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Abstract This paper is devoted to the study of a nonconvex perturbed sweeping
process with time delay in the infinite dimensional setting. On the one hand, the
moving subset involved is assumed to be prox-regular and to move in an absolutely
continuous way. On the other hand, the perturbation which contains the delay is
single-valued, separately measurable, and separately Lipschitz. We prove, without
any compactness assumption, that the problem has one and only one solution.
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1. Introduction

In this paper we are interested in the existence of solutions for a delay perturbed
sweeping process in an infinite dimensional Hilbert space. The problem is the
following: Let H be a real Hilbert space, T > 0, C : [0,T ] ⇒ H a set-valued map
with nonempty closed values. Given a finite delay ρ > 0, one considers the space
C0 := CH([−ρ, 0]) endowed with the norm of the uniform convergence ‖ · ‖C0 . With
each t ∈ [0,T ], one associates a map τ(t) from CH([−ρ, t]) into CH([−ρ, 0]) defined,
for all u(·) ∈ CH([−ρ, t]), by

(τ (t)u(·))(s) := u(t + s) for all s ∈ [−ρ, 0].
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Let f : [0,T ] × CH([−ρ, 0]) → H be a single-valued map and let ϕ be a fixed member
of CH([−ρ, 0]) such that ϕ(0) ∈ C(0). Then, we investigate the existence of solutions
for the following perturbed sweeping process{

−u̇(t) ∈ N(C(t),u(t))+ f (t, τ (t)u(·)) a.e. t ∈ [0,T ],

u(s) = ϕ(s) ∀ s ∈ [−ρ, 0].
(0.1)

We need an existence result for this problem in order to study, in the infinite
dimensional setting, an optimal control problem whose dynamic is given by a delay
perturbed sweeping process. Indeed, using the result of this paper, we prove, under
a classical convexity assumption, the existence of a solution for an optimal control
problem of the type

inf
ζ(·)

ζ(t)∈0(t)

L(uζ (T ))+

∫ T

0
J (t,uζ (t), ζ(t))dt,

where uζ (·) is the unique solution of the delay perturbed sweeping process{
−u̇(t) ∈ N(C(t),u(t))+ g(t, τ (t)u(·), ζ(t)) a.e. t ∈ [0,T ],

u(s) = ϕ(s) ∀ s ∈ [−ρ, 0].

This result will be published in a forthcoming paper.
While the differential inclusions of the type (0.1) encompass the differential

equations (the case C(t) := H for all t ∈ [0,T ]), they are necessary to study some
systems. They are used, particularly, to describe mechanical systems with inelastic
shocks (see [16, 19], and [20]), which explains, besides mathematical motivations, the
interest for optimal control problems governed by such dynamics.

The problem (0.1) is a particular case of the more general one obtained by
replacing f by a set-valued map G: [0,T ] × CH([−ρ, 0]) ⇒ H, that is,{

−u̇(t) ∈ N(C(t),u(t))+ G(t, τ (t)u(·)) a.e. t ∈ [0,T ],

u(s) = ϕ(s) ∀ s ∈ [−ρ, 0].
(0.2)

It is worth noting that those problems are extensions of the following one{
−u̇(t) ∈ N(C(t),u(t)) a.e. t ∈ [0,T ],

u(0) ∈ C(0),
(0.3)

which was introduced and thoroughly studied by Moreau (see [17, 18] and the ref-
erences therein) with C(t) convex for all t and moving in an absolutely continuous
way. In this case, N(C(t),u(t)) is the normal cone to C(t) at u(t) in the sense of the
convex analysis. Other references concerning the problem (0.3) are [1, 5, 6, 12], and
[23].

The problem (0.2) has been solved by Castaing and Monteiro Marques [7] under
some conditions. Among others, G has all its values included in a fixed bounded set
and C is Lipschitz and takes convex compact values. On the other hand, Thibault
[22] proved, in the finite dimensional context, the existence of solutions for general
subsets C(t) and for G satisfying

G(t, φ(·)) ⊂ β(t)B



for all (t, φ(·)) ∈ [0,T ] × CH([−ρ, 0]), where β(·) ∈ L1([0,T ],R+). More recently,
still in the finite-dimensional setting, Castaing et al. [8] proved the same result for sets
C(t) that are bounded and r -prox-regular, with G satisfying a more general growth
condition of the type

G(t, φ(·)) ⊂ β(t)(1 + ‖φ(0)‖)B (0.4)

for all (t, φ(·)) ∈ [0,T ] × CH([−ρ, 0]). Later, Bounkhel and Yarou [4] proved in the
infinite-dimensional setting the existence of solutions in the case the set-valued map
G has all its valued contained in a fixed compact set. More recently, we proved in [13]
a more general result where G satisfies (0.4) with B replaced by a fixed compact set.

In infinite-dimensional Hilbert spaces, unless appropriate compactness assump-
tions on the sets C(t), the problem (0.2) with the condition (0.4) may have no solution.

In this paper we address, in the infinite-dimensional setting, the case where G
is a single-valued map. We establish an existence result without any compactness
assumption. More precisely, we prove that the problem (0.1) has one and only one
solution if the sets C(t) are r -prox-regular (not necessarily bounded), the map f is
measurable with respect to the first argument and Lipschitz with respect to the second
one, and

‖ f (t, φ(·))‖ 6 β(t)(1 + ‖φ(·)‖C0)

for all (t, φ(·)) ∈ [0,T ] × CH([−ρ, 0]). Note that this growth condition involves ‖φ‖C0

instead of ‖φ(0)‖. This condition is weaker than (0.4) when G is single-valued.
Whereas it is more natural as a growth condition, it is more difficult to deal with.

To our knowledge, up to now, even in the case the sets C(t) are convex, there is
no existence result for (0.1) without compactness assumptions on the sets C(t). Such
assumptions guarantee, for any bounded sequence of continuous maps u : [0,T ] → H
such that u(t) ∈ C(t) for each t , the existence of a convergent subsequence. But, in our
setting, a priori, such a subsequence does not exist. Therefore, to obtain convergence
results for a sequence, not only that must be constructed carefully, but also some
effort is required.

Our existence result is obtained thanks to the one proved recently in [14] concern-
ing perturbed sweeping processes without delay. We proceed as follows: We consider,
for each n ∈ N, a partition of the interval [0,T ] given by tn

j :=
jT
n ( j = 0, · · · ,n).

Then, on each subinterval
[
tn

j , tn
j+1

]
, we replace f by the map f n

j :

[
tn

j , tn
j+1

]
× H → H

defined by f n
j (t, x) := f (t, τ (t)hn

j (·, x)), where

hn
0(t, x) :=

{
ϕ(t) if t ∈ [−ρ, 0],

ϕ(0)+
n
T

t (x − ϕ(0)) if t ∈
[
0, tn

1

]
and hn

j (·, ·) ( j > 1) are defined in a quasi similar way. Doing so, we obtain a perturbed
sweeping process without delay for which our result in [14] insures the existence of
a solution un(·). This approach is slightly different from the classic idea in that, in

our definition of f n
j , we allow the second argument to depend on each t ∈

[
tn

j , tn
j+1

]
.

In addition to other techniques used to overcome the absence of compactness, this
adaptation enables the proof of the convergence of the sequence (un) to a solution of
the original problem.



