1,

which shows that An satisfies (C3).
In order to show that An verifies (C4), observe that

An(·, k) = An(·, j) if and only if Bn(·, k) = Bn(·, j),

i.e., the kth and j th columns of An coincide if and only if the kth and j th columns of Bn

coincide. Hence, to get (C4) it is sufficient to prove that

�(An(1, k)−1, An(2, k), . . . , An(kn−1, k)) ≥ �(Bn(1, k)−1, Bn(2, k), . . . , Bn(kn, k)).

This inequality can be expressed as

�(ca1 − 1, ca2, . . . , cakn−1) ≥ �(a1 − 1, a2, . . . , akn)

where c = ldnqd−1
n , a = qn and ai = Bn(i, k) for all 1 ≤ i ≤ kn. Since c > 2a and kn ≥ 3,

by Lemma 6 we get �(ca1, ca2, . . . , cakn−1) ≥ �(a1, a2, . . . , akn). On the other hand, we
have

�(ca1 − 1, ca2, . . . , cakn−1) = a1

a − akn

�(ca1, ca2, . . . , cakn−1),

and
�(a1 − 1, a2, . . . , akn) =

a1

a
�(a1, a2, . . . , akn).

Because a1/(a − akn) ≥ a1/a, we obtain the desired. Therefore, (C4) is verified.
To conclude the proof of this proposition consider the set 
n,i , i = 1, 2, consisting of

the x̄ ∈ (R+)kn such that

kn∑
k=1

xk =




1

hn

if i = 1,

1

dd
n

if i = 2,

The map Mn : 
n,1 → 
n,2 is well defined. In fact, if x̄ ∈ 
n,1 then the addition of the
coordinates of Mnx̄ is equal to mn/hn. In the case n = 0 we have m0/h0 = 1/dd

0 . So,
M0 : 
0,1 → 
0,2 is well defined. We suppose that Mn : 
n,1 → 
n,2 is well defined in
order to prove that Mn+1 : 
n+1,1 →
n+1,2 is also well defined. We have

mn+1

hn+1
= mnqn

(lnqn)dhnqn

= mn

hn

1

(lnqn)d
= 1

dd
n

1

(dn+1/dn)d
= 1

dd
n+1

.

This shows that Mn : 
n,1 → 
n,2 is well defined for all n ≥ 0. Moreover, the following
diagram commutes:


0,1
B0←−−−− 
1,1

B1←−−−− 
2,1
B2←−−−− · · ·�M0

�M1

�M2


0,2
A0←−−−− 
1,2

A1←−−−− 
2,2
A2←−−−− · · ·
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which implies that

lim←n
(Bn,
n,1) =

{
(xn)n≥0 ∈

∏
n≥0


n,1 : Bnxn+1 = xn, ∀n ≥ 0

}
,

and

lim←n
(An,
n,2) =

{
(xn)n≥0 ∈

∏
n≥0


n,2 : Anxn+1 = xn,∀n ≥ 0

}
,

are affine homeomorphic. Since lim←n(Bn,
n,1) is affine homeomorphic to MZ(X) we
conclude the proof. �

5. Construction of the Zd Toeplitz system
In this section we show that any Choquet simplex can be realized as the set of invariant
probability measures of a Zd -Toeplitz system (Corollaries 9 and 10). We deduce this result
using those given in [4] and [8], and using Theorem 7. In this theorem we prove that
for every d > 1 there exists a Zd -Toeplitz system (X, Zd) such that MZd (X) is affine
homeomorphic to MZ(Y ), where (Y, T ) is a Toeplitz flow which admits a nested sequence
of CKR partitions satisfying the conditions of Proposition 5.

THEOREM 7. Let (Y, T ) be a one-dimensional Toeplitz flow and let G be the odometer
which is its maximal equicontinuous factor. Let

(Pn = {T jCn,k : 0 ≤ j < hn, 1 ≤ k ≤ kn})n≥0

be a sequence of nested CKR partitions of Y verifying conditions of Lemma 2. If, in
addition, the sequence of partitions satisfies

for every m,n ≥ 0 there exists l ≥ 0 such that hnhm divides hl,

then for every d > 1 there exists a Zd -Toeplitz system (X, Zd ) such that MZd (X) is affine
homeomorphic to MZ(Y ) and such that the maximal equicontinuous factor of (X, Zd ) is
the Zd -odometer G× · · · ×G.

The idea of the proof is as follows.
Let (Y, T ) be a one-dimensional Toeplitz flow which satisfies the conditions of

Proposition 7. From Proposition 5, there exists a sequence of positive integers (dn)n≥0

and a sequence of positive integer matrices (An ∈ Mkn×kn+1(N))n≥0 satisfying for all
n ≥ 0:
(C1) kn ≥ 3;
(C2) for every 1 ≤ j ≤ kn+1,

kn∑
i=1

An(i, j) =
(

dn+1

dn

)d

with
dn+1

dn

≥ 6;

(C3) for every 1 ≤ i ≤ kn and 1 ≤ j ≤ kn+1,

An(i, j) ≥
(

dn+1

dn

)d

−
(

dn+1

dn

− 2

)d

;
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(C4) for every 1 ≤ k ≤ kn+1,

N(An, k) ≤ �(An(1, k)− 1, An(2, k), . . . , An(kn − 1, k)),

such that MZ(Y ) is affine homeomorphic to lim←n(An,
n), where


n =
{
v̄ ∈ (R+)kn :

kn∑
i=1

vi = 1

dd
n

}
,

and the maximal equicontinuous factor G of (Y, T ) is the odometer defined by{
(gn)n≥0 ∈

∏
n≥0

Z/dnZ : πn(gn+1) = gn, ∀n ≥ 0

}
.

