
Normal forms for binary relations

Daniel J. Doughertya,∗, Claudio Gutiérrezb

aDepartment of Computer Science, Worcester Polytechnic Institute, USA
bDepartment of Computer Science, Universidad de Chile, Chile

Abstract

We consider the representable equational theory of binary relations, in a language expressing composition, converse, and lattice
operations. By working directly with a presentation of relation expressions as graphs we are able to define a notion of reduction
which is confluent and strongly normalizing and induces a notion of computable normal form for terms. This notion of reduction
thus leads to a computational interpretation of the representable theory.

Keywords: Binary relations; Graph representation; Normal forms; Omitting minors

1. Introduction

The theory of binary relations is a fundamental conceptual and methodological tool in computer science. The formal
study of relations was central to early investigations of logic and the foundations of mathematics [12,30,34–36] and
has more recently found application in program specification and derivation [2,7,4,26], denotational and axiomatic
semantics of programs [21,11,32,28], and hardware design and verification [8,23].

The collection of binary relations on a set has rich algebraic structure: it forms a monoid under composition,
each relation has a converse, and it forms a Boolean algebra under the usual set-theoretic operations. In fact, the
equational theory in this language is undecidable, since it is possible to encode set theory [36]. In this paper, we
eliminate complementation as an operation, and investigate the equational theory ER of representable relation algebras
(Definition 1): this theory is the set of equations between relation expressions valid when interpreted over sets. Andréka
and Bredikhin [1] have shown that ER is decidable: our goal is a finer-grained analysis of the valid equations.

Now, the most popular framework for foundations and for implementations of theorem provers, proof-checkers, and
programming languages remains the �-calculus. It seems reasonable to say that this is due at least in part to the fact that
the equational theory of �-terms admits a computational treatment which is well-behaved: �-reduction is confluent,
and terminating in typed calculi, so that the notion of normal form is central to the theory.

∗ Corresponding author. Tel.: +1 508 831 5621.
E-mail address: dd@cs.wpi.edu (D.J. Dougherty).

http://www.elsevier.com/locate/tcs
mailto:dd@cs.wpi.edu

D.J. Dougherty, C. Gutiérrez

To our knowledge, no analogous notion of normal form for terms in the theory of relations is known. In fact, the
calculus of relations has a reputation for being complex. Bertrand Russell (quoted in [31]) viewed the classical results
of Peirce and Schröder on relational calculus as being “difficult and complicated to so great a degree as to doubt their
utility.” And in their monograph [4, p. 81] Bird and de Moor observe that “the calculus of relations has gained a good
deal of notoriety for the apparently enormous number of operators and laws one has to memorize in order to do proofs
effectively.”

Furthermore, Andréka and Bredikhin [1] have shown that although the class of representable relation algebras has a
decidable equational theory, it is not a variety. So if we are to attempt a deeper understand of ER the usual techniques
of computational equational logic, term-rewriting in particular, would seem to be unavailable: no term rewriting system
can even claim to correctly present the theory, much less be a foundation for computing with relational terms.

But in this paper we suggest that a rather attractive syntactic/computational treatment of the representable theory of
relations is indeed available, at least for the fragment of the theory not including complementation.

The starting point is the idea of taking certain graphs as the representation of relations. These graphs, called here
“diagrams,” arise very naturally and have been used since Peirce by researchers in the relation community (e.g.
Tarski, Lyndon, Jónsson, Maddux, etc.). Recent formalizations appear in [1,5,8,16,18,19]. What we do here is to take
graphs seriously as a notation alternative to first-order terms, i.e., to treat diagrams as first-class syntactic entities, and
specifically as candidates for rewriting.

In Section 3, we explain how one can see diagram rewriting as an instance of a standard technique in automated
deduction, rewriting modulo a set of equations [22]. It is well-known that certain equations inhibit classical term-
rewriting techniques—the typical examples are associativity and commutativity—and that a useful response can be to
pass to computing modulo these equations. Indeed we exhibit a set ED of equations such that diagrams are the natural
data structure for representing terms modulo ED.

We first clarify the relationship between terms and diagrams by showing that the algebra of diagrams is precisely
the free algebra for a certain finite set ED of equations between terms (Theorem 15). It is rather surprising that a finite
set of equations accounts for precisely the identifications between terms induced by compiling them into diagrams.

We also characterize those graphs which arise as diagrams, as those graphs that omit certain graphs as minors
(Theorem 31).

Our main result is a computational treatment of diagrams via a notion of reduction. We prove that reduction sat-
isfies strong normalization and Church–Rosser properties, and so the theory enjoys unique (diagram-) normal forms
(Theorems 34–36). These normal forms are effectively computable, giving another proof of decidability of the theory.

In light of the characterization of the set of diagrams as the free algebra for the set ED of equations, these results
can be seen—if one insists—as results about rewriting of terms modulo ED. But for us the diagram presentation is the
primary one and is ultimately the closest to our intuition.

Compared with the decision procedure implicit in the method of Andréka and Bredikhin (outlined below in Theorem
5), the results here do not offer any improvement in the sense of computational complexity. But our approach enables
us to systematically analyze diagrams from an algebraic perspective, complementing the traditional graph-theoretic
point of view. And the existence of computable unique normal forms for diagrams provides another tool that we hope
will help yield further results on relation algebras.

The role of union: It is natural to consider adding the union operation to the theory ER. But for the purposes of
deciding validity, it is easily eliminated, as follows. The argument below is from [16, Section 2.21(10)].

It is readily verified that union distributes over intersection, composition, and converse. So we need only consider
inclusions of the form

s1 ∪ · · · ∪ sn ⊆ t1 ∪ · · · ∪ tm,

where each si and tj is a term over the union-free signature �. But such an inclusion is valid if and only if for each
si there is a tj such that si ⊆ tj is valid. For if there were an si such that for every tj there is an interpretation Aj

witnessing si � tj , the Cartesian product of the Aj would witness the failure of

si ⊆ t1 ∪ · · · ∪ tm

so that the original inclusion fails.
In light of this we restrict our attention in this paper to the union-free fragment of the full (negation-free) signature.

D.J. Dougherty, C. Gutiérrez

Related work: Bird and de Moor’s [4] book is an extended presentation of the application of relational calculus to
program specification and derivation, building explicitly on the theory of allegories. There, terms in relation calculus
are not programs per se, but the authors do raise the question of how one might execute relation expressions [4, p. 110].
As noted there, a promising proposal is made by Lipton and Chapman in [26], where a notion of rewriting terms using
the allegory axioms is presented. It should be very interesting to explore the relationship between the Lipton–Chapman
model and the one presented here.

Brown and Hutton [8] apply relational methods to the problems of designing and verifying hardware circuits. They
observe that people naturally reason informally about pictures of circuits and seek to provide formal basis, again based
on allegories, for such reasoning; their vehicle is the relational language RUBY used to design hardware circuits. To
our knowledge they do not claim decidability or normal forms for the theory they implement. An implementation of
their method is distributed at [23].

The case for using a calculus of relations as a framework for concepts and methods in mathematics and computer
science is compellingly made by Freyd and Scedrov in [16]. There they develop a categorical theory of allegories:
“Allegories … are to binary relations between sets as categories are to functions between sets” [16]. In forthcoming
work we apply some of the techniques of this paper to the theory of allegories.

