
A Statistical Model of Query Log Generation

Georges Dupret1, Benjamin Piwowarski1, Carlos Hurtado2

and Marcelo Mendoza2

1 Yahoo! Research Latin America
2 Departamento de Ciencias de la Computación, Universidad de Chile

Abstract. Query logs record past query sessions across a time span.
A statistical model is proposed to explain the log generation process.
Within a search engine list of results, the model explains the document
selection – a user’s click – by taking into account both a document po-
sition and its popularity. We show that it is possible to quantify this
influence and consequently estimate document “un-biased” popularities.
Among other applications, this allows to re-order the result list to match
more closely user preferences and to use the logs as a feedback to improve
search engines.

1 Introduction

The query log data of a search engine record the user queries, along with the
URL and the position of selected documents in the list returned to the user. Doc-
uments can then be reordered according to their popularity for a given query. If
a discrepancy is observed between this new order and the search engine ranking,
some action can be taken to improve the engine. In Fig. 1 we plotted the number
of selections of documents against their position in the ranking of a given query.
It is intuitive that documents at positions 2 and 4 should be re-ordered because
the latter has a higher popularity among users. Nevertheless, comparison of the
documents appearing at positions 9 and 13 reveals a caveat of this method: The
lower popularity of the latter document might be caused by a less favorable
position rather than by a lower relevance to the query.

In this work, we propose to explain the selections observed in the logs as the
result of a process that reflects 1) the attractiveness of a document surrogate for
a particular query, 2) the ability of the engine to assess the document relative
relevance accurately and 3) the influence of the position of the document on user
selections.

In Section 2 we model these different aspects and gain insight into the log
generation process. To have an intuitive understanding of this model, imagine
for a moment that the search engine of Fig. 1 is stochastic and ranks a given
document, say u, half of the time at rank 6, and half of the time at rank 15. (This
situation may seem unrealistic, but in fact each time the document collection
is updated, the ranking for a given query is altered and the engine, although
deterministic, appears as stochastic in the logs.) If we observe 3 times more user
selections when u is presented at position 6 than when presented at position 15,

G. Dupret et al.

2

4

9

13

0 5 10 15 20 25 30

0

40

20

10

position

30

Fig. 1. Number of selection of documents per position for a typical query.

we can draw the conclusion that the position effect at position 6 is three times
larger than at to position 15 (Section 2.2). Once the relative position effect is
known, it is possible to compensate it on the observed popularity of document
surrogates and re-order documents accordingly. In Section 3, we derive statistics
that relate the model to aggregated values like the engine precision and the
observed number of selections at a given position. Section 4 presents the results
of numerical experiments based on the logs of a real search engine. In Section 5
we examine some re-ordering strategies found in the literature in terms of our
model. Finally, in Section 6 we compare this work to the model proposed by
Radlinski and Joachims [5] and report other potential applications.

2 Log Generation Model

In this section, we describe a probabilistic model of user selections which gives
rise to the logs. It makes use of two hidden, latent variables, namely the influence
of the position on user decisions and the attractiveness of the surrogate for a
given query. The resulting Bayesian model makes a conditional independence
assumption on these two variables.

2.1 Variables and Assumptions

We consider that an observation in the log is the realization of four random vari-
ables: A query (q) issued by the user, a document (u), the position of the docu-
ment (p) and the information about whether the document was selected or not
by the user (s). The probability of observing a selection is written PS(s, p, u, q),
where the subscript S recalls the relation with the selections observed in the
logs.

More specifically, a query q is defined as a sequence of terms given to the
search engine. A significant number of queries are repeated by different users at
different times, giving rise to various query sessions of q.

A Statistical Model of Query Log Generation

Table 1. Variables of the log-generation model

q discrete the query is q.
u discrete the document or URL is u.
a binary the document surrogate is attractive and justifies a selection.
p discrete the position of the document is p.
c binary the user considers a given position.
s binary the user selects the document.

The selection of a document u following a query q depends on the surrogate
“attractiveness” a of the user who issued query q. When a is true, we say that the
surrogate is attractive. The probability of a being true reflects the proportion of
users that estimate that the surrogate is promising enough to justify a selection.
If we make the assumption that the surrogate represents fairly the document,
the probability of a can be interpreted as a relative measure of relevance. This
is the approach taken by Radlinski and Joachims [5] among others. It is relative
because only the relative relevance of selected documents can be compared this
way [3].