We will use the sequences (An)n≥0 and (dn)n≥0 to produce a Zd -Toeplitz system
(X, Zd) which admits a special nested sequence of clopen partitions (Fn)n≥0 of X.
Every Fn will be a finite collection of clopen subsets of X

Fn = {v̄ · Fn,k : v̄ ∈ Dn, 1 ≤ k ≤ kn},
where the set Dn will be a rectangle in Zd centered in 0 with sides of length dn, and the
sets Fn,k will be cylinders in X which fix the coordinates corresponding to Dn. That is,

Fn,k = {x ∈ X : x(Dn) = Bn,k},
for some Bn,k ∈ {0, 1}Dn , where x(Dn) is the notation for {x(v̄) : v̄ ∈ Dn} ∈ {0, 1}Dn .
The choice of the blocks Bn,k (where a block is an element in {0, 1}D, for any rectangle D

in Zd ) will ensure that (Fn)n≥0 is a nested sequence of clopen partitions of X spanning
its topology such that the incidence matrix between Fn and Fn+1 is An. Owing to
these characteristics of (Pn)n≥0, we will be able to conclude that MZd (X) is affine
homeomorphic to MZ(Y ) and that the maximal equicontinuous factor of (X, Zd ) is
G× · · · ×G (Lemma 8).

Before giving the proof of Theorem 7, we will do the following: first, we will define
the sequence (Dn)n≥0 of rectangles of Zd . Next, we will give some sufficient conditions
on the sequence of blocks (Bn,1, . . . , Bn,kn )n≥0 to construct a Zd -Toeplitz array whose
associated Zd -Toeplitz system (X, Zd ) admits the sequence (Fn)n≥0 as a clopen covering.
After that, in Lemma 8, we will impose an additional condition to (Bn,1, . . . , Bn,kn)n≥0 in
order that the atoms of every Fn are disjoint. This will be sufficient to show that (Fn)n≥0

is a sequence of partitions of X spanning its topology, from which we will deduce that
MZd (X) is affine-homeomorphic to MZ(Y ) and that the maximal equicontinuous factor
of (X, Zd ) is G × · · · × G. In the proof of Theorem 7, we will construct an explicit
sequence of blocks (Bn,1, . . . , Bn,kn )n≥0 satisfying all the necessary conditions that we
will have introduced before.

We define (Dn)n≥0 as an increasing sequence of rectangles in Zd as follows. We set

D0 = {−a, . . . , b}d,

where a = d0 − b − 1 and

b =




d0

2
if d0 is even,

d0 − 1

2
if d0 is odd.
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For n ≥ 0 we put qn = dn+1/dn, ln + rn = qn − 1, where

rn =




qn

2
if qn is even,

qn − 1

2
if qn is odd.

Since qn ≥ 6, we have rn, ln ≥ 2.
In order to define the rectangle Dn+1, for n ≥ 0, consider the sets

Sn = {dnv̄ : v̄ ∈ Zd such that − ln ≤ vi ≤ rn, for all 1 ≤ i ≤ d},
and

∂Sn = {dnv̄ ∈ Sn : vi ∈ {rn,−ln}, for some 1 ≤ i ≤ d}.
We define the set Dn+1 as the disjoint union of the sets Dn,dnv̄ , for dnv̄ ∈ Sn, where Dn,z̄

denotes the translated set Dn + z̄ for all z̄ ∈ Zd .
Next, for all n ≥ 0 we will choose the kn different blocks Bn,1, . . . , Bn,kn in {0, 1}Dn

such that they satisfy the following properties:
(i) Bn+1,k(Dn,v̄) ∈ {Bn,1, . . . , Bn,kn }, for every v̄ ∈ Sn, for every 1 ≤ k ≤ kn+1;
(ii) Bn+1,k(Dn,0) = Bn,1, for every 1 ≤ k ≤ kn+1.
Once such a sequence of blocks is defined a Zd -Toeplitz array x0 ∈ {0, 1}Zd

can be
constructed directly such that (Fn)n≥0 is a covering of its orbit closure.

Consider, for all n ≥ 0, the non-empty clopen set

In = {x ∈ {0, 1}Zd : x(Dn) = Bn,1}.
On the one hand, from (ii) we get In+1 ⊆ In, which implies that

⋂
n≥0 In 	= ∅. On the

other hand, the sequence (Dn)n≥0 was chosen such that
⋃

n≥0 Dn = Zd , which allows one
to conclude that there is at most one element x0 in

⋂
n≥0 In. To check that x0 is a Toeplitz

array, notice that (i) implies that for every v̄ ∈ dnZd there exists 1 ≤ k ≤ kn such that
x0(Dn,v̄) = Bn,k . Therefore, by (ii), x0(Dn,v̄) = Bn,1 for all v̄ ∈ dn+1Zd . This means
that Dn ⊆ Per(x0, dn+1Zd ) for all n ≥ 0, which proves that x0 is a Zd -Toeplitz array.
Recall that we have defined, for n ≥ 0,

Fn = {v̄ · Fn,k : v̄ ∈ Dn, 1 ≤ k ≤ kn},
where

Fn,k = {x ∈ X : x(Dn) = Bn,k},
for all 1 ≤ k ≤ kn. Since x0(Dn) = Bn,1 for every n ≥ 0, from condition (i) we get
that the orbit of x0 is included in

⋃kn

k=1

⋃
v̄∈Dn

v̄ · Fn,k . Because this is a finite union of

closed sets, it is closed. So, the orbit closure of x0 is also included in
⋃kn

k=1

⋃
v̄∈Dn

v̄ ·Fn,k .
This shows that Fn is a clopen covering of X, the orbit closure of x0.