Our diagrams are closely related to the often studied class of series–parallel graphs, arising in a variety of fields, such
as electrical engineering, operations research, and the theory of concurrent processes. characterizations of families of
such graphs by omitting minors have been obtained by previous authors [14,15,9] (see [29, Chapter 6], for an overview
of these results). The structures we treat have a somewhat richer algebraic structure than the graphs treated in previous
work, and our omitting minors theorem is correspondingly somewhat more involved.

An indication of the range of current investigations into relations and relation-calculi may be found in, for example,
the books [33] or [6] or the proceedings of the roughly annual RelMiCS conferences. Two other investigations of
graphical relation-calculi are the work of Kahl [24] and that of Curtis and Lowe [10].

The general topic of diagrammatic reasoning has attracted interest in several areas (see for example [3]). The present
research might be viewed as a case-study in reasoning with diagrams in the general sense.

2. Preliminaries

2.1. Terms and models

The intended models of the theories we study are collections of binary relations over a set with the operations
intersection ∩, composition ;, and converse ()◦, with the distinguished relation 1, the identity. The unary operator dom,
the domain of a relation, can be defined as dom(x) = 1 ∩ xx◦, but for technical reasons (see Remark 16) it is useful
to have an explicit symbol denoting it. Modulo the inclusion of dom the following definition is due to Andréka and
Bredikhin [1].

Definition 1. Let � be the signature comprising the binary operation symbols ; and ∩, the unary operations ()◦ and
dom, and the constant 1. A subpositive set relation algebra is a �-algebra

A = 〈A, ∩, ; , ()◦, dom, 1〉
in which A is a set of binary relations on some base set such that A contains the identity relation 1 and is closed under
the operations intersection, composition, and converse. In A the symbols from � are interpreted in the standard way,
with dom taken to be the domain operator as defined above. Composition is interpreted in “diagrammatic order” so
that x; y means “x first then y.”

An arbitrary relation algebra [27] is representable if it is isomorphic to a subpositive set relation algebra. We denote
by R the class of representable relation algebras over the signature �.

Let T� denote the set of first-order terms over � and an infinite set Vars = {x1, x2, . . .} of variables. It is convenient
to suppress explicit use of ; and to denote the composition x; y as simply xy. An atom is a variable or the constant 1,
and a literal is an atom or the converse of an atom.

Haimann [20] showed that R cannot be finitely axiomatized. Andréka and Bredikhin [1] showed that R is not
a variety.

D.J. Dougherty, C. Gutiérrez

Let ER be the set of equations valid in R.

2.2. Graphs and diagrams

A labelled, directed graph is a structure G = (V , E, s, f) where V is a finite set of vertices, s ∈ V , f ∈ V ,
and E ⊆ V × 2Vars × V . That is, there is a distinguished start vertex s and a distinguished finish vertex f , not
necessarily distinct, and edges are directed with each labelled by a set of variables from the set Vars. There may be
several labelled edges between a given pair of vertices, and the labels need not be distinct. Multiple edges between
vertices and self-loops permitted.

For brevity we may use the term graph to mean directed, labelled graph as above. All our graphs will be connected
(in the sense that the underlying undirected graph is connected) unless stated otherwise. Let G denote the class of
such graphs.

A morphism between graphs G = (V , E, s, f) and G′ = (V ′, E′, s′, f ′) is a pair of related functions: the vertex
function � assigning to each vertex in V a vertex in V ′ and the edge function (it will cause no confusion to write this
also as �) which assigns to each edge e ∈ E an edge �(e) such that
• the vertex function maps s to s′ and f to f ′,
• if e ∈ E is directed from a to b then �(e) ∈ E′ is directed from �(a) to �(b), and
• the label of �(e) is the label of e.

It is easy to see that a morphism is an isomorphism (i.e., has a two-sided inverse) if and only if its edge function is a
bijection. We write G�H to indicate that G and H are isomorphic.

If G = (V , E, s, f) is a graph, a subgraph is a graph of the form G′ = (V ′, E′, s, f) with V ′ ⊆ V and E′ ⊆ E.
Again, by convention, we assume G′ connected unless stated otherwise.

A pure graph is a structure G = (V , E, s, f) where V is a finite set of vertices, s ∈ V , f ∈ V and E is a multiset of
2-element multisets from V. So edges are unlabelled and undirected.

Let U denote the class of pure graphs. If G is a (directed, labelled) graph then there is a natural pure graph U(G)

derived from G by forgetting the labels and directions and the edges.
Let G be a graph. If v ∈ V (G), the graph G − {v} denotes the subgraph obtained from G by deleting the vertex

v and its incident edges. A vertex v is a cut-vertex if either G has a loop around v, or the pure graph U(G − {v}) is
disconnected; we sometimes say that v separates G. A cut vertex v is a critical vertex if either v is s or f (but not both),
or s and f lie in different components of the separated pure graph.

A walk in the graph G is a sequence of vertices v1, v2, . . . such that there is an edge from each vi to vi+1 in U(G).
A path is a walk where all the vertices, except possibly the first and last, are different; a trace is a path from s to f. A
graph is connected if there is a path between any two vertices.

Let x ∈ V(G). The subgraph generated by x is the subgraph determined by the set of vertices {y| there is a path
from xto y using neither s nor f as internal vertices}. We allow s and f as first or last vertices in such a path so as
to ensure that both s and f are in subgraphs generated by vertices. Two subgraphs of G are independent if they have
only the start and finish vertices in common.

Diagrams: Certain operations on graphs in G naturally correspond to the operations in �; we indicate those here.
When we draw our graphs we will indicate the start vertex by � and the finish vertex by �; if the start and finish

vertices are the same we will use
�.
Atoms: The graph with only one vertex which is at the same time the start and finish, and no edges, will be denoted

by 1.

1 :
�
The graph with edge labelled i from the start vertex to the (distinct) finish vertex is denoted 2i (or simply by i if no
confusion arises).

2i : � i−→ �.

To define, inductively, the remaining operations, let G1 = (V1, E1, s1, f1) and G2 = (V2, E2, s2, f2) be graphs in G
with V1 ∩ V2 = ∅.

D.J. Dougherty, C. Gutiérrez

Parallel composition: G1 ∩ G2 is the graph obtained by starting with vertex set V1 ∪ V2 and edge set E1 ∪ E2, then
identifying s1 and s2 (this is the new start), and identifying f1 and f2 (this is the new finish).

G1 ∩ G2 :

Sequential composition: G1; G2 (or just G1G2) is the graph obtained by starting with vertex set V1 ∪ V2 and edge
set E1 ∪ E2, then identifying f1 with s2, and defining the new start to be s1 and the new finish to be f2.

G1G2 :

Converse: G◦ is obtained from G by interchanging its start and finish. It is important to note that neither labels nor
direction of edges changes.

G◦ :

Domain: The graph dom G is obtained from G by the finish node to be the same as the start node of G, which stays
as the start node of dom G. It is important to note that neither the labels nor direction of edges changes.

dom G :

Definition 2. Let D denote the set of graphs generated by 1, the 2i , and the operations of sequential and parallel
composition, converse and domain. We call the elements of D diagrams.

Not every graph in G can be built using these operations: Theorem 31 characterizes the diagrams.
The set D carries a �-algebra structure via the operations defined above. Of course the set T� of first-order terms

comprises the free �-algebra over the set Vars. If we associate to the variable xi the graph 2i this extends naturally to
the homomorphism

D : T� −→ D,

and we speak of D(t) as being the diagram associated with the term t.