The paper is organized as follows. In Section 2, we recall some notions which are
used throughout the paper. In Section 3 are summarized some results concerning
perturbed sweeping processes without delay. Finally, Section 4, which is the most
important, is devoted to the existence result for the delay perturbed sweeping
process.

2. Preliminaries

In all the paper I := [0,T ] (T > 0) is an interval of R and H is a real Hilbert space
whose scalar product is denoted by 〈·, ·〉 and the associated norm by ‖ · ‖.

NOTATION 1.1. We will use the following notations.
The closed unit ball of H will be denoted by B.
For η > 0, one denotes by B[0, η] the closed ball of radius η centered at 0. For any

subset S of H, coS stands for the closed convex hull of S, and σ(S, ·) represents the
support function of S, that is, for all ζ ∈ H,

σ(S, ζ ) := sup
x∈S

〈ζ, x〉.

We will denote by C(I, H ) or CH(I) the set of all continuous maps from I to H. The
norm of the uniform convergence on C(I, H )will be denoted by ‖ · ‖∞. The Lebesgue
measure is denoted by λ.

For any p ∈ [1,+∞], we denote by L p(I, H ) the quotient space of all λ-Bochner
measurable maps g(·) : I → H such that ‖g(·)‖ belongs to L p(I,R).

For the following concepts, the reader is referred to Clarke et al. [10, 11] and
Poliquin et al. [21].

Let S be a nonempty closed subset of H and x ∈ H. The distance of x to S, denoted
by dS(x) or d(x, S), is defined by

dS(x) := inf{‖x − u‖ : u ∈ S}.

One defines the (possibly empty) set of nearest points of x in S by

projS{x} := {u ∈ S : dS(x) = ‖x − u‖}.

If u ∈ projS{x} and α > 0, then the vector α(x − u) is called a proximal normal to S
at u. The set of all vectors obtainable in this manner is a cone termed the proximal
normal cone to S at u. It is denoted by NP

S (u).
One also defines the limiting normal cone and the Clarke normal cone, respec-

tively, by

NL
S (u) :=

{
ζ ∈ H : ζn

w
⇀ ζ, ζn ∈ NP

S (un),un
S

→ u
}

and

N C
S (u) := coNL

S (u).

Here, ζn
w
⇀ ζ signifies that the sequence ζn converges weakly to ζ , and un

S
→ u means

that un → u with un ∈ S for all n.



For a fixed r > 0, the set S is said to be r-prox-regular (or uniformly prox-regular
with constant 1

r ) if, for any u ∈ S and any ζ ∈ NL
S (u) such that ‖ζ‖ < 1, one has {u} =

projS{u + rζ }. Equivalently, S is r-prox-regular if and only if (see [21]) every nonzero
proximal normal to S at any point u ∈ S can be realized by an r -ball, that is, for all
u ∈ S and all ζ ∈ NP

S (u),

〈ζ, y − u〉 6
‖ζ‖

2r
‖y − u‖

2 for all y ∈ S. (1.1)

Another characterization (see [21]) is the following hypomonotonicity property: For
any ui ∈ S (i = 1, 2), the inequality

〈ζ1 − ζ2,u1 − u2〉 > −‖u1 − u2‖
2

holds whenever ζi ∈ NL
S (ui ) ∩ B(0, r), where B(0, r) stands for the open ball of radius

r centered at 0.
If S is r -prox-regular, then the following holds (see [21]):

– for any u ∈ S, all the cones defined above coincide and will be denoted by NS(u)
or N(S,u);

– for any x ∈ H such that dS(x) < r , the set projS{x} is a singleton.

In the other hand, let f : H → R be Lipschitz near x ∈ H. One defines the Clarke
directional derivative of f at x ∈ H in the direction u ∈ H by (see Clarke [9])

f ◦(x; u) := lim sup
y→x
t↓0

f (y + tu)− f (y)
t

.

The Clarke subdifferential of f at x is then defined by

∂C f (x) := {ζ ∈ H : 〈ζ,u〉 6 f ◦(x; u)∀u ∈ H}.

We also recall the definition of the proximal subdifferential of f at x ∈ H denoted by
∂ P f (x). One says that ζ ∈ H belongs to ∂ P f (x) (see, e.g., Clarke et al. [10]) if there
exist positive numbers α and M > 0 such that

f (y)− f (x)+ M‖y − x‖
2 > 〈ζ, y − x〉∀y ∈ B(x, α).

Obviously, the inclusion ∂ P f (x) ⊂ ∂C f (x) holds for all x ∈ H. There are some
links between the cones and the subdifferentials defined above (see [2] and [10]): For
any nonempty closed subset S of H and x ∈ S, the following relations hold true

∂ PdS(x) = NP
S (x) ∩ B (1.2)

and

∂CdS(x) ⊂ N C
S (x) ∩ B. (1.3)

Remark 1.1. If S is r -prox-regular, by (1.2), (1.3), and the equality between the
proximal and Clarke normal cones, one has

∂ PdS(x) = ∂CdS(x)

whenever x ∈ S.



Let r > 0. In all the paper a set-valued map C(·) from I to H will be involved. It is
required to satisfy the following assumptions:

(H1) For each t ∈ I, C(t) is a nonempty closed subset of H which is
r -prox-regular;

(H2) C(t) varies in an absolutely continuous way, that is, there exists an
absolutely continuous function v(·) : I → R such that, for any y ∈ H and
s, t ∈ I,

|d(y,C(t))− d(y,C(s))| 6 |v(t)− v(s)|.

We will use the following result which is a straightforward consequence of
Gronwall’s lemma.

LEMMA 1.1. Let I = [T0,T ] and let (xn(·)) be a sequence of non-negative continuous
functions define on I, (αn) a sequence of real numbers, and β(·) ∈ L1(I,R+). Assume
that limn αn = 0 and, for all n,

xn(t) 6

∫ t

T0

β(s)xn(s)ds + αn. (1.4)

Then, for all t ∈ [T0,T ],

lim
n

xn(t) = 0.

Proof. Fix any t ∈ I . Mutiplying both sides of (1.4) by β(t), we obtain

β(t)xn(t) 6 β(t)
∫ t

T0

β(s)xn(s)ds + αnβ(t).

According to Gronwall’s lemma, this entails that∫ t

T0

β(s)xn(s)ds 6 αn

∫ t

T0

β(u) exp{

∫ t

u
β(s)ds} du

and then

lim
n

∫ t

T0

β(s)xn(s) = 0.

Taking (1.4) into account, we deduce that limn xn(t) = 0. �

3. Perturbation without Delay

In this section we summarize two results concerning perturbed sweeping processes.
They will be used in the sequel.



PROPOSITION 2.1. Let H be a real Hilbert space. Assume that C(·) satisfies (H1)

and (H2). Let h : [T0,T ] → H be a λ-integrable map. Then, for any x0 ∈ C(T0), the
sweeping process with perturbation{

−u̇(t) ∈ N(C(t),u(t))+ h(t) a.e. t ∈ [T0,T ],

u(T0) = x0
(2.1)

has one and only one absolutely continuous solution u(·). Moreover, the following
inequality holds true

‖u̇(t)+ h(t)‖ 6 ‖h(t)‖ + |v̇(t)| a.e. t ∈ [T0,T ].

Proof. We use a classical transformation. For each t ∈ [T0,T ], let us set

ψ(t) :=

∫ t

T0

h(s)ds and D(t) := C(t)+ ψ(t).