While click-through data is typically noisy and clicks are not perfect relevance
judgements, the user selections do convey information [8,4]. Occasional user se-
lection mistakes will be cancelled out while averaging over a large number of
selections. The question of how large should the logs be to counterbalance user
variability and mistakes is an open question. The observed noise is large, which
suggests that a large quantity of data is necessary. On the other hand, commer-
cial search engines generate an enormous amount of data, and the comparatively
small amount used in experiments reported in the literature [9,10,5] have led to
satisfactory results.

The decision about the surrogate attractiveness can be regarded as a “position-
less” process where users fetch all documents whose surrogate is pertinent to their
query, wherever they are situated in the ranking. This is modelled by the upper
part of the Bayesian network in Fig. 2: If the surrogate of document u is relevant
to query q, the binary variable a is true. It is false otherwise.

Depending on the position p of document u in the ranking of query q, the
user will consider the document or not, as reflected by the variable c (“consider-
ation”). If this process was the only one involved in document selection, it would
suppose “blind” users who select documents based solely on their position in the
ranking or on any other interface artifact that appear at fixed positions like the
division of results in pages. In the “blind” process, selecting a document or not
is entirely determined by the document position p. The position p in turn is de-
termined exogenously by the search engine based on the document u, the query
q and the entire document collection (not represented because it is fixed), as
shown by the lower branch of the Bayesian network. The existence of a bias due
to the position of a document is well documented in the literature. Joachims [4]
observes that despite differences in the quality of the ranking, users tend to click
on average at the same positions.

G. Dupret et al.

q a

u p c
s

Fig. 2. Bayesian Network associated with the Log-Generation Model

2.2 Model and Estimation

According to the assumptions we just identified, we apply the chain rule to the
probability of observing a selection (Fig. 2):

P(s, c, a, p, u, q) = P(s|a, c)P(c|p)P(p|u, q)P(a|u, q)P(u)P(q)

where P(s|a, c) is deterministic because a user selects a document only if its
surrogate is both attractive and considered. To eliminate the latent variables,
we marginalize P(s, c, a, p, u, q) over a and c. Using the boldface (s, c or a) for
binary random variables to denote the event “s, c or a is true”, we have:

PS(s, p, u, q) = P(c|p)P(p|u, q)P(a|u, q)P(u)P(q)

We introduce mnemonic indices. The term P(c|p) is rewriten PP(c|p) to em-
phasize that it represents the position effect on user decision to make a selection.
The term P(p|u, q) is the probability that a document is presented at position
p. As this depends exclusively on the search engine, we add the subscript E . The
term P(a|u, q) is the probability that the surrogate is attractive given the query.
We use the subscript A to mark this fact. The log-generation model is:

Lemma 1 (Generation Process).
The process governing the log generation obeys to

PS(s, p, u, q) = PA(a|u, q)PP(c|p)PE(p|u, q)P(u)P(q)

The quantities PS(s, p, u, q) and PE(p|u, q) can be estimated by simple count-
ing from the logs: PS(s, p, u, q) is estimated by the number of selection of doc-
ument u at position p for all the sessions of query q, divided by the number
of query sessions. PE(p|u, q) is estimated by the number of times u appears in
position p of query q, divided by the number of sessions of q. P(u) = 1/U where
U is the total number of documents. It is uniform and independent of P(q). The
probability of observing a query is estimated by the proportion of sessions for
that query.

The remaining two probabilities PP(c|p) and PA(a|u, q) can be estimated
using Lemma 1. We remark first that if P∗

A(a, u, q) and P∗
P(c|p) represent a

solution to this system, then λP∗
A(a, u, q) and (1/λ)P∗

P(c|p) is also a solution for
any constant1 λ �= 0. This reflects that only the relative position effect can be

1 Note that this solution may not be valid from a probabilistic point of view.

A Statistical Model of Query Log Generation

estimated. In practice, we either set
∑

p PP(c|p) = 1 or set the effect of a given
position to a constant, say PP(c|p = 1) = 1 and normalize P∗

P(c|p) afterward.
If the search engine is deterministic, i.e. if PE(p|u, q) = {0, 1} ∀u, q, a simple

analysis shows that there are more unknowns than equations in the system. In-
tuitively, this reflects that if each document appear always at the same positions
in the ranking of a query, it is impossible to distinguish the effects of attrac-
tivity and position. The vast majority of search engines are designed to order
the documents in a deterministic way, but in practice each time the document
database is updated, the ranking of documents is altered, giving rise to a situa-
tion where the engine appears as stochastic and the system of equations can be
solved.