Examples 3. Here and below, we write lower case letters x, y, z, etc. to indicate variables, and will draw graphs
labelled with these letters.
• D(x(y ∩ z◦)):

• D(1 ∩ x(y ∩ z◦)):

• D(1 ∩ xx◦):

D.J. Dougherty, C. Gutiérrez

• D(dom x):

� x−→ ◦
Note the last two examples: the terms 1 ∩ xx◦ and dom x have the same interpretation in all representable algebras,
but their diagrams are different. This is important to the technical development below.

Definition 4. Let G and H be diagrams. Define G ⇀↽ H if and only if there are morphisms G −→ H and H −→ G.

The significance of the diagram representation is given in the following important theorem, from [1,16]. Recall that
R denotes the class of algebras isomorphic to subpositive set relation algebras.

Theorem 5 (Freyd-Scedrov, Andréka-Bredikhin). Let r, t be terms in the signature �. Then the equation r = t is valid
in R if and only if D(r) ⇀↽ D(t).

Proof. Whenever A is a subpositive set relation algebra with base set U and RU
1 , . . . , RU

n are relations over U, we may
define the graph GA,R̄ to have the set of vertices U and an edge (a, b) with label j for each (a, b) ∈ RU

j . Observe that
GA,R̄ is not necessarily in D.

Now an easy induction on terms shows that for each term t in T�(R1, . . . , Rn) and elements a, b ∈ U it holds

(a, b) ∈ tA[R̄] if and only if there is a graph morphism D(t) −→ GA,R̄ which takes s to a and f to b.
Thus, if there is a morphism from D(r) to D(t) then t ⊆ r is valid. This suffices to show one direction of the theorem.

The converse follows from the observation that any diagram is itself a set relation algebra in an obvious way. �

Corollary 6.
• ER is decidable.
• If an equation is valid, it has the same variables on the left- and right-hand sides.
• If an equation is not valid, it fails in a finite model.

The relationship between the term structure and the algebra D is not an isomorphism, even though we spoke of D
as being the graphs “generated” by the �-operations on graphs. The reason is that certain identifications are implicit
in the graph structure (for example, associativity of composition, or the equivalence of the terms 1 ∩ xx◦ and dom x).
Theorem 15 in Section 3 below clarifies this situation: D is the free algebra for a certain equational theory over �.

3. D as a free algebra

The algebra D of diagrams embodies certain equations in the sense that each graph in D can come from several
different terms. In this section we show that these identifications can be captured by a finite set of equations.

The basic set of equations that hold are those that express associativity for composition, associativity and commu-
tativity for ∩, and those governing ()◦. Certain other equations hold because diagrams with loops typically can be
“read” in several ways. We will show that, somewhat surprisingly, with the addition of the equations in the set E1 we
will have captured all of the identifications between terms induced by the passage to diagrams. As for the equations
that define dom, it turns out that dom can be completely characterized by the equations in Table 3.

We will see that these equations capture exactly the pairs of terms that are being identified when translated to
diagrams.

Definition 7. The theory ED is axiomatized by the set Es ∪ E1 ∪ Edom of equations given in Tables 1–3.

The reader is invited to check that for each equation in ED the left- and right-hand sides compile to the same diagram.
That is, each of these equations is valid in D. For example,

D.J. Dougherty, C. Gutiérrez

Table 1
The equations Es

(xy)z = x(yz) (1)

(x ∩ y) ∩ z = x ∩ (y ∩ z) (2)

x ∩ y = y ∩ x (3)

x◦◦ = x (4)

(x ∩ y)◦ = x◦ ∩ y◦ (5)

(xy)◦ = y◦x◦ (6)

Table 2
The equations E1

x1 = x (7)

1 ∩ 1 = 1 (8)

(1 ∩ x)(1 ∩ y) = 1 ∩ (x ∩ y) (9)

x ∩ y(1 ∩ z) = (x ∩ y)(1 ∩ z) (10)

1 ∩ (x ∩ y◦)z = 1 ∩ x(y ∩ z) (11)

Table 3
The equations for dom

dom 1 = 1 (12)

(dom x)◦ = dom x (13)

dom((dom x)y) = (dom x) ∩ (dom y) (14)

dom(x(dom y)) = dom(xy) (15)

dom((x ∩ y)z) = 1 ∩ x((dom z)y◦) (16)

x ∩ y dom z = (x ∩ y)dom z (17)

D.J. Dougherty, C. Gutiérrez

is the diagram for (1 ∩ x)(1 ∩ y) as well the diagram for (1 ∩ x ∩ y). See Eq. (9). Similarly,

represents both x ∩ y(1 ∩ z) and (x ∩ y)(1 ∩ z) (Eq. (10)). Finally,

captures Eq. (11), and the next captures Eq. (16):

These simple checks give the proof of the following lemma:

Lemma 8. (Es ∪ E1 ∪ Edom) is a sub-theory of the theory of subpositive relational algebras.

The main work of this section is to show that these equations capture all the identifications between terms induced
by D.

It might be thought that the equation x ∩ x = x should be part of the theory above. Certainly this is a valid equation,
indeed a fundamental part of our intuition about relations (as sets). But recall that we are here characterizing the
equations which yield isomorphisms between diagrams, not merely the validities.

The first step is to show that these equations allow us to impose a certain taxonomy on terms. The taxonomy is rather
complex, but we will see that it captures all terms, up to ED-equivalence, and will be useful in future reasoning.

Definition 9. The set of terms T̂ is the union of the following sets defined by mutual recursion:
• The set {1}.
• The set L of literals: L = {1} ∪ Vars ∪ {x◦ : x ∈ Vars}.
• Tp, the set of parallel terms: a term t ∈ Tp iff

t = t1 ∩ · · · ∩ tn

with n�2, and ti ∈ L ∪ Ts .
• Tdom, the set of domain terms: a term t ∈ Tdom iff

t = dom(ct ′)

where c ∈ L and t ′ ∈ T̂ .
• Td , the set of diagonal terms: a term t ∈ Td iff

t = 1 ∩ t1 ∩ · · · ∩ tn

for t1 ∈ L ∪ Ts and ti ∈ L ∪ Ts ∪ Tdom.
• Ts , the set of sequential terms: a term t ∈ Ts iff

t = t1 . . . tn

with n�2, and t1, tn ∈ L ∪ Tp and the terms ti (1 < i < n) in L ∪ Tp ∪ Td ∪ Tdom.

D.J. Dougherty, C. Gutiérrez

• Tdt , the set of terms of the form

td t

with td ∈ Td ∪ Tdom and t ∈ L ∪ Ts ∪ Tp.
• Ttd , the set of terms of the form

t td

with td ∈ Td ∪ Tdom and t ∈ L ∪ Ts ∪ Tp.
• Tdtd , the set of terms of the form

t1t t2

with t1, t2 ∈ Td ∪ Tdom and t ∈ L ∪ Ts ∪ Tp.

We wish to show that any term is equivalent modulo ED to a term in T̂ . To do this it is useful to introduce a notion of
rewriting on terms.

3.1. Rewriting for ED

Roughly speaking, we will orient the equations of ED from left to right and rewrite terms under this reduction. In the
proof of the taxonomy result Proposition 14 it will be convenient to be able to focus on the terms which are irreducible
under this notion of reduction.

We must do a little more than simply orient the equations in ED, because of the symmetries inherent in the system.
We need to account for the commutativity of ∩, certainly, and also for the fact that certain derivable equalities involving
composition must be made explicit in the rewriting context.