Obviously, the set-valued map D(·) satisfies (H1). Now, let y ∈ H and t, s ∈ [T0,T ].
One has

|d(y, D(t))− d(y, D(s))| 6 |d(y − ψ(t),C(t))− d(y − ψ(s),C(s))|

6 ‖ψ(t)− ψ(s)‖ + |v(t)− v(s)|

6 |V(t)− V(s)|,

where

V(t) :=

∫ t

T0

(|v̇(s)| + ‖h(s)‖)ds.

Hence D(·) satisfies also (H2) with the absolutely continuous function V(·). As x0 ∈

C(T0) = D(T0), from [3] (or [15]) we know that the following sweeping process{
−ẏ(t) ∈ N(D(t), y(t)) a.e. t ∈ [T0,T ],

y(T0) = x0

has an absolutely continuous solution y(·). According to [22], the map y(·) satisfies
also the inclusion

−ẏ(t) ∈ V̇(t)∂dD(t)(y(t)) a.e. t ∈ [T0,T ].

Thus,

‖ẏ(t)‖ 6 |V̇(t)| = |v̇(t)| + ‖h(t)‖ a.e. t ∈ [T0,T ]. (2.2)

Futhermore, the map u(·) defined by u(t) := y(t)− ψ(t) is clearly an absolutely
continuous solution of (2.1). Finally, by (2.2), we obtain the estimation

‖u̇(t)+ h(t)‖ 6 ‖h(t)‖ + |v̇(t)| a.e. t ∈ [T0,T ].

Now, we turn to the uniqueness. If u1(·) and u2(·) are two solutions, the hypomono-
tonicity property of the normal cone yields, for almost all t ∈ I,

〈u̇1(t)− u̇2(t),u1(t)− u2(t)〉 6
1

r
(‖u̇1(t)‖ + ‖u̇2(t)‖ + ‖h(t)‖)‖u1(t)− u2(t)‖2



and then

d
dt
(‖u1(t)− u2(t)‖2) 6

2

r
(‖u̇1(t)‖ + ‖u̇2(t)‖ + ‖h(t)‖)‖u1(t)− u2(t)‖2.

It follows from Gronwall’s lemma that u1(·) = u2(·). The proof is then complete. �

We will need also the following theorem which is proved in [14].

THEOREM 2.1. Let H be a Hilbert space. Assume that C(·) satisfies (H1) and (H2).
Let f : I × H → H be a map, which is measurable with respect to the first argument,
such that

(a) for every η > 0 there exists a non-negative function kη(·) ∈ L1(I,R) such that for
all t ∈ I and for any (x, y) ∈ B[0, η] × B[0, η],

‖ f (t, x)− f (t, y)‖ 6 kη(t)‖x − y‖;

(b) there exists a non-negative function β(·) ∈ L1(I,R) such that, for all t ∈ I and for
all x ∈

⋃
s∈I C(s), ‖ f (t, x)‖ 6 β(t)(1 + ‖x‖).

Then, for any x0 ∈ C(T0), the following perturbed sweeping process{
−u̇(t) ∈ N(C(t),u(t))+ f (t,u(t)) a.e. t ∈ I,
u(T0) = x0

(SPP)

has one and only one absolutely continuous solution u(·).

4. Perturbation with Delay

This section constitutes the most important part of the paper. It is devoted to
the study of a perturbed sweeping process whose perturbation is single-valued and
contains a delay.

In the following, I is the interval [0,T ], that is, T0 = 0.
Let ρ > 0. Consider the space C0 := CH([−ρ, 0]) endowed with the uniform con-

vergence norm denoted by ‖ · ‖C0 . With each t ∈ [0,T ], one associates a map

τ(t) : CH([−ρ, t]) → C0

defined, for all u(·) ∈ CH([−ρ, t]) by

(τ (t)u(·))(s) := u(t + s) for all s ∈ [−ρ, 0].

Let C(·) : [0,T ] ⇒ H be a set-valued map and f : I × C0 → H a single-valued map.
Let ϕ be a fixed member of C0 such that ϕ(0) ∈ C(0). We are going to investigate the
existence of solutions for the following problem{

−u̇(t) ∈ N(C(t),u(t))+ f (t, τ (t)u(·)) a.e.t ∈ [0,T ],

u(s) = ϕ(s) ∀ s ∈ [−ρ, 0].
(Pϕ)



One calls solution of (Pϕ) any map u(·) : [−ρ,T ] → H such that

(a) for any s ∈ [−ρ, 0], one has u(s) = ϕ(s);
(b) the restriction u|[0,T ](·) of u(·) is absolutely continuous and its derivative,

denoted by u̇(·), satisfies the inclusion

−u̇(t) ∈ N(C(t),u(t))+ f (t, τ (t)u(·)) a.e.t ∈ [0,T ].

Now we are going to state and prove our existence result concerning the problem
(Pϕ).

THEOREM 3.1. Let H be a Hilbert space. Assume that C(·) satisfies (H1), (H2). Let
f : I × C0 → H be a map satisfying:

(i) for any φ ∈ C0, f (·, φ) is measurable;
(ii) for any η > 0, there exists a non-negative function kη(·) ∈ L1(I,R) such that, for

all φ1, φ2 ∈ C0 with ‖φi‖C0 6 η (i = 1, 2) and for all t ∈ I ,

‖ f (t, φ1)− f (t, φ2)‖ 6 kη(t)‖φ1 − φ2‖C0

(iii) there exists a non-negative function β(·) ∈ L1(I,R) such that, for all t ∈ I and
for all φ ∈ C0,

‖ f (t, φ)‖ 6 β(t)(1 + ‖φ‖C0).

Then, for any ϕ ∈ C0 with ϕ(0) ∈ C(0), the problem (Pϕ) has one and only one
solution.

Proof. I – Assume that ∫ T

0
β(s)ds <

1

4
. (3.1)

We are going to construct a sequence of maps (un(·)) in CH([−ρ,T ]) which
converges uniformly on [−ρ,T ] to a solution of (Pϕ).

A) Construction of the sequence (un(·)).
We will introduce a discretization, being inspired by the one used in [8].
For each n > 1, consider the partition of [0,T ] defined by the points tn

j :=
jT
n ( j =

0, · · · ,n). Define on [−ρ, tn
1 ] × H the map hn

0(·, ·) by

hn
0(t, x) :=

{
ϕ(t) if t ∈ [−ρ, 0]

ϕ(0)+
n
T t (x − ϕ(0)) if t ∈ [0, tn

1 ].

Let us consider the map f n
0 : [0, tn

1 ] × H → H defined by

f n
0 (t, x) := f (t, τ (t)hn

0(·, x)).



We have, for any t ∈ [0, tn
1 ] and for any x, y ∈ H,

‖τ(t)hn
0(·, x)− τ(t)hn

0(·, y)‖C0 = sups∈[−ρ,0] ‖hn
0(t + s, x)− hn

0(t + s, y)‖

= sups∈[−ρ+t,t] ‖hn
0(s, x)− hn

0(s, y)‖

6 sups∈[0,t] ‖hn
0(s, x)− hn

0(s, y)‖
6 sups∈[0,t]

n
T s‖x − y‖

6 ‖x − y‖.