If we restrict the system to the cases where 0 < PE(p|u, q) < 1 (inequalities
are strict), we can transform the model into an overspecified system of linear
equations by taking the logarithm:

{
log PA(a, u, q) + log PP(c|p) = log PS(s,p,u,q)

PE(p|u,q)
log PP(c|p = 1) = log(1) = 0

(1)

where the unkowns are log PA(a, u, q) and log PP(c|p). The advantage is that
the system can be solved now using standard software for sparse matrix algebra.

3 Aggregate Behavior

In this section we study the relation between the log generation process and
aggregate values like the total number of selections at a position, the position
effect and the engine precision.

The proportion of selections at a given position is simply the sum over all
queries and documents of the selections at that position:

Definition 1 (Proportion of Selections at a position).
The proportion of selections at position p is defined as

Sp =
∑

u,q

PS(s, p, u, q)

Similarly, we also define S =
∑

p Sp.

To obtain the expected number of selections at a position, one need to aggregate
Sp over all the sessions.

Precision is traditionally defined as the concentration of relevant documents in
the result set. We can define by analogy a surrogate precision measure. To obtain
the contribution of position p to this new measure, we observe that a document
is placed at p by the engine with probability PE(p|u, q) and its surrogate is
attractive with a probability PA(a|u, q). By aggregating over documents and
queries, we obtain:

G. Dupret et al.

Definition 2 (Attractiveness Gain).
For a given search engine, the attractiveness gain achieved at position p is the
sum of the attractiveness of the documents surrogates appearing at that position:

Gp =
∑

u,q

PA(a|u, q)PE(p|u, q)P(u)P(q)

If we make the assumption that the surrogates are fair representations of the
documents, we can take the probability of attractiveness as an estimate of the
document probability of pertinence. The sum of the gains up to rank k is then
an empirical measure of the search engine precision at rank k. Note that this
measure cannot be used to compare two different search engines in different
settings [3].

We can now explain the selections observed in the logs as a consequence of
Lemma 1 (Log Generation Process) and Definitions 1 and 2:

Lemma 2 (Aggregate Behavior).
The proportion of selections Sp at position p is the product of the gain and the
position effect:

Sp = GpPP(c|p).

A first consequence of this lemma concerns deterministic search engines where
the probability PE(p|u, q) of finding document u at position p is 1 for a given
position puq and 0 everywhere else: Rewriting the aggregate behavior in Lemma 2
with p = puq, we obtain

PA(a|u, q) =
Gp

Sp
PS(s, p|u, q)

This matches intuition because the number of selections Sp generally decreases
with the position and because selection at a later position is a better indicator
of a surrogate attractiveness than a selection among the first positions. On the
other hand, the term Gp counter-balances this effect and reflects the ability of
the search engine to place attractive surrogates first.

4 Numerical Experiment

To illustrate the proposed method, we apply the former results to the logs of
todocl, a search engine of the Chilean Web, for two periods of approximately
3 and 6 months separated by a new crawling. Various characteristics of the logs
are shown in Table 2. The last column reports the numbers of distinct queries
and documents that appear in both logs. We denote the three months log by
L3 and the six months log by L6.

We first examine the impact of a strong and wrong simplifying assumption of
our model, namely that the popularity of a surrogate does not depend on the
surrogates that precede it in the results list and does not depend on the previous

A Statistical Model of Query Log Generation

Table 2. Characteristics of the three (L3) and six months (L6) logs and their intersec-
tion. The number of sessions in the last column is the sum of the number of sessions
involving the queries and URL common to both logs.