Lemma 10. The following equations are derivable in ED
1x = x,

1 = 1◦,
1 ∩ x◦ = 1 ∩ x,

1 ∩ z(x ∩ y◦) = 1 ∩ (y ∩ z)x,

x ∩ (1 ∩ z)y = (1 ∩ z)(x ∩ y),

x ∩ (dom z)y = (dom z)(x ∩ y).

Proof. The fact that 1x = x holds is as follows: (1x) = (1x)◦◦ = (x◦1◦)◦ = (x◦)◦ = x.

The second equation follows from a similar trick: write x ∩ (1 ∩ z)y as (x ∩ ((1 ∩ z)y))◦◦ and use Eq. (10).
For the third,

1 = (1◦)◦ = (11◦)◦ = 1◦◦1◦ = 11◦ = 1◦.

For the fourth,

1 ∩ x = 1 ∩ (x ∩ 1) = 1 ∩ 1(x ∩ 1) = 1 ∩ (1 ∩ x◦)1 = 1 ∩ (1 ∩ x◦) = 1 ∩ x◦.

The fifth is proved as follows:

1 ∩ z(x ∩ y◦) = 1 ∩ (z(x ∩ y◦))◦ = 1 ∩ (x◦ ∩ y)z◦ = 1 ∩ x◦(y◦ ∩ z◦) = 1 ∩ (z ∩ y)x.

Finally for the last, use the second equation plus the fact that dom x = 1 ∩ dom x which follows from Eq. (16). �

Definition 11. Consider the rewrite system obtained from ED as follows:
(1) Orient each equation in ED from left to right, with the exception of (3) and (11);

D.J. Dougherty, C. Gutiérrez

(2) then add the rules
• 1x −→ x,
• 1 ∩ dom x −→ dom x,
• x ∩ (1 ∩ z)y −→ (1 ∩ z)(x ∩ y), and
• x ∩ (dom z)y −→ (dom z)(x ∩ y);

(3) finally, for each rule involving ∩, add the obvious corresponding rules which arise due to the commutativity of ∩.
Say that a term is ED-irreducible if it is irreducible in this system.

As an example of the rules added by the third construction above, the rule (1∩x◦)→(1∩x) gives rise to the additional
rule (x◦ ∩ 1)→(x ∩ 1). Similarly the rule x ∩ (dom z)y −→ (dom z)(x ∩y) induces (dom z)y ∩x −→ (dom z)(y ∩x).

It is clear why we omit Eq. (3) in forming reduction rules since it would obviously induce a non-terminating reduction.
Eq. (11) is more subtle: its corresponding reduction is omitted here simply because it would cause a problem with the
proof technique and because we do not need it for Proposition 14.

Lemma 12. The reduction system is terminating, that is, there are no infinite reduction sequences out of any terms.

Proof. It suffices to exhibit a lexicographic path ordering [13,25] under which each rewrite rule is decreasing. We use
the following order on the symbols of �:

◦ � dom � ∩ � ;
and use left-to-right priority in comparing subterms lexicographically. It is a straightforward verification that for each
rule l→r from Definition 11 the term l is greater than the term r.

Corollary 13. Any term is ED-equivalent to an ED-irreducible one.

Proof. By Lemmas 10 and 12. �

Proposition 14 (Standard forms for terms). If t is ED-irreducible then t is in T̂ .

Proof. We will prove by induction on the length of t that the only irreducible terms are those in T̂ . Let t be given,
t �= 1, t /∈ L. Modulo the associativity of intersection and composition, we may consider t to be in one the forms:

t = t1 ∩ · · · ∩ tn (n�2) no ti is an intersection

or

t = t1 · · · tn (n�2) no ti is a composition

or

t = dom(t ′).

Consider the first case. Suppose first that no ti is 1; we claim that in fact t ∈ Tp. For this we must show that each ti

is either in L or Ts . By the induction hypothesis each ti is in T̂ ; we have assumed that none is 1, or is an intersection,
so it remains only to show that no ti is in Tdt , Ttd , or Tdtd . If, say, some ti were in Tdt then t would be of the form
u ∩ (1 ∩ r)v. But this term is not irreducible, a contradiction. The cases of some ti in Ttd or Tdtd are similar.

Next suppose that some t = t1 ∩· · ·∩ tn and some ti is 1. Then since t is irreducible exactly one of the ti is 1. Without
loss of generality, then, t is 1 ∩ t2 ∩ · · · ∩ tn. We may use the same reasoning as in the previous paragraph to conclude
that each ti , i�2 is in L ∪ Ts ∪ Tdom, so that t itself is in Td .

Now consider the case t = t1, . . . , tn. In particular, no ti is in Ts ∪ Tdt ∪ Ttd ∪ Tdtd , and clearly no ti is 1. If neither
t1 nor tn is in Td then we are done: t is in Ts . So suppose for example that t1 ∈ Td , but tn /∈ Td ; we will show that t
is in Tdt (the other two possibilities are argued similarly). We have t = (1 ∩ u)t2 · · · tn, (n�2) and we wish to show

D.J. Dougherty, C. Gutiérrez

that w = t2 · · · tn is in L ∩ Ts ∪ Tp. By induction, w is in T̂ ; we need to exclude the possibilities that w = 1, w ∈ Td ,
w ∈ Tdt , w ∈ Ttd , or w ∈ Tdtd . The first is impossible by irreducibility, the last two are impossible since we assumed
tn /∈ Td . And if w were in Td or Tdt then t1 and t2 would have been of the form (1 ∩ x1) and (1 ∩ x2), respectively. But
(1 ∩ x1)(1 ∩ x2) is reducible, a contradiction.

Finally, consider the case t = dom t ′. Because t is irreducible, clearly t ′ �= 1. Now assume t ′ = t1 · · · tn. If t1 /∈ L,
then t1 is parallel or a domain. In both cases t can be reduced using the rules coming from Eqs. (16) or (14), contradiction.
Now assume t ′ = t1 ∩ · · · ∩ tn. Using Eq. (14) with z = 1 it can be shown that t could be reduced, contradiction. If
t ′ = dom(t ′′), using Eq. (16) it can be shown than t was not irreducible, contradiction. �

Theorem 15. D is the free algebra over the set of labels for the set of equations ED. Indeed, for any terms r and t,
D(r) and D(t) are isomorphic if and only if ED � r = t.

Proof. It is straightforward to verify that each of the equations in ED is valid in D in the sense that for each equation
the two sides compile to the same graph.

For the other direction we consider terms r and t such that D(r) and D(t) are isomorphic and we show that ED � r = t.

Since any term is ED-equivalent to any of its irreducible forms, we may suppose without loss of generality that r and
t are both irreducible. The proof is by induction on the structure of t.

If t = 1 or t ∈ L then it is clear that no other irreducible term compiles to the same graph; in other words r and t are
the same term.

If t is a domain, then t = dom(ct ′) (recall that t is irreducible). Clearly r must be of the form r = dom(cr ′). Use
induction hypothesis over t ′ and r ′.

Suppose t ∈ Ts , say t = t1, . . . , tn, (n�2). It is clear that r is of the form r1, . . . , rn, with D(t1)�D(ri) for each i.
By induction, for each i we have ED � ri = ti , so that ED � r = t .