On the other hand,∥∥τ(t)hn
0(·, x)

∥∥
C0

= sups∈[−ρ+t,t]

∥∥hn
0(s, x)

∥∥
6 max{‖ϕ‖C0

, sups∈[0,t]

∥∥ϕ(0)+
n
T s(x − ϕ(0))

∥∥}
6 max{‖ϕ‖C0

, sups∈[0,t]

((
1 −

n
T s
)
‖ϕ(0)‖ +

n
T s ‖x‖}

6 max{‖ϕ‖C0
, ‖ϕ(0)‖ + ‖x‖}.

Then, according to (ii), for any η > 0, there exists a non-negative function kη(·) ∈

L1(I,R) such that for all t ∈ [0, tn
1 ] and for any (x, y) ∈ B[0, η] × B[0, η],

‖ f n
0 (t, x)− f n

0 (t, y)‖ 6 kη(t)‖x − y‖.

Moreover, thanks to (iii), for all (t, x) ∈ [0, tn
1 ] × H,

f n
0 (t, x) 6 β(t)(1 + ‖ϕ‖C0 + ‖x‖) 6 (1 + ‖ϕ‖C0)β(t)(1 + ‖x‖).

Note also that, due to the fact that hn
0(·, x) is uniformly continuous on [0, tn

1 ], the
map t 7→ τ(t)hn

0(·, x) is continuous from [0, tn
1 ] into (C0, ‖ · ‖C0) and hence f n

0 (·, x) is
measurable. Consequently, according to Theorem 2.1, there exists one and only one
absolutely continuous map un

0(·): [0, tn
1 ] → H such that un

0(0) = ϕ(0) and, for almost
all t ∈ [0, tn

1 ],

u̇n
0(t)+ f n

0

(
t,un

0(t)
)

∈ −N
(
C(t),un

0(t)
)

a.e. t ∈
[
0, tn

1

]
,

and Proposition 2.1 yields∥∥u̇n
0(t)+ f n

0

(
t,un

0(t)
)∥∥ 6

∥∥ f n
0

(
t,un

0(t)
)∥∥+ |v̇(t)| a.e. t ∈

[
0, tn

1

]
.

Now, define hn
1 :
[
−ρ, tn

2

]
× H → H with

hn
1(t, x) :=


ϕ(t) if t ∈ [−ρ, 0],

un
0(t) if t ∈ [0, tn

1 ],

un
0(t

n
1 )+

n
T
(t − tn

1 )
(
x − un

0(t
n
1 )
)

if t ∈
[
tn
1 , tn

2

]
.

As previously, we show that, for any t ∈
[
0, tn

2

]
, the map x 7→ τ(t)hn

1(·, x) is
1-Lipschitz and

∥∥τ(t)hn
1(·, x)

∥∥
C0

6 max

{
‖ϕ‖C0

, sup
s∈[0,tn

1 ]

∥∥un
0(s)

∥∥}+ ‖x‖ .



Therefore, the map f n
1 :
[
tn
1 , tn

2

]
× H → H defined by

f n
1 (t, x) := f

(
t, τ (t)hn

1(·, x)
)

satisfies the assumptions of Theorem 2.1, and hence there exists one and only one
absolutely continuous map un

1(·): [tn
1 , tn

2 ] → H such that un
1(t

n
1 ) = un

0(t
n
1 ),

u̇n
1(t)+ f n

1

(
t,un

1(t)
)

∈ −N
(
C(t),un

1(t)
)

a.e. t ∈
[
tn
1 , tn

2

]
,

and ∥∥u̇n
1(t)+ f n

1

(
t,un

1(t)
)∥∥ 6

∥∥ f n
1

(
t,un

1(t)
)∥∥+ |v̇(t)| a.e. t ∈

[
tn
1 , tn

2

]
.

Now, suppose that un
0(·), · · · ,un

j−1(·) (1 6 j 6 n − 1) are defined similarly. Let us
define hn

j: [−ρ, tn
j+1] × H → H by

hn
j (t, x) :=


ϕ(t) if t ∈ [−ρ, 0],

un
i (t) if t ∈

[
tn
i , tn

i+1

]
, i ∈ {0, · · · , j − 1},

un
j−1(t

n
j )+

n
T

(
t − tn

j

) (
x − un

j−1

(
tn

j

))
if t ∈

[
tn

j , tn
j+1

]
and let us consider the map f n

j : [tn
j , tn

j+1] × H → H with

f n
j (t, x) := f (t, τ (t)hn

j (·, x)).

As above, it is not difficult to prove that, for all t ∈ [tn
j , tn

j+1] and x, y ∈ H,

‖τ(t)hn
j (·, x)− τ(t)hn

j (·, y)‖C0 6 ‖x − y‖

and ∥∥τ(t)hn
j (·, x)

∥∥
C0

6 An
j + ‖x‖ , (3.2)

where

An
j := max

{
‖ϕ‖C0

, max
06i6 j−1

sup
s∈[tn

i ,t
n
i+1]

∥∥un
i (s)

∥∥} .
It results that the map f n

j (·, ·) complies with the assumptions of Theorem 2.1. Thus,
there exists one and only one absolutely continuous map un

j (·): [tn
j , tn

j+1] → H such
that un

j (t
n
j ) = un

j−1(t
n
j ),

u̇n
j (t)+ f n

j

(
t,un

j (t)
)

∈ −N
(
C(t),un

j (t)
)

a.e. t ∈
[
tn

j , tn
j+1

]
,

and ∥∥u̇n
j (t)+ f n

j

(
t,un

j (t)
)∥∥ 6

∥∥ f n
j

(
t,un

j (t)
)∥∥+ |v̇(t)| a.e. t ∈

[
tn

j , tn
j+1

]
.

In this way, we define un
0(·), · · · ,un

n−1(·) such that, for each i ∈ {0, · · · ,n − 1}, un
i (·) is

absolutely continuous on [tn
i , tn

i+1], un
i (t

n
i ) = un

i−1(t
n
i ) (with the convention un

−1(0) :=

ϕ(0)),

u̇n
i (t)+ f n

i

(
t,un

i (t)
)

∈ −N
(
C(t),un

i (t)
)

a.e. t ∈
[
tn
i , tn

i+1

]
,



and ∥∥u̇n
i (t)+ f n

i

(
t,un

i (t)
)∥∥ 6

∥∥ f n
i

(
t,un

i (t)
)∥∥+ |v̇(t)| a.e. t ∈

[
tn
i , tn

i+1

]
.

Let us define un(·): [−ρ,T ] → H by

un(t) :=

{
ϕ(t) if t ∈ [−ρ, 0]

un
i (t) if t ∈

[
tn
i , tn

i+1

]
, i ∈ {0, · · · ,n − 1}.

Then, for each i ∈ {0, · · · ,n − 1},

hn
i (t, x) =

un(t) if t ∈
[
−ρ, tn

i

]
un
(
tn
i

)
+

n
T

(
t − tn

i

) (
x − un(tn

i )
)

if t ∈
[
tn
i , tn

i+1

]
.

(3.3)

Put

θn(t) :=

{
0 if t = 0,

tn
i if t ∈

]
tn
i , tn

i+1

]
, i ∈ {0, · · · ,n − 1}.