The following lemma sets down sufficient conditions on the sequence of blocks
(Bn,1, . . . , Bn,kn )n≥0 in order that (Fn)n≥0 is a sequences of partitions spanning the
topology of X. This will imply that MZd (X) is affine-homeomorphic to MZ(X) and
that the maximal equicontinuous factor of (X, Zd ) is Gd .
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LEMMA 8. If, in addition to (i) and (ii), for every n ≥ 0 the blocks Bn+1,1, . . . , Bn+1,kn

satisfy
(iii) Bn+1,k(Dn,v̄) = Bn+1,k′(Dn,v̄) for every v̄ ∈ ∂Sn, for every 1 ≤ k, k′ ≤ kn+1,
(iv) |{v̄ ∈ Sn : Bn+1,k(Dn,v̄) = Bn,i}| = An(i, k) for all 1 ≤ i ≤ kn,
(v) If w̄ ∈ Dn+1 is such that for some 1 ≤ k, k′ ≤ kn+1, Bn+1,k(v̄ + w̄) = Bn+1,k′(v̄)

for all v̄ ∈ Dn+1 such that v̄ + w̄ ∈ Dn+1, then w̄ = 0,
then the covering sets Fn are partitions spanning the topology of X. This implies that
MZd (X) is affine-homeomorphic to MZ(Y ) and that the maximal equicontinuous factor
of (X, Zd ) is the d-dimensional odometer G× · · · ×G.

Proof. Let n > 0. Since Fn is a covering of X, to conclude that it is a partition it remains
to prove that its atoms are disjoint. A way to show this is by proving that the set of
return times of x0 to Fn = ⋃kn

k=1 Fn,k is equal to dnZd . In fact, if RFn(x0) = dnZd then
RFn(x) = dnZd for all x ∈ Fn, because (X, Zd ) is minimal. Thus, if v̄ ·Fn,k∩w̄ ·Fn,k′ 	= ∅
for some v̄, w̄ ∈ Dn and 1 ≤ k, k′ ≤ kn, then v̄−w̄ ∈ dnZd , which implies that w̄− v̄ = 0.
This means that Fn,k ∩ Fn,k′ 	= ∅, but this is possible if and only if Bn,k = Bn,k′ , i.e. when
Fn,k = Fn,k′ .

In order to show that RFn(x0) = dnZd , note that condition (i) ensures that dnZd is
included in RFn(x0). Conversely, if v̄ is a vector in RFn(x0), then there exists 1 ≤ k ≤ kn

such that v̄ ·x0(Dn) = Bn,k . Since any vector in Zd can be written as a vector in dnZd plus
a vector in Dn, there exist z̄ ∈ Zd and w̄ ∈ Dn such that v̄ = dnz̄+ w̄. So, we have

(dnz̄+ w̄) · x0(Dn) = Bn,k. (5.6)

Since dnz̄ is in dnZd ⊆ RFn(x0), there exists 1 ≤ k′ ≤ kn such that

(dnz̄ · x0)(Dn) = Bn,k′ . (5.7)

From (5.6) and (5.7) we get

Bn,k′(w̄ + v̄) = Bn,k(v̄) for all v̄ ∈ Dn satisfying v̄ + w̄ ∈ Dn. (5.8)

From (5.8) and condition (v), we deduce that w̄ = 0. This implies that v̄ ∈ dnZd and then
that RFn(x0) = dnZd .

To show that (Fn)n≥0 spans the topology of X it is sufficient to prove that this sequence
separates points. In other words, if x1 and x2 are two points in X which belong to the
same atom of every Fn, then x1 = x2. By using condition (iii), we will show that if x1

and x2 are in the same atom of Fn, then x1(Dn−1) = x2(Dn−1). This determines that
the sequence of partitions separates points because (Dn)n≥0 is an increasing sequence of
subsets converging to Zd .

Suppose that x1 and x2 are two points of X which belong to the same atom of Fn.
Namely, x1, x2 ∈ v̄n ·Fn,jn for some v̄n ∈ Dn and 1 ≤ jn ≤ kn. Let y1, y2 ∈ Fn,jn be such
that x1 = v̄n · y1 and x2 = v̄n · y2.

Let ū ∈ Dn−1. We need to show that x1(ū) = x2(ū). In order to do that, we distinguish
two cases: v̄n + ū ∈ Dn and v̄n + ū /∈ Dn.

The first case is direct. Since y1 and y2 are in Fn,jn , they verify y1(v̄) = y2(v̄) for each
v̄ ∈ Dn. In particular, if v̄n + ū ∈ Dn then y1(v̄n + ū) = y2(v̄n + ū), which is equivalent
to x1(ū) = x2(ū).
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In the second case we need to use statement (iii). First, note that if v̄n + ū /∈ Dn then
there exist z̄ ∈ Zd \ {0} and w̄ ∈ Dn such that v̄n + ū = dnz̄ + w̄. Since the set of return
times to Fn for every point in Fn coincides with dnZd , we have that dnz̄ · y1 and dnz̄ · y2

are in Fn. This means that there exist 1 ≤ l1, l2 ≤ kn such that dnz̄ · y1(Dn) = Bn,l1 and
dnz̄ · y2(Dn) = Bn,l2 , which implies

x1(ū) = y1(v̄n + ū) = y1(dnz̄+ w̄) = dnz̄ · y1(w̄) = Bn,l1(w̄),

x2(ū) = y2(v̄n + ū) = y2(dnz̄+ w̄) = dnz̄ · y2(w̄) = Bn,l2(w̄).

The relation w̄−ū = v̄n−dnz̄ ensures that w̄−ū /∈ Dn because z̄ 	= 0. Since ū ∈ Dn−1 and
w̄ ∈ Dn, this is possible only if w̄ ∈ Dn−1,p̄ , for some p̄ ∈ ∂Sn−1. So, from condition (iii)
we have Bn,l1(w̄) = Bn,l2(w̄) and then x1(ū) = x2(ū).

Now we will prove that MZd (X) is affine-homeomorphic to MZ(Y ). First, we will
show that any invariant measure in MZd (X) can be seen as an element in lim←n(An,
n),
and later we will deduce the reciprocal affirmation.

As (Fn)n≥0 is a nested clopen partition spanning the topology of X, an invariant
measure µ ∈ MZd (X) is completely determined by the sequence (µ(Fn,1), . . . ,

µ(Fn,kn))n≥0. Since (v̄ · Fn)n≥0 is a partition of X, we have

1 = µ(X) =
∑
v̄∈Dn

µ(v̄ · Fn) =
∑
v̄∈Dn

µ(·Fn) = |Dn|µ(Fn) = dd
nµ(Fn).