Very similar arguments apply to the cases when t ∈ Tdt , t ∈ Ttd , and t ∈ Tdtd .
Suppose t ∈ Tp say t = t1∩· · ·∩tn, (n�2). Then r is of the form r1∩· · ·∩rn′ , (n′ �1). If any of the ti or rj are literals

then by irreducibility each occurs exactly once in t and in r. Isolating these literals, write t = t1 ∩ · · · ∩ tk ∩ l1 ∩ · · · ∩ lp
and r = r1 ∩ · · · ∩ rk′ ∩ l1 ∩ · · · ∩ lp (k, k′ �0). Letting t∗ = t1 ∩ · · · ∩ tk and r∗ = r1 ∩ · · · ∩ rk′ , it suffices to show
that ED � t∗ = r∗. We know that D(t∗)�D(r∗). Any isomorphism must map traces to traces and so in fact k = k′ and
there is a permutation � of indices such that ti�r�(i) (1� i�k). By induction ED � ti = r�(i) (1� i�k) and the result
follows.

Finally suppose t ∈ Td . Certainly r must be in Td as well. Furthermore, by removing the simple loops similarly as
in the previous case we may restrict attention to the case t = 1 ∩ t1 ∩ · · · ∩ tn, r = 1 ∩ r1 ∩ · · · ∩ r ′

n, (n, n′ �1) with
each ti and rj in Ts ∪ Tdom. The isomorphism between D(t) and D(r) enables us to conclude n = n′ and that there is
a permutation � of indices with D(1 ∩ ti)�D(1 ∩ r�(i)), (1� i�n). By Eq. (9) it suffices to conclude from this that,
for each i, ED � 1 ∩ ti = 1 ∩ r�(i).

If ti ∈ Tdom, then D(1 ∩ ti) = D(ti), and similarly for ri , so apply induction hypothesis.
So assume that ti ∈ Ts , i.e. ti = t ′1, . . . , t ′n′ with n′ �2, and t ′1, t ′n′ ∈ L ∪ Tp. If t ′1 = a and t ′

n′ = b are in L; it must be

the case that r�(i) = ar ′b or r�(i) = b◦r ′′a◦ for some r ′, r ′′. Then use Eq. (3.1). It remains to analyze the cases when
t ′1 or t ′n are in Tp. There are two cases:
• ti = (u1 ∩ u2)z,
• ti = w(v1 ∩ v2).
Eq. (11) and its symmetric counterpart deal precisely with these symmetries. This concludes the proof. �

4. Diagrams are characterized by omitting minors

In this section we characterize the graphs which are diagrams, that is, those graphs which arise as D(t) for some
term t. A moment’s thought makes it clear that changing the directions of the edges of a directed graph, or the labels,
cannot affect whether it is a diagram. So in this section we are led to focus on the underlying pure graph structure of a
directed graph.

The (undirected) pure graphs Diamond and Diamond ring are two important examples of pure graphs. The former
graph is well-known in circuit theory.

D.J. Dougherty, C. Gutiérrez

Diamond

Diamond ring

An elementary contraction of the pure graph P is a pure graph obtained from P by
(1) removing two adjacent vertices u, v and all edges between them and adding a new vertex w, and
(2) for each edge between u and v with label e, adding one edge between w and w with label e; for each edge between

z and u (z �= v) with label e, add an edge between z and w with label e; for each edge between z and v (z �= u)
with label e, add an edge between z and w with label e;

(3) if either u or v is the start (resp., the finish) vertex of P then w becomes the start (resp., finish) of the new graph.
The graph H is a contraction of P if it is obtained from P by a sequence of elementary contractions. The graph H is a
minor of P if H is a subgraph of a contraction of P.

A graph P omits graph H if H is not a minor of P.
The main result of this section, Theorem 31, is that a graph G is a diagram if and only if U(G) omits both diamond

and diamond ring. Observe that it is not obvious that the class of diagrams is even closed under subgraph.

Remark 16. Here we can see why the operator dom was added to our signature, even though it is definable (up to the
relation ⇀↽). Consider the graph

� x−→ ◦

which is the diagram for dom x. Comparing this graph with the graph for (1 ∩ xx◦) we see that they are related by ⇀↽,
reflecting the fact that semantically dom x is equal to (1 ∩ xx◦). But although the above graph certainly omits both
diamond and diamond ring it is not the diagram of any term over the “standard” relational algebra signature.

It is remarkable that such a slight alteration of the relational algebra signature suffices to yield the omitting minors
theorem. One may view this as an argument for the naturalness of the domain of a relation as a primitive concept.

Lemma 17. Let H be a minor of P. If there exists a diagram D with P = U(D) then there exists a diagram D′ with
H = U(D′).

Proof. It suffices to prove this when H obtained from P by an elementary contraction. The argument is an easy
induction over the structure of the diagram D(t) whose underlying graph is P. �

Proposition 18. Let P = U(D) for some diagram D. Then P has neither diamond nor diamond ring as minor.

Proof. As a consequence of Lemma 17, in order to show that no such graph contains diamond or diamond ring as a
minor, it suffices to show that no such graph contains diamond or diamond ring as a subgraph.

By an induction over terms t one can show simultaneously that U(D(t)) does not contain diamond or diamond ring
as subgraph. �

The converse is of course harder to prove. The essence of the proof is to show that when P omits diamond and
diamond ring then P admits a decomposition into parallel and sequential components.

D.J. Dougherty, C. Gutiérrez

4.1. Decomposing and unfolding graphs

Definition 19. Let P be a pure graph and let u and v be vertices in P. Define u ∼ v if there exists a path between u

and v not involving s or f.

It is clear that ∼ is an equivalence relation. An equivalence class of the ∼-relation over P will not contain s nor f,
but these classes determine subgraphs of P once s and f are included, as follows.

Definition 20. Let P be a pure graph, let X be a set of vertices of P, and let x0, x1 be elements of X. This data generates
a pure graph with vertices X, whose edges are the edges in P between vertices from X, with start vertex x0 and finish
vertex x1. We denote this graph by 〈X, x0, x1〉P .

Definition 21 (parallel branches). Let P be a graph with s �= f . A parallel branch of P is either
• a subgraph 2a of P, or
• a graph 〈X ∪ {s, f }, s, f 〉P when X is a ∼-equivalence class of P.

Lemma 22. Suppose that neither s nor f separates P. Let P1, . . . , Pk be all the parallel branches of P. If k�2 then
P = P1 ∩ · · · ∩ Pk .

Proof. From the hypothesis, it follows that every edge of P either connects s and f or is incident upon some vertex
not equal to s or f. Therefore, each edge lies in some parallel branch. It follows that the collection of graphs Pi comprises
the vertices and edges of P, and that they have only s and/or f in common. The result will follow once we show that
each of the components is connected.

Consider some Pi = 〈X ∪ {s, f }, s, f 〉P , in the non-trivial case, when X �= ∅. It suffices to show that each of s
and f are adjacent to a vertex in X. Suppose s is not. Then since X is a connected component of P − {s, f }, it is in
fact a connected component of P − {f }, which means that f disconnects the original graph P, a contradiction. By a
similar argument, f must be adjacent to a vertex in X. �

The next notion is a “sequential” analogue of parallel branches.

Definition 23. Let w be a critical vertex of P. Then each of the connected components of P −{w} gives rise to a graph
as follows:
• Let Xs be the component of P − {w} containing s. Then 〈Xs ∪ {w}, s, w〉P is denoted P w

s .
• Let Xf be the component of P − {w} containing f. Then 〈Xf ∪ {w}, w, f 〉

P
is denoted P w

f .

• Let X1, . . . , Xk be the components of P − {w} containing neither s nor f; and if there are loops on vertex w then let
X0 be ∅. Then for each such Xi , the graph 〈Xi ∪ {w}, w, w〉P is denoted P w

i .