One has, by construction, un(0) = ϕ(0) and, for almost all t ∈ I,

u̇n(t)+ f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)
∈ −N(C(t),un(t)), (3.4)

∥∥∥u̇n(t)+ f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)∥∥∥ 6
∥∥∥ f (t, τ (t)hn

n
T θn(t)(·,un(t)))

∥∥∥+ |v̇(t)|, (3.5)

and

un(s) = ϕ(s) for all s ∈ [−ρ, 0].

Thanks to (3.2), we have∥∥∥τ(t)hn
n
T θn(t)(·,un(t))

∥∥∥
C0

6 2 ‖un(·)‖CH([−ρ,T ]) . (3.6)

This, along with (i i i), implies∥∥∥ f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)∥∥∥ 6 β(t)(1 + 2 ‖un(·)‖CH([−ρ,T ])) a.e. t ∈ I. (3.7)

B) We are going to prove that (un(·)) converges uniformly in CH([−ρ,T ]).
As un(·) is absolutely continuous on [0,T ], it follows from (3.5) and (3.7) that, for any
t ∈ [0,T ],

‖un(t)‖ 6 ‖ϕ(0)‖ +

∫ T

0
|v̇(s)|ds + 2(1 + 2‖un(·)‖CH([−ρ,T ]))

∫ T

0
β(s)ds

and hence

‖un(·)‖CH([−ρ,T ]) 6 ‖ϕ‖C0 +

∫ T

0
|v̇(s)|ds + 2(1 + 2‖un(·)‖CH([−ρ,T ]))

∫ T

0
β(s)ds

Taking (3.1) into account, it follows that

‖un(·)‖CH([−ρ,T ]) 6
M
2
, (3.8)



where

M :=
2

1 − 4
∫ T

0 β(s)ds

(
‖ϕ‖C0 +

1

2
+

∫ T

0
|v̇(s)|ds

)
.

By (3.5) and (3.7) we have∥∥∥u̇n(t)+ f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)∥∥∥ 6 γ (t) a.e. t ∈ I, (3.9)

where

γ (t) := |v̇(t)| + (1 + M)β(t).

One has also

‖u̇n(t)‖ 6 α(t) := |v̇(t)| + 2(1 + M)β(t) a.e. t ∈ I. (3.10)

Now, we proceed to prove that (un(·)) is a Cauchy sequence in CH([0,T ]). Thanks to
(3.4), (3.9), and the hypomonotonicity property of the normal cone, for m,n > 1 and
for almost all t ∈ I , we have

〈u̇n(t)+ zn(t)− u̇m(t)− zm(t),un(t)− um(t)〉 6 1/r γ (t)‖un(t)− um(t)‖2,

where

zn(t) := f (t, τ (t)hn
n
T θn(t)(·,un(t))).

Hence,

〈u̇n(t) − u̇m(t),un(t)− um(t)〉 6 1/r γ (t) ‖un(t)− um(t)‖2

+ ‖un(t)− um(t)‖
∥∥∥ f (t, τ (t)hn

n
T θn(t)(·,un(t)))− f

(
t, τ (t)hm

m
T θm(t)(·,um(t))

)∥∥∥
and then

1

2

d
dt
(‖un(t)− um(t)‖2) 6

1

r
γ (t)‖un(t)− um(t)‖2

+ Bn,m(t)‖un(t)− um(t)‖, (3.11)

where

Bn,m(t) :=

∥∥∥ f (t, τ (t)hn
n
T θn(t)(·,un(t)))− f

(
t, τ (t)hm

m
T θm(t)(·,um(t))

)∥∥∥ .
According to (ii), (3.6), and (3.8), we have, for some non-negative function kM(·) ∈

L1(I,R) and for all t ∈ I

Bn,m(t) 6 kM(t)
∥∥∥τ(t)hn

n
T θn(t)(·,un(t))− τ(t)hm

m
T θm(t)(·,um(t))

∥∥∥
C0

.

Then,

Bn,m(t) 6 kM(t)
∥∥∥τ(t)hn

n
T θn(t)(·,un(t))− τ(t)hn

n
T θn(t)(·,um(t))

∥∥∥
C0

+

kM(t)
∥∥∥τ(t)hn

n
T θn(t)(·,um(t))− τ(t)hm

m
T θm(t)(·,um(t))

∥∥∥
C0

.



The map x 7→ τ(t)hn
n
T θn(t)

(·, x) being 1-Lipschitz, one has

Bn,m(t) 6 kM(t) ‖un(t)− um(t)‖

+kM(t)
∥∥∥τ(t)hn

n
T θn(t)(·,um(t))− τ(t)hm

m
T θm(t)(·,um(t))

∥∥∥
C0

. (3.12)

Let i ∈ {0, · · · ,n − 1} and j ∈ {0, · · · ,m − 1} such that t ∈]tn
i , tn

i+1] and t ∈]tn
j , tn

j+1].
Then,∥∥∥τ(t)hn

n
T θn(t)(·,um(t))− τ(t)hm

m
T θm(t)(·,um(t))

∥∥∥
C0

= sup
s∈[−ρ+t,t]

∥∥hn
i (s,um(t))− hm

j (s,um(t))
∥∥

6 sup
s∈[0,t]

∥∥hn
i (s,um(t))− hm

j (s,um(t))
∥∥ .

In the case tn
i 6 tm

j one has

sup
s∈[0,t]

∥∥hn
i (s,um(t))− hm

j (s,um(t))
∥∥ = max{A1

n,m(t), A2
n,m(t), A3

n,m(t)},

with

A1
n,m(t) := sup

s∈[0,tn
i ]

‖un(s)− um(s)‖,

A2
n,m(t) := sup

s∈
[
tn
i ,t

m
j

]
∥∥∥un

(
tn
i

)
+

n
T

(
s − tn

i

) (
um(t)− un

(
tn
i

))
− um(s)

∥∥∥ ,
and

A3
n,m(t) : = sup

s∈[tm
j ,t]

∥∥∥un
(
tn
i

)
+

n
T

(
s − tn

i

) (
um(t)− un

(
tn
i

))
−um

(
tm

j

)
−

m
T

(
s − tm

j

) (
um(t)− um

(
tm

j

))∥∥∥ .
We have

A2
n,m(t) 6 sup

s∈
[
tn
i ,t

m
j

] ∥∥un
(
tn
i

)
− un(s)

∥∥+ ‖un(s)− um(s)‖

+
n
T

(
s − tn

i

) (
‖um(t)− un(t)‖ +

∥∥un(t)− un
(
tn
i

)∥∥) .
Taking (3.10) into account, it follows that

A2
n,m(t) 6 sup

s∈[tn
i ,t

m
j ]

{∫ t

tn
i

α(τ)dτ + ‖un(s)− um(s)‖ + ‖um(t)− un(t)‖ +

∫ t

tn
i

α(τ)dτ

}

6 2
∫ t

tn
i

α(τ)dτ + sup
s∈[tn

i ,t]
‖un(s)− um(s)‖.



A3
n,m(t) 6 sup

s∈[tm
j ,t]

{ ∥∥un
(
tn
i

)
− un(t)

∥∥+ ‖un(t)− um(t)‖ +
∥∥um(t)− um

(
tm

j

)∥∥
+

n
T

(
s − tn

i

) (
‖um(t)− un(t)‖ +

∥∥un(t)− un
(
tn
i

)∥∥)
+

m
T

(
s − tm

j

) ∥∥um(t)− um
(
tm

j

)∥∥ }
6

∫ t

tn
i

α(τ)dτ + ‖un(t)− um(t)‖ +

∫ t

tm
j

α(τ)dτ

+ ‖um(t)− un(t)‖ +

∫ t

tn
i

α(τ)dτ +

∫ t

tm
j

α(τ)dτ

6 2

(∫ t

tn
i

α(τ)dτ +

∫ t

tm
j

α(τ)dτ

)
+ 2‖un(t)− um(t)‖.