This relation implies that
kn∑
i=1

µ(Fn,k) = µ(Fn) = 1

dd
n

, (5.9)

which means that (µ(Fn,1), . . . , µ(Fn,kn)) is in 
n. From condition (iv) we get that the
number of v̄ ∈ Dn+1 satisfying v̄ · Fn+1,k′ ⊆ Fn,k is An(k, k′), for every 1 ≤ k ≤ kn and
1 ≤ k′ ≤ kn+1. So, we obtain

µ(Fn,k) =
kn+1∑
k=1

An(k, k′)µ(Fn+1,k′). (5.10)

From equations (5.9) and (5.10) we deduce that (µ(Fn,1), . . . , µ(Fn,kn))n≥0 belongs to
lim←n(An,
n).

Conversely, if (xn,1, . . . , xn,kn )n≥0 is an element in lim←n(An,
n), then µ(v̄ · Fn,k) =
xn,k determines a probability measure on (Fn)n≥0, which extends to a unique probability
measure on the Borel σ -algebra of X. It is not hard to see that this measure is also invariant.
Thus, the map

µ→ (µ(Fn,1), . . . , µ(Fn,kn))n≥0

is an affine bijection from MZd (X) to lim←n(An,
n). Moreover, it is an homeomorphism
if we consider MZd (X) equipped with the weak topology and lim←n(An,
n) with the
product topology.

Finally, it remains to prove that the maximal equicontinuous factor of (X, Zd) is the
Zd -odometer Gd . We will show that there exists an almost one-to-one factor map from X

to Gd . Since the odometers are minimal and equicontinuous, the existence of an almost
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one-to-one factor map from X to Gd implies that (Gd, Zd ) is the maximal equicontinuous
factor of (X, Zd ) [5].

A way to express the odometer Gd is as follows,

G =
{
(gn)n≥0 ∈

∏
n≥0

Zd/dnZd : πn(gn+1) = gn,∀n ≥ 0

}
,

where πn : Zd/dn+1Zd → Zd/dnZd is the projection, for all n ≥ 0.
To every x ∈ X we associate the sequence (vn(x))n≥0 ∈ ∏

n≥0 Zd/dnZd , where vn(x)

is the class in Zd/dnZd containing the vector v̄n(x) ∈ Dn for which x ∈ v̄n(x) · Fn.
In fact, the sequence (vn(x))n≥0 is in G: since Fn+1 is finer than Fn and since the
intersection v̄n+1(x) · Fn+1 ∩ v̄n(x) · Fn is not empty, it is necessary that Fn+1 is included
in (−v̄n+1(x) + v̄n(x)) · Fn. From this inclusion and Fn+1 ⊆ Fn, we obtain that the
intersection (−v̄n+1(x) + v̄n(x)) · Fn ∩ Fn is not empty. So, there exists a point in Fn

whose set of return times to Fn contains −v̄n+1(x) + v̄n(x). As this set of return times
is always dnZd , the vectors v̄n+1(x) and v̄n(x) are two representing elements of the same
class in Zd/dnZd . In other words, πn(vn+1(x)) = vn(x), which shows that (vn(x))n≥0

is in G.
Thus, the map f : X → G given by f (x) = (vn(x))n≥0 is well defined. This is

continuous and commutes with the action, so it is a factor map. Moreover, since⋂
n≥0 Fn = {x0}, one has f−1{0} = x0. Thus, f is an almost one-to-one factor map. �

Proof of Theorem 7. We have seen that from a suitable sequence of blocks
(Bn,1, . . . , Bn,kn )n≥0 it is always possible to construct a Zd -Toeplitz array (X, Zd ) whose
maximal equicontinuous factor is the Zd -odometer Gd , and such that MZd (X) is affine-
homeomorphic to MZ(Y ). In the following, we focus on the existence of a sequence of
blocks satisfying the conditions (i)–(v) introduced above. The proof is divided into two
parts. In the first, we define an explicit sequence of blocks (Bn,1, . . . , Bn,kn )n≥0. From the
definition, it will be direct to check that the sequence satisfies the first four conditions.
The second part is devoted to proving that the sequence verifies the statement (v).

First part: definition of (Bn,1, . . . , Bn,kn )n≥0. We start with the definition of the blocks
B0,1, . . . , B0,k0 . In the proof of Proposition 5, the first term of the sequence (dn)n≥0 was
chosen as d0 = hn0 , for an arbitrary n0 ≥ 0. Here we take n0 ≥ 0 such that d0/2− 1 ≥ k0.

Now, for 1 ≤ k ≤ k0, we define B0,k ∈ {0, 1}D0 by

B0,k(v̄) =
{

1 if there is 1 ≤ i ≤ d such that k0 − (k − 1) ≤ |vi |,
0 otherwise,

(5.11)

where v̄ ∈ D0. Figure 1 shows an example.
Let n ≥ 0. In order to define the blocks Bn+1,1, . . . , Bn+1,kn+1 , for every 1 ≤ k ≤ kn+1

we shall introduce a subset Wn+1,k of the blocks in {0, 1}Dn+1 which satisfy the conditions
(i)–(iv). We will verify that it is possible to choose a block Bn+1,k in Wn+1,k such that
Bn+1,k 	= Bn+1,k′ if k 	= k′. After that, we will have defined kn+1 different blocks
Bn+1,1, . . . , Bn+1,kn+1 satisfying the first four required conditions. With the objective
to introduce the sets Wn+1,1, . . . ,Wn+1,kn+1 , for every 1 ≤ k ≤ kn+1 we construct two
disjoint subsets Sn,k,1 and Sn,k,2 of Sn as follows.
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B0,1 B0,2 B0,3

FIGURE 1. The blocks B0,1, B0,2 and B0,3 for the case d = 2, q0 = 9 and k0 = 3.