L3 L6 Common
Distinct Queries 65,282 127,642 2,159
Distinct selected URLs 122,184 238,457 9,747
Sessions 102,865 245,170 52,482

user selections during a given session, or at least that these effects cancel out. If
this hypothesis is true, we should have that the popularity estimates in L3 and
L6 are approximately equal:

P̂
3
A(a|p3, u, q) � P̂

6
A(a|p6, u, q)

where p3 and p6 are the position of u in the results of q in L3 and L6 respectively.
Because we cannot evaluate the probability of attractiveness directly, we restrict
our attention to the cases where p3 = p6: We select the document query pairs
whose document occupies the same position in the two logs. Formally, this set
is defined as I = {(u, q)|(u, q) ∈ L3, (u, q) ∈ L6, p3(u, q) = p6(u, q)}. For these
pairs, the position effect cancels out and the assumption holds if P̂

3
S(s|p3, u, q) �

P̂
6
S(s|p6, u, q) where P̂

3
S(s|p, u, q) denotes the estimate of PS(s|p, u, q) derived

from L3 and P̂
6
S(s|p, u, q) its equivalent from L6.

The set I contains 2,159 distinct queries and 7,755 distinct documents for
8,481 pairs. Although for some pairs (u, q) ∈ I the document u remains at
the same position, the ranking of the other documents do change. This change
in the context of the document is significant: Denoting Qc the sets of queries q
containing at least one document u that has not changed its position (i.e. (u, q) ∈
I), a query in Qc contains an average of 14.1 and only 5.2 distinct documents in L6
and L3 respectively, revealing that the list of results contain different documents
before and after the new crawl. The new position of documents that have been
displaced by the new crawl are in average 7.8 ranks apart from the original one.

In Fig 3, we divide the P̂
3
S(s|p, u, q) estimates for the (u, q) pairs of I in 10

bins of equal range and represent the corresponding six months estimates in 10
box-plots. Considering for example P̂

3
S(s|p, u, q) between 0.4 and 0.5 (the].4, .5]

bin on the plot), we observe that the median of the corresponding P̂
6
S(s|p, u, q) is

slightly larger than 0.4. On the other hand, the lower and upper hinges (median
of estimates smaller and larger than the median) are approximately 0.25 and
0.5, respectively.

The alignment of the box-plot medians with the diagonal shows that the sur-
rogate estimate is stable under context variations, leading to the conclusion that
the impact of previous selections tends to cancel out. If the median aligned on
a horizontal line, this would mean that selections were governed by variables
not included in the model. On the other hand, the large variation imply that

G. Dupret et al.

0.0

0.2

0.4

0.6

0.8

1.0

1714 979 784 166 94 178 78 28 41511

]0,.1]].2,.3]].3,.4]].4,.5]].5,.6]].6,.7]].7,.8]].8,.9]].9,1]].1,.2]

Fig. 3. On the lower axis, the estimates of the probability of selecting a document in a
session of a query have been divided in 10 bins according to their values. For example,
the second bin corresponds to the u, q pairs for which 10% < P̂

3
S(s|p, u, q) ≤ 20%.

On the ordinate, we have for each of these u, q pairs the corresponding P̂
6
S(s|p, u, q)

estimate. On the upper axis, we report the number of u, q pairs that fall into the bin.
The median is indicated by the black center line. The first and third quartiles are the
edges (hinges) of the main box. The extreme values (more than 1.5 the lower/upper
inter-quartile range) are plotted as points and are situated after the notches.

estimates will suffer from large variance. The inclusion of more variables into
the model might reduce this problem, but this needs to be verified. The medians
alignment to the diagonal deteriorates as the document popularity increases,
suggesting that surrogates that enjoyed a high popularity in L3 experience some
decrease in L6 (Sic transit gloria mundi2). This can be due partly to the docu-
ments getting outdated compared to documents that appear for the first time in
L6. Moreover, because L6 contains twice as many documents, there is potentially
a larger number of attractive surrogates for each query. This will partly divert
selections from the documents already in L3 and push down the relative number
of selections. The larger distance of the median from the diagonal will induce a
bias in the estimates of the model.

We compute the gain Sp from the solution of the linear system in Eq. 1
and plot it in Fig. 4 (triangle). While the position effect is expected to display
discontinuities, in particular where pages change, it is reasonable to make the
hypothesis that the gain decreases smoothly. We use a linear regression of second
order on the experimental values and plot it as a continuous curve on Fig. 4.
The position effect (circles) decreases from a 5% at position 1 and stabilizes
around 3% around position 20, inducing that users are approximately 1.7 more
likely to make a selection at the first than at the latter position in the blind

2 Thus passes away the glory of the world

A Statistical Model of Query Log Generation

Position

20 25 30151050

12%

8%

4%

2%

PP (c|p)
Gp

Sp

Fig. 4. All values are normalized by the sum of their values over positions 1 to 30. 1)
The normalized number of selections Sp at position p (squares). 2) The position effect
PP(c|p) (squares). 3) The normalized gain Gp (triangle).

process. There is a distinct increase of the position effect corresponding to the
page change at position 10.