Thus, if tn
i 6 tm

j , we have

sups∈[0,t]

∥∥hn
i

(
s,um(t))− hm

j (s,um(t)
)∥∥ 6

max

{
sup

s∈[0,tn
i ]

‖un(s)− um(s)‖, sup
s∈[tn

i ,t]
‖un(s)− um(s)‖, 2‖un(t)− um(t)‖

}

+2

(∫ t

tn
i

α(τ)dτ +

∫ t

tm
j

α(τ)dτ

)

6 2‖un(·)− um(·)‖CH([0,t]) + 2

(∫ t

tn
i

α(τ)dτ +

∫ t

tm
j

α(τ)dτ

)
.

Likewise, if tm
j 6 tn

i , interchanging tm
j and tn

i , we obtain the same previous inequality.
Therefore, for any t ∈ [−ρ,T ], we get∥∥∥τ(t)hn

n
T θn(t)(·,un(t)) − τ(t)hm

m
T θm(t)(·,um(t))

∥∥∥
C0

6 2‖un(·)− um(·)‖CH([0,t])

+ 2

(∫ t

θn(t)
α(τ)dτ +

∫ t

θm(t)
α(τ)dτ

)
.

Coming back to (3.12), we obtain

Bn,m(t) 6 3kM(t)‖un(·)− um(·)‖CH([0,t]) + 2kM(t)
(∫ t

θn(t)
α(τ)dτ +

∫ t

θm(t)
α(τ)dτ

)
.

Taking (3.11) into account, it follows that, for almost all t ∈ I ,

1

2

d
dt
(‖un(t) − um(t)‖2

)
6

(
1

r
γ (t)+ 3kM(t)

)
‖un(·)− um(·)‖

2
CH([0,t])

+ 2‖un(·)− um(·)‖CH([0,t])kM(t)
(∫ t

θn(t)
α(τ)dτ +

∫ t

θm(t)
α(τ)dτ

)



and, using (3.8), it results that

1

2

d
dt

(
‖un(t) − um(t)‖2

)
6

(
1

r
γ (t)+ 3kM(t)

)
‖un(·)− um(·)‖

2
CH([0,t])

+ 2MkM(t)
(∫ t

θn(t)
α(τ)dτ +

∫ t

θm(t)
α(τ)dτ

)
. (3.13)

In the following we use the fact that the map t 7→ ‖un(·)− um(·)‖CH([0,t]) is continuous.
Integrating on [0, t], one has

1

2
‖un(t) − um(t)‖2 6

∫ t

0

(
1

r
γ (s)+ 3kM(s)

)
‖un(·)− um(·)‖

2
CH([0,s])ds

+ 2M
∫ t

0
kM(s)

(∫ s

θn(s)
α(τ)dτ +

∫ s

θm(s)
α(τ)dτ

)
ds.

The above inequality being true for any t ∈ [0,T ], it follows that

‖un(·) − um(·)‖
2
CH([0,t]) 6 an,m

+ 2
∫ t

0

(
1

r
γ (s)+ 3kM(s)

)
‖un(·)− um(·)‖CH([0,s])ds, (3.14)

where

an,m := 4M
∫ T

0
kM(s)

(∫ s

θn(s)
α(τ)dτ +

∫ s

θm(s)
α(τ)dτ

)
ds.

Note that limn θn(t) = t for any t and then limn
∫ t
θn(t)

α(τ)dτ = 0. Therefore, by the
dominated convergence theorem we get limn,m an,m = 0 and, according to Lemma 1.1,

lim
n,m

‖un(·)− um(·)‖∞ = 0,

which proves that the sequence (un(·)) converges uniformly in C([−ρ,T ], H ) to some
map u(·) ∈ C([−ρ,T ], H ) with u(s) = ϕ(s) for all s ∈ [−ρ, 0]. Moreover, thanks to
(3.10), we may suppose that (u̇n(·)) converges weakly in L1(I, H ) to some map
g(·) ∈ L1(I, H ). It results that, for all t ∈ [0,T ], u(t) = ϕ(0)+

∫ t
0 g(s)ds and hence

u(·) is absolutely continuous on [0,T ] with u̇(t) = g(t) for almost all t ∈ [0,T ].
Consequently,

u̇n(·) → u̇(·) weakly in L1(I, H). (3.15)

C) Now, we aim at proving that u(·) is a solution of (Pϕ).
First, let us prove that, for any t ∈]0,T ], one has

lim
n

f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)
= f (t, τ (t)u(·)).

Fix t ∈]0,T ]. For each n > 1, there exists j ∈ {0, · · · ,n − 1} such that t ∈]tn
j , tn

j+1] and
thus θn(t) = tn

j . Then,

‖τ(t)hn
n
T θn(t)

(·,un(t))− τ(t)u(·)‖C0 = sups∈[−ρ,0]

∥∥∥hn
j (t + s,un(t))− u(t + s)

∥∥∥
= sups∈[−ρ+t,t]

∥∥∥hn
j (s,un(t))− u(s)

∥∥∥
6 max

{
sups∈[0,tn

j ]
‖un(s)− u(s)‖, B1

n,m(t)
}
,



where

B1
n,m(t) := sup

s∈[tn
j ,t]

∥∥∥un
(
tn

j

)
+

n
T

(
s − tn

j

) (
un(t)− un

(
tn

j

))
− u(s)

∥∥∥ .
We have

B1
n,m(t) 6 sup

s∈
[
tn

j ,t
] (∥∥∥un(tn

j )− u(s)
∥∥∥+

∥∥∥un(t)− un

(
tn

j

)∥∥∥)
6 sup

s∈
[
tn

j ,t
] (∥∥∥un(tn

j )− un(s)
∥∥∥+ ‖un(s)− u(s)‖ +

∥∥∥un(t)− un

(
tn

j

)∥∥∥) .
It follows from (3.10) that

B1
n,m(t) 6 sup

s∈[tn
j ,t]

‖un(s)− u(s)‖ + 2
∫ t

θn(t)
α(τ)dτ.

As a result,∥∥∥τ(t)hn
n
T θn(t)(·,un(t))− τ(t)u(·)

∥∥∥
C0

6 ‖un(·)− u(·)‖∞ + 2
∫ t

θn(t)
α(τ)dτ

and thus ∥∥∥τ(t)hn
n
T θn(t)(·,un(t))− τ(t)u(·)

∥∥∥
C0

→ 0.

Due to the continuity of the map f (t, ·), we have

f
(

t, τ (t)hn
n
T θn(t)(·,un(t))

)
→ f (t, τ (t)u(·)). (3.16)

Now, we are going to prove that

u̇(t)+ f (t, τ (t)u(·)) ∈ −N(C(t),u(t)) a.e. t ∈ I.