Using (C1)–(C3) of Proposition 5, we get An(kn, k) ≤ (qn − 2)d . From this relation
and qd

n − (qn − 2)d ≥ 2(qn − 2)d−1, it follows that

An(kn, k)− (qd
n − (qn − 2)d) ≤ (qn − 4)(qn − 2)d−1,

which implies that there exist 0 ≤ mn,kn,k ≤ qn − 4 and 0 ≤ hn,kn,k < (qn − 2)d−1 such
that

An(kn, k)− (qd
n − (qn − 2)d) = mn,kn,k(qn − 2)d−1 + hn,kn,k.

Now, we define

Sn,k,1 = {dnv̄ ∈ Sn\(∂Sn ∪ {0}) : rn −mn,kn,k ≤ vd ≤ rn − 1},
and Sn,k,2 as any subset of {dnv̄ ∈ Sn\(∂Sn ∪ {0}) : vd = rn −mn,kn,k − 1} verifying

|Sn,k,2| =
{

hn,kn,k if rn −mn,kn,k > 0,

hn,kn,k + 1 otherwise.

Because mn,kn,k ≤ qn − 4, the points dnv̄ in Sn satisfying vd = −dn(ln − 1) do not belong
to Sn,k,1 ∪ Sn,k,2.

Let 1 ≤ k ≤ kn+1. We call Wn+1,k the set consisting of all the blocks B ∈ {0, 1}Dn+1

which satisfy:
(i) B(Dn,v̄ ) ∈ {Bn,1, . . . , Bn,kn } for all v̄ ∈ Sn;
(ii) B(Dn,0) = Bn,1;
(iii) B(Dn,v̄ ) = Bn,kn for all v̄ ∈ ∂Sn ∪ Sn,k,1 ∪ Sn,k,2;
(iv) |{v̄ ∈ Sn : B(Dn,v̄ ) = Bn,i}| = An(i, k) for all 1 ≤ i ≤ kn.
Figure 2 gives an idea about the blocks in Wn+1,k . From (iii) and (iv) one gets that any
block B in Wn+1,k verifies

B(Dn,v̄ ) = Bn,kn if and only if v̄ ∈ ∂Sn ∪ Sn,k,1 ∪ Sn,k,2. (5.12)

Using this equation and (ii), a simple computation yields that Wn+1,k contains exactly
�(An(1, k) − 1, An(2, k), . . . , An(kn − 1, k)) elements. Since An satisfies (C4) of
Proposition 5, there are at least as many elements in Wn,k as in N(An, k) (the number
of columns of A which are equal to its kth column). Because Wn+1,k = Wn+1,k′ if and
only if An(·, k) = An(·, k′) (if Wn+1,k 	= Wn+1,k′ then they are disjoint), this ensures it is
possible to choose Bn+1,k in Wn+1,k such that Bn+1,k 	= Bn+1,k′ if k 	= k′.
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Bn,kn

�= Bn,kn

Bn,1

Sn,k,2

∂Sn

Sn,k,1

FIGURE 2. The blocks in Wn+1,k .

Second part: to verify that (Bn,1, . . . , Bn,kn)n≥0 satisfies condition (v). We have to prove
that for every n ≥ 0, if there exists w̄ ∈ Dn such that for some 1 ≤ k, k′ ≤ kn,
Bn,k(v̄ + w̄) = Bn,k′ (v̄) for all v̄ ∈ Dn such that v̄ + w̄ ∈ Dn, then w̄ = 0. We will
show this by induction on n.

Let n = 0. Suppose that w̄ ∈ D0 satisfies

B0,k(w̄ + v̄) = B0,k′(v̄) for all v̄ ∈ D0 such that w̄ + v̄ ∈ D0. (5.13)

In particular, this is valid for v̄ = 0. Then, from (5.11) and (5.13) we get B0,k(w̄) =
B0,k′(0) = 0. From (5.11), this implies

|wi | < k0 − (k − 1) for all 1 ≤ i ≤ d. (5.14)

Let 1 ≤ i ≤ d . We call j the integer such that

wi + j =
{

k0 − (k − 1) if wi > 0,

−(k0 − (k − 1)) if wi ≤ 0.

Since 0 < |j | ≤ k0 − (k − 1), the vectors jei and −jei , where ei is the unitary vector in
the i-coordinate, are in D0. Furthermore, we have w̄+ jei ∈ D0 and w̄− jei ∈ D0. Thus,
from (5.13) we get

B0,k(w̄ + jei) = B0,k′(jei), (5.15)

B0,k(w̄ − jei) = B0,k′(−jei). (5.16)

As |wi + j | = k0− (k− 1), from (5.11) we obtain B0,k(w̄+ jei) = 1. By equation (5.15),
this means that B0,k′(jei) = 1. From (5.11), it follows that k0 − (k′ − 1) ≤ |j | and then
B0,k′(−jei) = 1, which implies, by (5.16), that B0,k(w̄ − jei) = 1. Again from (5.11),
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this implies there exists a coordinate of w̄ − jei whose absolute value is greater than or
equal to k0 − (k − 1). From (5.14) we deduce that

k0 − (k − 1) ≤ |wi − j |. (5.17)

On the other hand, we have

|wi − j | ≤ max{|wi |, |j |} ≤ k0 − (k − 1). (5.18)

From (5.17), (5.18) and (5.14) we conclude that |j | = k0 − (k − 1), which implies, by
definition of j , that wi = 0.

Let n > 0. We suppose that if w̄ ∈ Dn−1 is such that, for some 1 ≤ k, k′ ≤ kn−1,
Bn−1,k(v̄ + w̄) = Bn−1,k′(v̄) for all v̄ ∈ Dn−1 with v̄ + w̄ ∈ Dn−1, then w̄ = 0. We use
this as the induction hypothesis.

Let w̄ ∈ Dn be such that Bn,k(v̄ + w̄) = Bn,k′(v̄) for all v̄ ∈ Dn with v̄ + w̄ ∈ Dn.
In order to show that w̄ = 0, first we prove that w̄ ∈ Sn−1 \ ∂Sn−1. Next, we use this result
to study the case w̄ = ked , where ed is the unitary vector in the d-coordinate and k ∈ Z.
Finally, we deduce that w̄ = 0 in the general case.