Lemma 24. Let w be a critical vertex of g. Then P = (P w
s)(P w

1) · · · (P w
k)(P w

f).

Proof. As in Lemma 22 the work to be done is to show that each of the indicated graphs is connected. It is clear that
each of the P w

i is connected since their underlying vertex sets are connected components of a graph. We need to check

that P w
s and P w

f are connected. To see that P w
s is connected, for example, it suffices to see that w is adjacent to some

vertex in Xs , which is the component of P − {w} containing s. But since w is in the field of ≺ there is a path from s to
w. The argument for P w

f is similar. �

In many ways the graphs with s �= f are better-behaved than those with s = f . For graphs P of the latter type it will
be convenient to identify a certain graph h such that P can be obtained as 1 ∩ h. In order to do this in a well-defined
way it will be useful to assume that the set of vertices over which our graphs are defined is well-ordered.

Definition 25. Assume a well-ordering of the set of all graph-vertices. Let P be a non-trivial graph satisfying s = f .
We define the graph unfold(P) as follows:
(1) If P is a domain graph, then P = dom(aP ′). Define unfold(()P) as adom(P ′)a◦.

D.J. Dougherty, C. Gutiérrez

(2) Assume P as 1 ∩ P1 ∩ · · · ∩ Pm, where no Pi can be so decomposed; the definition is by induction on m.
• If m�2 then unfold(P) = unfold(P1) ∩ · · · ∩ unfold(Pm).
• If m = 1 then let v1, . . . , vn be the set of vertices not equal to s but adjacent to s in P, taken in order. If n = 0 then

P must consist of a simple loop, and we define unfold(P) to be the pure graph with edges e1, . . . , ek between
the two vertices s and f.
Otherwise unfold(P) is obtained as follows. Add a new vertex, make it the new f (leave the old s) and redirect
the edge between s and vn in P to go between the new f and vn.

It is not difficult to see that P�1 ∩ unfold(P).

Proposition 26. Let P satisfy s = f . If P omits diamond and diamond ring then unfold(P) omits diamond and
diamond ring.

Proof. If P = dom(aP ′), it omits diamond ring if and only if P ′ does. Apply induction on the size of the graph.
Now, assume P is diagonal. Let H = unfold(P). Letting x be the vertex vn in the description of the unfolding

procedure, we note that in H the (new) finish vertex is adjacent only to x.
Certainly, if diamond ring is a minor of H then it is a minor of P. To see that this holds of diamond as well, suppose

for sake of contradiction that diamond is a minor of H. This means that in fact diamond must be a minor of the diagram
obtained from H by the elementary contraction which collapses the finish vertex to x. In particular, this means that
diamond is a minor of the original diagram P—more precisely, a graph with the same shape as diamond but with
x in place of f is a minor of P. But now, since there are edges between x and s in P, if we perform the elementary
contraction collapsing x and s(= f) in P we can see that diamond ring is a minor in P, a contradiction. �

Caution. It is not the case that “P = 1 ∩ H and P omits diamond ring implies that H omits diamond.” Just take
diamond itself as H—then 1 ∩ H will omit diamond ring. This is one reason for the care in defining the unfolding
relation.

4.2. Coherence

Here we establish some fundamental facts about the order ≺ (defined in Section 2). In this section all graphs P
have s �= f .

When u and v are distinct vertices of P define u ≺ v if there is a trace in P containing u and v with u preceding v.
Not all vertices belong to traces in general, so we define the field of ≺ to be {u|u belongs to a trace}. Then define

u � v if either u ≺ v or u = v and u is in the field of ≺.
The relation ≺ is not in general, a partial order: besides the fact that u � u can fail, there are graphs with distinct

vertices u and v such that u ≺ v ≺ u (the graph diamond is an example).
Say that a graph P is coherent if it is connected and if there do not exist u and v with u ≺ v and v ≺ u.

Lemma 27. A connected graph P omits diamond if and only if P is coherent.

Proof. It is easy to see that if diamond is a minor of P, then P is not coherent. For the converse, suppose P is not
coherent. Then for u, v we have traces s . . . u . . . v . . . f and s . . . v . . . u . . . f . Note that u �= v and either u or v can
be s or f. Using the four vertices s, u, v, f and the paths among them given by the traces, it is easy to see that diamond
is in fact a subgraph of a contraction of P. �

Lemma 28. Suppose P is coherent. Then � is a lattice order on its field.

Proof. First let us establish that � defines a partial order in V (P). For every vertex v � v holds by hypothesis—every
vertex is incident to an edge because P is connected. For transitivity suppose that v � u and u �w. Then there are
traces s . . . v . . . u . . . f and s . . . u . . . w . . . f (where . . . indicates a path). Consider the walk s . . . v . . . u . . . w . . . f

obtained by concatenating the corresponding parts of the paths in the traces shown. We claim that this walk is a path,
i.e., it has no repeated vertices. Suppose not; then some vertex z must occur twice in it, but because s . . . v . . . u and
u . . . w . . . f are paths, it must occur once in s . . . v . . . u and once in u . . . w . . . f , which is not possible because then

D.J. Dougherty, C. Gutiérrez

u ≺ z and z ≺ u. Hence v �w. As for antisymmetry, it follows immediately from the hypothesis: the only possibility
for v � u and u � v is that v = u.

To see that � is indeed a lattice order, first note the presence of s and f ensure that lower bounds and upper bounds
exist. It remains to show the existence of greatest lower bounds and least upper bounds. For the former, suppose we have
two vertices u and v and w1, w2 with each wi � u, v and each wi maximal with respect to this property. Suppose w1 �=
w2. Then consider the four traces s . . . w1 . . . u . . . f , s . . . w1 . . . v . . . f , s . . . w2 . . . u . . . f and s . . . w2 . . . v . . . f and
check that from them you can deduce u ≺ v and v ≺ u, which is a contradiction. Hence w1 = w2 and it is the greatest
lower bound. The argument for least upper bounds is analogous. �

We let u∧v and u∨v denote, respectively, the greatest lower bound and least upper bound of u and v. When we use
this notation we are implicitly assuming that u and v are in the field of ≺.

Lemma 29. Suppose P is coherent. If u and v satisfy u∧v = s and u∨v = f then u and v are in different parallel
branches.

Proof. Suppose for sake of contradiction that there exists a path � : u � v containing neither s nor f. We claim that in
this case we have u ≺ v and v ≺ u, contradicting coherence. By symmetry it suffices to argue u ≺ v. Consider the
paths

�1 : s � u; �2 : u � f ; �1 : s � v; �2 : v � f,

where �1�2 and �1�2 each are traces.
For this it suffices to show that �1��2 is a trace. Suppose there were a vertex x in both �1 and �. Then if we choose x

to be ≺-minimal, then x ≺ v by virtue of the trace formed by portion of �1 up to x, followed by the rest of �, followed
by �2 (this is a trace by the minimality of x). Certainly x ≺ u, so we conclude that x is a lower bound for u and v. But
x cannot be s since it is from �. This contradicts u∨v = s. A completely symmetric argument shows that � ∩ �2 = ∅.
To see that �1 ∩ �2 = ∅, suppose for sake of contradiction that x is a vertex on each of these paths. This would imply
v ≺ x and x ≺ u and thus v ≺ u contradicting coherence. �

Lemma 30. Suppose P is coherent. Let u, v, and w satisfy u∧v = s and u∨v = w ≺ f . Then any trace through u or
v includes w.