The gain presents a slope similar to the probability of selections, suggesting
that users of the todocl engine are more influenced by the relevance of surrogates
than by their position, although much larger samples of log data should be used to
obtain reliable position effect estimates before definitive conclusions are drawn.

5 Re-ordering Strategies

We analyze in this section various strategies to take the logs into account in the
document re-ranking and derive what Radlinski and Joachims [5] call a osmo-
sis search engine, i.e. an engine that adapts itself to the users. These authors
consider that the surrogates represent fairly the documents and that ordering
according to the attractiveness respects the preference of the users for the doc-
uments themselves. We make the same hypothesis in this section and its results
are valid only if it holds.

In order to compare two ranking strategies, we need to identify what the opti-
mal ordering strategy should be. An optimal search engine estimates accurately
the relevance of documents to queries, orders them accordingly and presents
adequate surrogates to the users:

Definition 3 (Optimal Search Engine). A search engine is optimal if, for
all documents u and v and all query q, we have that

puq < pvq ⇔ PA(a|u, q) > PA(a|v, q).

where puq and pvq are the positions of documents u and v in the result list of
query q.

G. Dupret et al.

A consequence of this definition is that optimal search engines are almost always
deterministic: Only when PA(a|u, q) = PA(a|v, q) can a search engine be both
stochastic and optimal.

The best strategy consists in ordering the documents according to the sur-
rogates attractivity estimates, but it might be interesting to analyze the conse-
quence of ordering according to the observed number of selections. Under this
scheme, two documents are swapped if PS(s, p2, u2, q) > PS(s, p1, u1, q) and p2 >
p1. If the engine is deterministic, this can be rewritten PA(a, u2, q)PP(c|p2) >
PA(a, u1, q)PP(c|p1). This strategy implies that we have a permutation if

PA(a, u2, q) >
PP(c|p1)
PP(c|p2)

PA(a, u1, q)

This is adequate only if the position effects are equal. On the other hand, if
PP(c|p1) is sufficiently larger than PP(c|p2), document u2 remains trapped at
its original position.

Most applications that do not attempt to re-order selections, like query clus-
tering [10], simply discard document popularity and consider only whether a
document was selected or not. This is equivalent to setting the position effect
and the popularity to a constant.

6 Related Work

In [5], Radlinski and Joachims pursue a goal similar to our. Based on eye tracking
study and expert judgements, they identify six preference feedback relations
based on query logs. For example, the selection of a document is interpreted
as a preference feedback over all the documents preceding it in the list, but
not selected. They observe that users often reformulate their query to improve
search. The set of reformulation –called a query chain– is used to derive a relation
of preference among documents. The selection of a document is interpreted as a
preference feedback over all the preceding documents appearing but not selected
in earlier formulations of the query. The preference relations are then set as
constraints and used to train a Large Margin classifier.

It is interesting to compare the assumptions in Radlinski and Joachims [5]
to ours. The preference feedback over preceding unselected documents parallels
our assumption that documents should be ordered according to their (un-biased)
popularity, and that the position of the selected document is of importance. They
take popularity into account because a positive feedback is accounted for each
document selection, and they take position into account because documents
selected at latter positions have a preference relation over a larger number of
documents than selected documents appearing at the top of the list. Popularity
and position are thus two main variables in both their analysis and ours. On the
other hand (provided we have enough data) we are able to derive a quantitative
estimate of the position effect with no need of a priori hypothesis while Radlinski
and Joachims fix arbitrarily some parameters to limit how quickly the original
order is changed by the preference feedback data.

A Statistical Model of Query Log Generation

Our model does not take into account the influence of previous selections
on user next selection. To a certain extent, Radlinski and Joachims include this
information implicitly because no preference feedback is derived over a document
that was previously selected. This is probably the most severe limitation of our
model and the topic of future work. Future work should also attempt to take
query chains into account.

Both methods fail to address the problem of ambiguous queries. An example
of such query is “car” that refers to several topics like “renting a car”, “buying
a car”, etc. The user has probably one and only one of these topics in mind and
will select documents accordingly. The problem for both models is that they are
attempting to order documents in answer to different information needs into a
single list. A possible solution is to previously disambiguate queries [2].