Let ū ∈ Dn−1 and r̄ ∈ Zd be such that w̄ = dn−1r̄ + ū. We have

Bn,k(v̄ + dn−1r̄ + ū) = Bn,k′ (v̄)

for all v̄ ∈ Dn such that v̄ + dn−1r̄ + ū is in Dn. Since w̄ ∈ Dn, it is necessary that
dn−1r̄ ∈ Sn−1. This implies that dn−1r̄ + ū + v̄ ∈ Dn for every v̄ in Dn−1 such that
ū+ v̄ ∈ Dn−1. Thus, we deduce that

Bn,k(v̄ + dn−1r̄ + ū) = Bn,k′(v̄),

for every v̄ in Dn−1 such that v̄ + ū is in Dn−1. In other words,

Bn−1,l(v̄ + ū) = Bn−1,1(v̄),

for every v̄ ∈ Dn−1 such that v̄ + ū ∈ Dn−1, where Bn−1,l is the block such that
Bn,k(Dn−1,dn−1 r̄ ) = Bn−1,l (condition (i) ensures the existence of this block) and Bn−1,1

corresponds to Bn,k′(Dn−1,0) (this is true by condition (ii)). So, by the induction hypothesis
we have ū = 0 and then w̄ ∈ dn−1Zd ∩Dn = Sn−1.

Suppose that v̄ ∈ Sn−1 is such that v̄ + w̄ ∈ Sn−1. Since Sn−1 is a subset of Dn, we
have Bn,k(v̄ + w̄) = Bn,k′(v̄). Because for every ū ∈ Dn−1 it holds that v̄ + ū + w̄ and
v̄ + ū are in Dn, we conclude that

Bn,k(Dn−1,w̄+v̄ ) = Bn,k′(Dn−1,v̄), (5.19)

for all v̄ ∈ Sn−1 such that v̄ + w̄ ∈ Sn−1. In particular, this is valid for v̄ = 0.
Using condition (ii) we get

Bn,k(Dn−1,w̄) = Bn,k′(Dn−1,0) = Bn−1,1,

which implies by (iii) that w̄ ∈ Sn−1 \ ∂Sn−1. This means that wi satisfies −dn−1ln−1 <

wi < dn−1rn−1 for every 1 ≤ i ≤ d .



M. I . Co rtez

Bn,k′ Bn,k′

Bn,k Bn,k

Bn,k(Dn−1,w̄)

Bn,k′(Dn−1,v̄)

Bn,k(Dn−1,w̄)

Bn,k(Dn−1,w̄+z̄)

Bn,k(Dn−1,w̄+z̄)

Bn,k′(Dn−1,z̄)

FIGURE 3. Contradiction in the case w̄ = ked , with k > 0.

Now we consider the case w̄ = ked . We suppose that k 	= 0 to obtain a contradiction.
Let 1 ≤ i < d . We set

v̄ =
{

dn−1ei − dn−1ln−1ed if k > 0,

dn−1ei − dn−1ln−1ed − ked if k < 0,

and z̄ = v̄ + dn−1ed .
When k > 0 we have v̄ ∈ ∂Sn−1 and z̄ ∈ Sn−1 \ (∂Sn−1 ∪ Sn−1,k′,1 ∪ Sn−1,k′,2).

By (5.12), this implies

Bn,k′(Dn−1,v̄) = Bn−1,kn−1 and Bn,k′(Dn−1,z̄) 	= Bn−1,kn−1 . (5.20)

Note that k > 0 implies −dn−1ln−1 < wd + vd . Because rn−1 − ln−1 ∈ {0, 1} and
wd < dn−1rn−1, we get

w̄ + v̄ ∈ Sn−1 \ ∂Sn−1. (5.21)

Since w̄ + v̄ is in Sn−1, from (5.19) and (5.20) we obtain

Bn,k(Dn−1,v̄+w̄) = Bn,k′(Dn−1,v̄) = Bn−1,kn−1 .

On the one hand, the previous relation, (5.12) and (5.21) ensure that

v̄ + w̄ ∈ Sn−1,k,1 ∪ Sn−1,k,2, (5.22)

which implies that
w̄ + z̄ ∈ Sn−1,k,1 ∪ ∂Sn−1, (5.23)

because wd + zd = wd + vd + dn−1 and w̄ + z̄ 	= 0 (the i-coordinate is equal to dn−1).
On the other hand, (5.12) and (5.23) imply that

Bn,k(Dn−1,w̄+z̄) = Bn−1,kn−1 .

Nevertheless, from this relation and (5.19) we have

Bn,k(Dn−1,w̄+z̄) = Bn,k′(Dn−1,z̄) = Bn−1,kn−1 ,

which contradicts (5.20) (see Figure 3).
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Bn,k′(Dn−1,z̄)

Bn,k(Dn−1,w̄+v̄)

Bn,k(Dn−1,w̄+z̄)

Bn,k Bn,k

Bn,k′ Bn,k′

Bn,k(Dn−1,w̄)

FIGURE 4. Contradiction in the case w̄ = ked , with k < 0.

If k < 0 then v̄ = dn−1ei−dn−1ln−1ed−ked and z̄ = dn−1ei−dn−1(ln−1−1)ed−ked .
Since −ln−1dn−1 < k < 0, we have −ln−1dn−1 < vd < 0, which implies that v̄ is in
Sn−1 \ ∂Sn−1. As w̄ + v̄ ∈ ∂Sn−1, from (5.12) and (5.19) we get

Bn,k(Dn−1,v̄+w̄) = Bn,k′(Dn−1,v̄) = Bn−1,kn−1 .