Thanks to (3.15) and (3.16), by Mazur’s lemma, there exists a sequence (ζn(·)) which
converges strongly in L1(I, H ) to the map t 7→ u̇(t)+ f (t, τ (t)u(·)) with

ζn(t) ∈ co
{

u̇k(t)+ f (t, τ (t)hk
k
T θk(t)

(·,uk(t)) : k > n
}

for each n > 1 and for all t ∈ I. Extracting a subsequence, we may suppose that,

ζn(t) → u̇(t)+ f (t, τ (t)u(·)) a.e. t ∈ I.

Consequently, for almost all t ∈ I ,

u̇(t)+ f (t, τ (t)u(·)) ∈

⋂
n

co
{

u̇k(t)+ f (t, τ (t)hk
k
T θk(t)

(·,uk(t)) : k > n
}
.

It follows that, for some fixed negligable set N0 ⊂ [0,T ], for all t 6∈ N0, for any
ξ ∈ H,

〈ξ, u̇(t)+ f (t, τ (t)u(·))〉 6 inf
n

sup
k>n

〈
ξ, u̇k(t)+ f

(
t, τ (t)hk

k
T θk(t)

(·,uk(t)
)〉
.

By (3.4), (3.9) and (1.2), this entails that

〈ξ, u̇(t)+ f (t, τ (t)u(·))〉 6 α(t) lim supn σ(−∂
PdC(t)(un(t)), ξ)

6 α(t) lim supn σ(−∂
CdC(t)(un(t)), ξ).



As, for all t ∈ I , σ(−∂CdC(t)(·), ξ) is upper semicontinuous on I, one has, for all t 6∈

N0, for all ξ ∈ H,

〈ξ, u̇(t)+ f (t, τ (t)u(·))〉 6 α(t)σ (−∂CdC(t)(u(t)), ξ).

The Clarke subdifferential ∂CdC(t)(u(t)) being closed and convex for any t ∈ I , we
deduce that

u̇(t)+ f (t, τ (t)u(·)) ∈ −α(t)∂CdC(t)(u(t)) ⊂ −N(C(t),u(t)) a.e. t ∈ I,

the last inclusion coming from (1.3). Consequently, the map u(·) is a solution of (Pϕ).

II – Now assume that
∫ T

0 β(s)ds > 1
4 .

Consider a partition 0 = T0 < T1 < · · · < Tn = T of [0,T ] such that, for any i ∈

{0, · · · ,n − 1}, ∫ Ti+1

Ti

β(s)ds <
1

4
. (3.17)

According to the part I, there exist a map u0(·): [−ρ,T1] → H absolutely continuous
on [0,T1] such that

u0(s) = ϕ(s) for all s ∈ [−ρ, 0]

and

u̇0(t)+ f (t, τ (t)u0(·)) ∈ −N(C(t),u0(t)) a.e. t ∈ [0,T1].

Assume that, for any i ∈ {0, · · · ,n − 2}, there exists a map ui (·): [−ρ,Ti+1] → H
absolutely continuous on [0,Ti+1] such that

ui (s) = ϕ(s) for all s ∈ [−ρ, 0] (3.18)

and

u̇i (t)+ f (t, τ (t)ui (·)) ∈ −N(C(t),ui (t)) a.e. t ∈ [0,Ti+1]. (3.19)

Let us define f̃ : [0,Ti+2 − Ti+1] × C0 → H, C̃ : [0,Ti+2 − Ti+1] ⇒ H, and ϕ̃(·) :

[−ρ, 0] → H by

f̃ (t, φ) := f (t + Ti+1, φ), C̃(t) := C(t + Ti+1), (3.20)

and

ϕ̃(s) := ui (s + Ti+1).

Define also β̃(·): [0,Ti+2 − Ti+1] → R by

β̃(t) := β(t + Ti+1).

Obviously, for all t ∈ [0,Ti+2 − Ti+1] and for all φ ∈ C0

‖ f̃ (t, φ)‖ 6 (1 + ‖φ‖C0)β̃(t)

and, due to (3.17), ∫ Ti+2−Ti+1

0
β̃(s)ds <

1

4
.



According to the part I again, there exist a map ũ(·): [−ρ,Ti+2 − Ti+1] → H which is
absolutely continuous on [0,Ti+2 − Ti+1] such that

ũ(s) = ϕ̃(s) for all s ∈ [−ρ, 0] (3.21)

and

˙̃u(t)+ f̃ (t, τ (t)ũ(·)) ∈ −N(C̃(t), ũ(t)) a.e. t ∈ [0,Ti+2 − Ti+1]. (3.22)

Consider the map ui+1(·): [−ρ,Ti+2] → H defined by

ui+1(t) :=

{
ui (t) if t ∈ [−ρ,Ti+1],

ũ(t − Ti+1) if t ∈ [Ti+1,Ti+2].

It follows from (3.20) and (3.22) that

u̇i+1(t)+ f (t, τ (t)ui+1(·)) ∈ −N(C(t),ui+1(t)) a.e. t ∈ [Ti+1,Ti+2]. (3.23)

Thanks to (3.18) and (3.19), along with (3.23), we obtain

ui+1(s) = ϕ(s) for all s ∈ [−ρ, 0]

and

u̇i+1(t)+ f (t, τ (t)ui+1(·)) ∈ −N(C(t),ui+1(t)) a.e. t ∈ [0,Ti+2].

By repeating the process we obtain a solution on the whole interval [−ρ,T ].
Now, we turn to the uniqueness part. Assume that u1(·) and u2(·) are two solutions of
(Pϕ). Let us set

η := max(‖u1(·)‖CH([−ρ,T ]), ‖u2(·)‖CH([−ρ,T ])).

One has, for i = 1, 2 and for all t ∈ [0,T ],

‖τ(t)ui (·)‖C0 6 η (3.24)

and, due to (iii),

‖ f (t, τ (t)ui (·))‖ 6 (1 + η)β(t). (3.25)

It follows from proposition 2.1 that, for i = 1, 2,

‖u̇i (t)+ f (t, τ (t)ui (·))‖ 6 m(t) := |v̇(t)| + (1 + η)β(t) a.e. t ∈ [0,T ].

The hypomonotonicity of the normal cone, along with the last inequality yields, for
almost all t ∈ [0,T ],

〈u̇1(t)+ f (t, τ (t)u1(·))−u̇2(t)− f (t, τ (t)u2(·)),u1(t)− u2(t)〉 6
1

r
m(t)‖u1(t)− u2(t)‖2

and then
1

2

d
dt
(‖u1(t) − u2(t)‖2) 6

1

r
m(t)‖u1(t)− u2(t)‖2

+ ‖u1(t)− u2(t)‖‖ f (t, τ (t)u1(·))− f (t, τ (t)u2(·))‖.

From (ii) and (3.24), it results that, for some non-negative function kη(·) ∈ L1

([0,T ],R) and for almost all t ∈ [0,T ],

d
dt

(
‖u1(t)− u2(t)‖2

)
6 2

(
1

r
m(t)kη(t)

)
‖u1(·)− u2(·)‖

2
CH([0,t]).



Integrating on [0, t], one obtains

‖u1(t)− u2(t)‖2 6

∫ t

0
2

(
1

r
m(s)kη(s)

)
‖u1(·)− u2(·)‖

2
CH([0,s])ds.

This implies that, for all t ∈ [0,T ],

‖u1(·)− u2(·)‖
2
CH([0,t]) 6

∫ t

0
2

(
1

r
m(s)kη(s)

)
‖u1(·)− u2(·)‖

2
CH([0,s])ds.

According to Gronwall’s lemma, one has

‖u1(·)− u2(·)‖CH([0,T ]) = 0,

which proves that u1(·) = u2(·). The proof is then complete. �

The following proposition gives an estimation of the derivative of the solution of the
problem (Pϕ) depending only on ϕ(·), β(·), and v(·).