Proof. For sake of contradiction let � be a trace through v which misses w. A contradiction to coherence will be
established if we verify that w ≺ v, since v ≺ w is given. There are paths

�1 : s � u; �2 : u � w; �1 : s � v; �2 : v � w,

where �1�2 and �1�2 each are paths.
Let y be ≺-maximal among the vertices common to �2 and �, define �′

2 to be that part of (the converse of) �2 from
w to y and define �2 to be the final segment of � originating with y. It suffices to see that �1�2�

′
2�2 is a trace.

Certainly �1 ∩ �2 = ∅. Also, �1 ∩ �′
2�2 = ∅ since if there were an x in common to these, we would have v ≺

x and x ≺ u. We know that �2 ∩ �2�2 = ∅ since if x were in common to these, it would be a smaller upper bound for
u and v. Finally, �1 ∩ �′

2 = ∅ by construction. �

4.3. The omitting-minors theorem

Theorem 31. Let G ∈ G and let P = U(G). Then G is a diagram if and only if P omits both diamond and diamond
ring.

Proof. The “only if” half of this is precisely Proposition 18, repeated here for emphasis.
The proof of the other direction is by induction on the number of vertices other than s and f in G. If this number is 0

then G is either a single point, perhaps with some loops, or consists of two points with some edges between them; in
either case the result is clear.

D.J. Dougherty, C. Gutiérrez

For the induction step we first identify two cases: s �= f and s = f . We analyze the first case in detail and reduce
the second case to the first.

When s �= f : Consider the situation when vertex s separates the graph. Let Cf be the connected component of P −{s}
containing f and let S0 be the union of the other connected components of P −{s}. Then P = (〈S0, s, s〉P)(〈Cf , , s〉

f
P),

the induction hypothesis applies to each of the indicated components, and we are done.
If s does not separate the graph but f does then the analysis is similar.
So suppose neither s nor f separates P, and let P have parallel branches P1, . . . Pk; first suppose that k�2: P =

P1 ∩ · · · ∩ Pk by Lemma 22. For each Pi which is not a simple loop on s or on f the induction hypothesis applies, and
such a subgraph is a diagram. The remaining simple loops are of course diagrams, so P is.

We are left with the situation where there is a single parallel branch. Let v1, . . . vn be the vertices other than f which
are adjacent to s (k�1). Claim: each vi is in the field of ≺. Otherwise, if some vi were not, then all paths between f and
vi would involve s which means that s separates vi from f, contrary to our assumption. By Lemma 29 the least upper
bound w of the vi is not f, and by Lemma 30 the vertex w is a critical vertex.

We now apply Lemma 24 and the induction hypothesis. This completes the argument in the case that s �= f .
When s = f : Consider the graph unfold(P). Since P omits diamond ring, unfold(P) omits diamond. This graph

has the same nodes other than s and f, and so the argument above applies, and any labelling of unfold(P) is a diagram.
Since P = 1 ∩ unfold(P), any labelling of P is a diagram. �

The following corollary is crucial to the soundness of the notion of reduction defined in Section 5.

Corollary 32. If G is in D and G′ is a connected subgraph of G containing s and f then G′ is in D. We may refer to
G′ as a subdiagram of G.

If � : G→H is a morphism of diagrams then the restriction of � to a subdiagram of G is a morphism of diagrams,
the image �[G] of � is a diagram, and the inclusion of �[G] into H is a diagram morphism.

Proof. The fact that G′ is a diagram follows from the fact that U(G′) omits diamond and diamond ring, since U(G)

does. In the same way, �[G] is a diagram; the other assertions concerning diagram-morphisms are immediate. �

It is worth observing that the class of diagrams is not closed under homomorphic images. Consider the following
diagram (the labels do not matter).

The graph homomorphism which collapses a and a′ results in a graph G whose underlying pure graph U(G) is diamond.

5. Normalization for diagrams

In this section we define a notion of reduction on diagrams and prove that for each diagram we can compute a unique
normal form. The techniques were introduced in [17] in a more general setting; to keep this paper self-contained we
present the development specialized to our setting.

In this section, it will be convenient to refer to a diagram-morphism as being “injective” when its edge-function is
injective, and similar for “surjective”.

Recall the notation: G ⇀↽ H if and only if there are morphisms G −→ H and H −→ G. Theorem 5 highlighted the
significance of this notion.

Clearly ⇀↽ is an equivalence relation. Our goal is to prove that each diagram has a computable canonical ⇀↽-
representative.

Definition 33. Given diagrams G and H, define the relation �⇒ by: G �⇒ H if and only if there is a surjective �

which is not an isomorphism and an injective 	 such that G
�−→ H

	−→ G.

D.J. Dougherty, C. Gutiérrez

We denote the reflexive-transitive closure of �⇒ by
∗�⇒ , where reflexivity is defined up to isomorphism. Thus,

G
∗�⇒ H means either G�H or there is a finite sequence G �⇒ c1 �⇒ · · · �⇒ cn �⇒ H .

Corollary 32 plays a role here ensuring that subdiagrams of diagrams are diagrams themselves. So when G is a
diagram any image of G under �⇒ is guaranteed to be a diagram.

It is clear that G
∗⇐⇒ H implies that G ⇀↽ H . The main result of this section is a strong converse.

Note that there are no infinite �⇒-reductions out of any a.

Theorem 34 (confluence for ⇀↽). If G ⇀↽ H , then there exists K such that G
∗�⇒ K

∗⇐� H .

Proof. The proof is by noetherian induction over the multiset extension of �⇒. We are given G
�−→ H

−→ G. If
both � and
 are injective then G and H are isomorphic and we may take K to be G. Otherwise, by symmetry we may

suppose � is not injective without loss of generality. Factor the morphism
 ◦ � as G
�−→→ X

	
↪→ G with � surjective

and 	 injective. Now, � is not injective, otherwise
 ◦ � would be, contradicting the assumption that � is not injective.
In particular � is not an isomorphism, and so G �⇒ X. Since X ⇀↽ H we may apply the induction hypothesis to
{X, H }, obtaining K with G �⇒ X

∗�⇒ K
∗⇐� H as desired. �

Thus, the relation �⇒ is a terminating and confluent abstract reduction system capturing the equivalence
relation ⇀↽:

Theorem 35 (normal forms for diagrams). If G ⇀↽ H in D then there is a K, unique up to isomorphism, such that
G �⇒ K and H �⇒ K and K is �⇒-irreducible.

For each graph G, there is a graph nf(G) such that nf(G) is �⇒-irreducible and such that for any H, G ⇀↽ H in D
if and only if nf(G)�nf(H). The graph nf(G) is unique up to isomorphism. The graph nf(G) is effectively computable
from G.

Proof.
(1) Since there are no infinite �⇒-reductions, we may let G′ and H ′ be any �⇒-irreducible objects such that G

∗�⇒ G′
and H

∗�⇒ H ′, respectively. Then G′ ⇀↽ H ′. But Proposition 34 and the irreducibility of G′ and H ′ imply that G′
and H ′ are isomorphic. We may take K to be G′.

(2) By the previous part, taking H to be G. The fact that nf(G) is effectively computable is a consequence of the fact
that the reduction �⇒ itself is computable and that each application of �⇒ reduces the number of vertices in the
graph. �

5.1. Application to ER

The reduction �⇒ induces a rewriting relation on terms, as follows.

t
D−→ u if D(t) �⇒ D(u).