By (5.12), this ensures that v̄ is in ∂Sn−1 ∪ Sn−1,k′,1 ∪ Sn−1,k′,2, which implies that v̄ is in
v̄ ∈ Sn−1,k′,1 ∪ Sn−1,k′,2 because v̄ is not in ∂Sn−1. From this inclusion it follows that z̄ is
in Sn−1,k′,1 ∪ ∂Sn−1, because z̄ 	= 0 and zd = vd + dn−1. On the one hand, from (5.12) we
obtain

Bn,k′(Dn−1,z̄) = Bn−1,kn−1 . (5.24)

On the other hand, as wd + zd = −dn−1(ln−1 − 1), we have that w̄ + z̄ is in
Sn−1 \ (∂Sn−1 ∪ Sn−1,k,1 ∪ Sn−1,k,2). Thus, from (5.12) we get

Bn,k(Dn−1,w̄+z̄) 	= Bn−1,kn−1 ,

and from (5.19)
Bn,k(Dn−1,w̄+z̄) = Bn,k′(Dn−1,z̄) 	= Bn−1,kn−1 ,

which contradicts (5.24) (see Figure 4).
Thus, we have shown that

if w̄ = ked then k = 0. (5.25)

Now, we consider the general case. In order to show that w̄ = 0, first we suppose that
wd > 0 to obtain a contradiction. Next, using the fact that wd ≤ 0, we suppose that among
the first d − 1 coordinates of w̄ there is one which is not zero. We deduce that this is not
possible and from (5.25) we obtain the final result.

Suppose that wd > 0. We set v̄ = −dn−1(ln−1 − 1)ed and z̄ = −dn−1ln−1ed .
Both vectors are in Sn−1. In particular,

v̄ ∈ Sn−1 \ (∂Sn−1 ∪ Sn−1,k′,1 ∪ Sn−1,k′,2) and z̄ ∈ ∂Sn−1.
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From (5.12) we get

Bn,k′(Dn−1,v̄) 	= Bn−1,kn−1 , (5.26)

Bn,k′ (Dn−1,z̄) = Bn−1,kn−1 . (5.27)

Note that w̄+ v̄ and w̄+ v̄ are in Sn−1. In fact, since rn−1 − ln−1 ∈ {0, 1} and wd satisfies
0 < wd < dn−1rn−1, we have

−dn−1ln−1 < wd + zd < wd + vd ≤ dn−1 < dn−1rn−1,

which implies that w̄ + v̄ and w̄ + z̄ are in Sn−1 \ ∂Sn−1. Thus, using (5.19), (5.26) and
(5.27), we get

Bn,k(Dn−1,w̄+v̄ ) = Bn,k′(Dn−1,v̄) 	= Bn−1,kn−1 , (5.28)

Bn,k(Dn−1,w̄+z̄) = Bn,k′(Dn−1,z̄) = Bn−1,kn−1 . (5.29)

From (5.12), the equation (5.29) ensures that w̄ + z̄ is in ∂Sn ∪ Sn−1,k,1 ∪ Sn−1,k,2,

which implies that w̄ + z̄ is in Sn−1,k,1 ∪ Sn−1,k,2, because w̄ + z̄ is not in ∂Sn−1. Since
wd+vd = wd+zd+dn−1 and w̄+ v̄ /∈ ∂Sn−1, the previous inclusion implies that w̄+ v̄ is
in Sn,k,1 ∪ {0}. If w̄+ v̄ is in Sn,k,1 then from (5.12) we get Bn,k(Dn−1,w̄+v̄ ) = Bn−1,kn−1 ,
which contradicts (5.28). So, the only possibility is w̄ + v̄ = 0. Nevertheless, this means
that w̄ = ked for some k ∈ Z, which contradicts (5.25). Thus we conclude that wd ≤ 0.

Finally, using the fact that wd ≤ 0, suppose there exists 1 ≤ i < d such that wi 	= 0.
We set

v̄ =
{

rn−1dn−1ei − dn−1(ln−1 − 1)ed −wded if wi < 0,

−ln−1dn−1ei − dn−1(ln−1 − 1)ed −wded if wi > 0.

In both cases the vector v̄ is in ∂Sn−1. So, from (5.12) we get

Bn,k′ (Dn−1,v̄) = Bn−1,kn−1 . (5.30)

Since −dn−1ln−1 < wi < dn−1rn−1, we deduce that w̄ + v̄ is in Sn, which implies, by
(5.19) and (5.30),

Bn,k(Dn−1,v̄+w̄) = Bn,k′(Dn−1,v̄) = Bn−1,kn−1 . (5.31)

As wd+vd = −dn−1(ln−1−1), we have that w̄+ v̄ is not in Sn−1,k,1∪Sn,k,2. Furthermore,
because wi 	= 0 we get that w̄ + v̄ is not in ∂Sn−1. From (5.12) it follows that

Bn,k(Dn−1,v̄+w̄) 	= Bn−1,kn−1 ,

which contradicts (5.31) (see Figure 5). So, it is necessary that wi = 0 for every 1 ≤ i < d ,
which means that w̄ = ked for some k ∈ Z. Thus from (5.25) we get w̄ = 0. �

In the proof of the two following corollaries, we use the fact that there exists a factor
map π : G1 → G2 between the Zd -odometers G1 and G2, defined by the sequences of
groups (Zn)n≥0 and (Yn)n≥0, respectively, if and only if for every n ≥ 0 there exists k ≥ 0
such that Zk ⊆ Yn [3, 5].

COROLLARY 9. Let K be a Choquet simplex and let d > 1. There exists a Zd -Toeplitz
system (X, Zd ) such that MZd (X) is affine-homeomorphic to K , and such that its maximal
equicontinuous factor is a product of d one-dimensional 2-odometers.
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Bn,k Bn,k

Bn,k′ Bn,k′

Bn,k(Dn−1,w̄)

Bn,k′(Dn−1,v̄) Bn,k(Dn−1,w̄+v̄)

FIGURE 5. Contradiction in the case wd ≤ 0.