In conclusion, Radlinski and Joachims model is more complete than ours es-
sentially because previous selections are taken into account although implicitly.
Our model on the other hand is less heuristic and makes explicit assumptions. It
opens the doors to a more formal analysis. It also offers some primary theoretical
results. The position effect is quantifiable, the difference between document pref-
erences and surrogate attractiveness is made and dependence relations between
variables is determined before hand.

7 Conclusions

We proposed a theoretical interpretation of data found in search engine logs.
For a given query, it assumes that two factors influence a document selection:
the position of the document in the result list and the attractiveness of the
document surrogate. The main objective of this model is to estimate the effect
of the document position in the ranking on users decisions to select it, thereby
getting an un-biased estimate of the attractiveness of the document surrogate.

We foresee various applications to this work, but the most important one re-
lates to the development of search engine that learns to rank documents from
the users. Frequent queries rankings can be altered and cached to match users
preferences rather than engine scores and consequently increase the engine pre-
cision3. Moreover, the score function of the search engine can be tuned based on
user selections to improve the engine precision both on queries already in the logs
and on future queries. Probabilistic retrieval models [7,6] rely on the probability
of a document term to flag a relevant document given a query term. The esti-
mation of this probability is based on user feedback and is unpractical to obtain
explicitly, making the possibility to extract automatically the necessary infor-
mation from the logs an important and novel method to improve significantly
these engines.

It is also important to weight appropriately the documents in the relevance
set when using feedback methods or when clustering queries. The knowledge of
the influence of the position of a document on users selections decisions can be
3 Pre-computation of frequent queries is also an effective way of improving engine

speed due to the heavy skew of the query frequency distribution [1].

G. Dupret et al.

used to study the interface. Our approach was developed for results presented in
list, but it is straightforward to extend it to tables of images or other multimedia
content where the automatic estimation of a relevance score to a query is usually
more problematic than for text documents.

The influence of previously seen documents on the user selection decision was
neglected in the model. A user who finds a document that fulfil his informa-
tion need is not likely to continue his search, thereby discarding other relevant
documents. This is a topic for future work.

Acknowledgments

Carlos Hurtado was supported by Millennium Nucleus, Center for Web Research
(P04-067-F), Mideplan, Chile.

References

1. R. Baeza-Yates and F. Saint-Jean. A three level search engine index based in query
log distribution. In SPIRE 2003, Manaus, Brazil, October 8-10, 2003. Proceedings,
Lecture Notes in Computer Science 2857, pages 56 – 65, 2003.

2. G. Dupret and M. Mendoza. Recommending better queries based on click-through
data. In Proceedings of the 12th International Symposium on String Processing and
Information Retrieval (SPIRE 2005), LNCS 3246, pages 41–44. Springer, 2005.

3. T. Joachims. Evaluating search engines using clickthrough data. Department of
Computer Science, Cornell University, 2002.

4. T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02:
Proceedings of the eighth ACM SIGKDD, pages 133–142, New York, NY, USA,
2002. ACM Press.

5. F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feed-
back. In KDD ’05: Proceeding of the eleventh ACM SIGKDD international confer-
ence on Knowledge discovery in data mining, pages 239–248, New York, NY, USA,
2005. ACM Press.

6. B. A. Ribeiro-Neto and R. Muntz. A belief network model for IR. In SIGIR ’96:
Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 253–260, New York, NY, USA,
1996. ACM Press.

7. S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Taylor
Graham Publishing, London, UK, UK, 1988.

8. T. Joachims. Unbiased evaluation of retrieval quality using clickthrough
data. Technical report, Cornell University, Department of Computer Science,
http://www.joachims.org, 2002.

9. J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user queries of a search engine.
In WWW ’01: Proceedings of the 10th international conference on World Wide
Web, pages 162–168, New York, NY, USA, 2001. ACM Press.

10. O. R. Zäıane and A. Strilets. Finding similar queries to satisfy searches based on
query traces. In Proceedings of the International Workshop on Efficient Web-Based
Information Systems (EWIS), Montpellier, France, Sept. 2002.

	Introduction
	Log Generation Model
	Variables and Assumptions
	Model and Estimation

	Aggregate Behavior
	Numerical Experiment
	Re-ordering Strategies
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