Theorem 36 (normal forms for terms). Given term t we can effectively compute a term nf(t) such that t
D
� nf(t) and

nf(t) is irreducible under
D−→ . Furthermore, for any term u, it holds t = u in R if and only if D(nf(t)) is isomorphic

to D(nf(u))

Proof. In light of Theorem 35, we may take t0 to be any term such that D(t0) is the normal form of D(t)

under �⇒. �

In the language of term-rewriting this result can be viewed as establishing the existence of unique normal forms for
the theory ER modulo the theory ED. The novelty of course is that the normal forms are graphs rather than terms, and
so the notion of “modulo ED” is not based on equational provability but rather on the identity of diagram-forms for
terms.

D.J. Dougherty, C. Gutiérrez

The normal form result gives another perspective on the known decidability result for the theory ER. Furthermore,
the relation �⇒ can be said to constitute a computational interpretation of ER.

6. Conclusion

We have explored in some depth the technique of working with diagrams, graphical representations of relation-
algebra terms. A given diagram can represent many terms, inducing an equivalence relation on terms; we have given
a set of equations which characterizes this relation, so that the set of diagrams can be seen as a free algebra. We have
characterized the set of graphs which arise as diagrams of terms by an omitting-minors theorem.

We examined the equational theory ER of representable binary relations; we defined a notion of reduction of a
diagram which yields a computational interpretation of this theory. The notion of reduction of diagrams is terminating
and confluent, so we may compute unique normal forms for a term modulo the theory ED.

Acknowledgments

The authors are grateful to Jim Lipton for several illuminating discussions and to Roger Maddux for technical advice
and encouragement. The diagrams were built using the XY-pic package from Kris Rose and Ross Moore.

References

[1] H. Andréka, D. Bredikhin, The equational theory of union-free algebras of relations, Algebra Universalis 33 (1995) 516–532.
[2] R.C. Backhouse, P.F. Hoogendijk, Elements of a relational theory of datatypes, in: B. Möller, H. Partsch, S. Schuman (Eds.), Formal Program

Development, Lecture Notes in Computer Science, Vol. 755, Springer, Berlin, 1993, pp. 7–42.
[3] J. Barwise, G. Allwein (Eds.), Logical Reasoning with Diagrams, Oxford University Press, Oxford, 1996.
[4] R. Bird, O. de Moor, Algebra of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1997.
[5] D.A. Bredikhin, The equational theory of relation algebras with positive operations, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1993) 23–30

(in Russian).
[6] C. Brink, W. Kahl, G. Schmidt (Eds.), Relational Methods in Computer Science, Advances in Computing, Springer, Wien, New York, 1997,

ISBN 3-211-82971-7.
[7] P. Broome, J. Lipton, Combinatory logic programming: computing in relation calculi, in: M. Bruynooghe (Ed.), Logic Programming, MIT

Press, Cambridge, MA, 1994.
[8] C. Brown, G. Hutton, Categories, allegories and circuit design, in: Logic in Computer Science, IEEE Computer Society Press, Silver Spring,

MD, 1994, pp. 372–381.
[9] T. Brylawski, Series–parallel networks, Trans. Amer. Math. Soc. 154 (1971) 1–22.

[10] S. Curtis, G. Lowe, Proofs with graphs, Sci. Comput. Programming 26 (1996) 197–216.
[11] J.W. De Bakker, W.P. De Roever, A calculus for recursive program schemes, in: M. Nivat (Ed.), Automata, Languages and Programming,

North-Holland, Amsterdam, 1973, pp. 167–196.
[12] A. De Morgan, On the syllogism no. IV, and on the logic of relations, Trans. Cambridge Philos. Soc. 10 (1860) 331–358.
[13] N. Dershowitz, Orderings for term-rewriting systems, Theoret. Comput. Sci. 17 (3) (1982) 279–301.
[14] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85–92.
[15] R.J. Duffin, Topology of series–parallel networks, J. Math. Anal. Appl. 10 (1965) 303–318.
[16] P. Freyd, A. Scedrov, Categories and Allegories, North-Holland Mathematical Library, Vol. 39, North-Holland, Amsterdam, 1990.
[17] C. Gutiérrez, Normal forms for connectedness in categories, Ann. Pure Appl. Logic 108 (1–3) (2001) 237–247 (Special issue devoted to the

XI Simposio Latinoamericano de Logica Matematica, Venezuela, July 1998).
[18] M. Haiman, Linear lattice proof theory: an overview, Universal Algebra and Lattice Theory, Lecture Notes in Mathematics, Vol. 1149, Springer,

Berlin, 1985, pp. 129–141.
[19] M. Haiman, Proof theory for linear lattices, Adv. Math. 58 (3) (1985) 209–242.
[20] M. Haiman, Arguesian lattices which are not linear, Bull. Amer. Math. Soc. 16 (1987) 121–123.
[21] C.A.R. Hoare, An axiomatic basis for computer programming, CACM 12 (10) (1969) 576–583.
[22] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. Assoc. Comput. Mach. 27 (4) (1980) 797–821.
[23] G. Hutton, E. Meijer, E. Voermans, A tool for relational programmers, Distributed on the mathematics of programming electronic mailing list,

January 1994, 〈http://www.cs.nott.ac.uk/∼gmh/allegories.gs〉.
[24] W. Kahl, Relational matching for graphical calculi of relations, J. Inform. Sci. 119 (3–4) (1999) 253–273.
[25] S. Kamin, J.-J. Lévy, Two generalizations of the recursive path ordering, Unpublished note, Department of Computer Science, University of

Illinois, Urbana, IL, February 1980.
[26] J. Lipton, E. Chapman, Some notes on logic programming with a relational machine, in: A. Jaoua, P. Kempf, G. Schmidt (Eds.), Relational

Methods in Computer Science, Technical Report Nr. 1998-03, Fakultät für Informatik, Universität der Bundeswehr München, July 1998,
pp. 1–34.

http://www.cs.nott.ac.uk/gmh/allegories.gs

D.J. Dougherty, C. Gutiérrez

[27] R. Maddux, The origins of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica (50) (1991)
421–455.

[28] R. Maddux, Relation-algebraic semantics, Theoret. Comput. Sci. 160 (1996) 1–85.
[29] J. Oxley, Graphs and series–parallel networks, in: N. White (Ed.), Theory of Matroids, Cambridge, 1986 (Chapter 6).
[30] C.S. Peirce, Collected Papers, Harvard University Press, Cambridge, MA, 1933.
[31] V. Pratt, Origins of the Calculus of Binary Relations, IEEE Computer Society Press, Silver Spring, MD, 1992 pp. 248–254.
[32] J.G. Sanderson, A Relational Theory of Computing, Lecture Notes in Computer Science, Vol. 82, Springer, Berlin, 1980.
[33] G.W. Schmidt, T. Ströhlein, Relations and Graphs: Discrete Mathematics for Computer Scientists, in: EATCS Monographs on Theoretical

Computer Science, Springer, Berlin, 1993.
[34] E. Schröder, Vorlesungen über der Algebra der Logik, Vol. 3, “Algebra und Logik der Relative”, Teubner, Stuttgart, 1895.
[35] A. Tarski, On the calculus of relations, J. Symbolic Logic 6 (3) (1941) 73–89.
[36] A. Tarski, S. Givant, A Formalization of Set Theory Without Variable, AMS Colloquium Publications, Vol. 41, American Mathematical Society,

Providence, RI, 1988.