Proof. Let K be a Choquet simplex. From [4], there exists a dyadic Toeplitz flow (Y, T )

such that MZ(Y ) is affine-homeomorphic to K . Let

(Pn = {T jCn,k : 0 ≤ j ≤ hn, 1 ≤ k ≤ kn})n≥0

be a nested sequence of CKR partitions of Y which satisfies the conditions of Lemma 2.
Since {(gn)n≥0 ∈ ∏

n≥0 Zhn : πn(gn+1) = gn} is conjugate to the odometer which is
the maximal equicontinuous factor of (Y, T ), one has that for every n ≥ 0 there exist
m1,m2 ≥ 0 and k1, k2 ∈ Z such that hn = k12m1 and 2n = k2hm2 . This implies that for
every n ≥ 0 there exists mn ≥ 0 such that hn = 2mn . Because (hn)n≥0 is an increasing
sequence, we get that for every n,m ≥ 0 there exists l ≥ 0 such that hnhm divides hl .
Thus, from Proposition 7, we conclude there exists a Zd -Toeplitz system (X, Zd ) such that
MZd (X) is affine-homeomorphic to K and such that its maximal equicontinuous factor is
a product of d one-dimensional 2-odometers. �

COROLLARY 10. Let K be a Choquet simplex and let d > 1. There exists a Zd -Toeplitz
system (X, Zd ) such that MZd (X) is affine-homeomorphic to K and such that its maximal
equicontinuous factor is a product of d one-dimensional universal odometers. Hence, the
set of continuous eigenvalues of (X, Zd ) is Qd .

Proof. Let K be a Choquet simplex. From [8], there exists a Toeplitz flow (Y, T ) which is
an almost one-to-one extension of the universal odometer G, such that MZ(Y ) is affine-
homeomorphic to K . Let

(Pn = {T jCn,k : 0 ≤ j ≤ hn, 1 ≤ k ≤ kn})n≥0

be a nested sequence of CKR partitions of Y which satisfies conditions of Lemma 2.
Since {(gn)n≥0 ∈ ∏

n≥0 Zhn : πn(gn+1) = gn} is conjugate to G, one has that for every
n ≥ 0 there exist m ≥ 0 and k ∈ Z such that hn = km!. Because (hn)n≥0 is an increasing
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sequence, we get that for every n,m ≥ 0 there exists l ≥ 0 such that hnhm divides hl .
Thus, from Proposition 7, we conclude there exists a Zd -Toeplitz system (X, Zd ) such that
MZd (X) is affine-homeomorphic to K and such that its maximal equicontinuous factor
is the d-dimensional odometer G × · · · × G. Since the set of continuous eigenvalues
of the Toeplitz system coincides with the set of continuous eigenvalues of its maximal
equicontinuous factor, we conclude that this set is equal to Qd . �

6. A Choquet simplex as the set of invariant probability measures of a tiling system
A tiling of Rd is a countable collection T = (tn)n≥0 of closed subsets of Rd (which are
known as tiles) whose union is the whole space and their interiors are pairwise disjoint.
It is often assumed that the tiles are homeomorphic to closed balls and that they belong,
up to translation, to a finite collection of closed subsets of Rd whose elements are called
prototiles. Sometimes it is useful to consider every prototile as a closed set endowed with
a label.

The translation of the tiling T by a vector v̄ ∈ Rd is the tiling T + v̄ that results after
translating every tile of T by v̄. The tiling T is said to be aperiodic (or non-periodic) if
T + v̄ = T implies v̄ = 0. A patch of T is a finite sub-collection of tiles of T . The tiling T

satisfies the finite pattern condition (FPC) if, for any r > 0, there are up to translation
only finitely many patches with diameter smaller than r . This condition is automatically
satisfied in the case of a tiling whose tiles are polyhedra that meet face-to-face. A tiling is
repetitive if for any patch in T there exists r > 0 such that, for every x ∈ Rd , there exists
a translate of this patch which is in T and in the ball Br(x). The non-periodic repetitive
tilings that satisfy the FPC are called perfect tilings. An easy way to produce perfect tilings
is from non-periodic uniformly recurrent arrays in �Z

d
: to any array x ∈ �Z

d
we can

associate a tiling Tx = (tv̄)v̄∈Zd , where the support of tv̄ is the translation by v̄ of [0, 1]d
and its label is x(v̄), for all v̄ ∈ Zd . The tiling Tx always satisfies the FPC condition.
It is repetitive and non-periodic if and only if x is uniformly recurrent and non-periodic,
respectively.

Given a finite collection of prototiles M , we denote by T (M) (full tiling space) the space
of all the tilings of Rd whose tiles are equivalent to some element in M . When T (M) 	= ∅,
the group Rd acts on T (M) by translations:

(v̄, T )→ T + v̄ for v̄ ∈ Rd and T ∈ T (M).

Furthermore, this action is continuous with the topology induced by the following distance.
Let A be the set of ε ∈ (0, 1) such that there exist v and v′ in Bε(0) such that
(T + v) ∩ B1/ε(0) = (T ′ + v′) ∩ B1/ε(0). Then

d(T , T ′) =
{

inf A if A 	= ∅,
1 if A = ∅.

The orbit closure of a tiling T in T (M) is called the continuous Hull of T and it is denoted
by �T . When T satisfies the FPC, its continuous Hull is compact. If, in addition, T is
repetitive, (�T , Rd) is a minimal topological dynamical system. Thus, if T is a perfect
tiling then (�T , Rd ) is a free minimal topological dynamical system, and it is called a
tiling system (see [1] and [2] for more details on tiling systems).
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The examples of Toeplitz arrays constructed in the proof of Theorem 7 are non-periodic
and uniformly recurrent, so the associated tilings are perfect. Furthermore, if x is a
Toeplitz array and (X, Zd ) its associated Toeplitz system, the tiling system (�Tx , Rd) is
the suspension of (X, Zd). So, there is an affine-homeomorphism between the spaces
MZd (X) and MRd (�Tx ). Thus, we conclude the following.

COROLLARY 11. Every Choquet simplex can be realized as the set of invariant probability
measures of a tiling system.
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