PROPOSITION 3.1. Let u(·) be the unique solution of the problem (Pϕ). For

l := ‖ϕ‖C0 + exp

{
2
∫ T

0
β(τ)dτ

}∫ T

0
[2(1 + ‖ϕ‖C0)β(s)+ |v̇(s)|]ds,

one has

‖u̇(t)+ f (t, τ (t)u(·))‖ 6 (1 + l)β(t)+ |v̇(t)| a.e. t ∈ I

and hence

‖u̇(t)‖ 6 2(1 + l)β(t)+ |v̇(t)| a.e. t ∈ [0,T ].

Proof. Let u(·) be the unique solution of (Pϕ). According to Proposition 2.1, one
has

‖u̇(t)+ f (t, τ (t)u(·))‖ 6 ‖ f (t, τ (t)u(·))‖ + |v̇(t)| a.e. t ∈ [0,T ]. (3.26)

It follows that

‖u̇(t)‖ 6 2β(t)(1 + ‖τ(t)u(·)‖C0)+ |v̇(t)| a.e. t ∈ [0,T ]

and hence

‖u̇(t)‖ 6 2β(t)

(
1 + max

(
‖ϕ‖C0 , sup

s∈[0,t]
‖u(s)‖

))
+ |v̇(t)| a.e. t ∈ [0,T ].

This yields

‖u̇(t)‖ 6 2β(t)
∫ t

0
‖u̇(s)‖ds + 2(1 + ‖ϕ‖C0)β(t)+ |v̇(t)| a.e. t ∈ [0,T ].

By Gronwall’s lemma we obtain, for all t ∈ [0,T ],∫ t

0
‖u̇(s)‖ds 6

∫ t

0

[
(2(1 + ‖ϕ‖C0)β(s)+ |v̇(s)|) exp

{
2
∫ t

s
β(τ)dτ

}]
ds.

As a result, for

l := ‖ϕ‖C0 + exp

{
2
∫ T

0
β(τ)dτ

}∫ T

0
[2(1 + ‖ϕ‖C0)β(s)+ |v̇(s)|]ds,



one has

‖u(·)‖CH([−ρ,T ]) 6 l.

Consequently,

‖ f (t, τ (t)u(·))‖ 6 (1 + l)β(t) a.e. t ∈ [0,T ]

and, from (3.26),

‖u̇(t)+ f (t, τ (t)u(·))‖ 6 (1 + l)β(t)+ |v̇(t)| a.e. t ∈ [0,T ].

The proof is then complete. �

As expected, the map ϕ 7→ uϕ(·) which associates with each ϕ in the set C := {φ ∈

CH([−ρ, 0]) : ϕ(0) ∈ C(0)} the unique solution of the problem (Pϕ) is continuous.
That is the object of the following result.

PROPOSITION 3.2. Assume that the assumptions of Theorem 2.1 hold. For each ϕ ∈

C, let uϕ(·) be the unique solution of the delay perturbed sweeping process{
−u̇(t) ∈ N(C(t),u(t))+ f (t, τ (t)u(·)) a.e.t ∈ [0,T ],

u(s) = ϕ(s) ∀ s ∈ [−ρ, 0].

Then, the map ϕ 7→ uϕ(·) from C to the space C([−ρ,T ], H ) endowed with the uniform
convergence norm is Lipschitz on any bounded subset of C.

Proof. Let M be any fixed positive real number. We are going to prove that the
map ϕ 7→ uϕ(·) is Lipschitz on C ∩ MB0, where B0 is the unit ball of C0 := CH([−ρ, 0]).

According to Proposition 3.1, there exists a real number M1 depending only on M
such that, for all ϕ ∈ C ∩ MB0 and, for almost all t ∈ [0,T ],

‖u̇ϕ(t)+ f (t, τ (t)uϕ(·))‖ 6 α(t) := (1 + M1)β(t)+ |v̇(t)|

and

‖u̇ϕ(t)‖ 6 2(1 + M1)β(t)+ |v̇(t)|.

Thanks to this last inequality, for some η > 0 depending only on M, for all ϕ ∈ C ∩

MB0 and for all t ∈ [0,T ],

‖uϕ(·)‖CH([−ρ,T ]) 6 η. (3.27)

Fix any ϕ1, ϕ2 ∈ C ∩ MB0. By the hypomonotonicity property of the normal cone, we
have, for almost all t ∈ [0,T ],

〈u̇ϕ1(t)+ f (t, τ (t)uϕ1(·))− u̇ϕ2(t) − f (t, τ (t)uϕ2(·)),uϕ1(t)− uϕ2(t)〉

6
α(t)

r
‖uϕ1(t)− uϕ2(t)‖

2

and then

〈u̇ϕ1(t) − u̇ϕ2(t),uϕ1(t)− uϕ2(t)〉 6
α(t)

r
‖uϕ1(t)− uϕ2(t)‖

2

+ ‖ f (t, τ (t)uϕ1(·))− f (t, τ (t)uϕ2(·))‖‖uϕ1(t)− uϕ2(t)‖.



Since, by assumptions, there is a non-negative function k(·) ∈ L1([0,T ],R) such
that f (t, ·) is k(t)-Lipschitz on ηB0 (this function depends only on M), the above
inequality, along with (3.27), entails that, for almost all t ∈ [0,T ],

d
dt
(‖uϕ1(t)− uϕ2(t)‖

2) 6 2

(
α(t)

r
+ k(t)

)
‖uϕ1(·)− uϕ2(·)‖

2
CH([−ρ,t]).

Integrating on [0, t], we deduce that

‖uϕ1(·) − uϕ2(·)‖
2
CH([−ρ,t]) 6 ‖ϕ1(·)− ϕ2(·)‖

2
C0

+2
∫ t

0

(
α(s)

r
+ k(s)

)
‖uϕ1(·)− uϕ2(·)‖

2
CH([−ρ,s])ds.

Via Gronwall’s lemma, we obtain, for any t ∈ [0,T ],

‖uϕ1(·) − uϕ2(·)‖
2
CH([−ρ,t]) 6 ‖ϕ1(·)− ϕ2(·)‖

2
C0

+ 2‖ϕ1(·)− ϕ2(·)‖
2
C0

∫ T

0

((
α(s)

r
+ k(s)

)
exp{2

∫ T

0

(
α(τ)

r
+ k(τ )

)
dτ }

)
ds.

Therefore,

‖uϕ1(·)− uϕ2(·)‖CH([−ρ,T ]) 6 A‖ϕ1 − ϕ2‖C0 ,

where

A :=

(
1 + 2 exp

{
2
∫ T

0

(
α(τ)

r
+ k(τ )

)
dτ
}∫ T

0

(
α(s)

r
+ k(s)

)
ds
) 1

2

.

The proof is then complete. �

Remark 3.1. Note that in the proof above, unlike the construction in [8], the second
argument of f in the definition of the maps f n

j ’s depends not only on x but also on t .
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