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Abstract

This article is devoted to the nonlinear Schrödinger equation

ε2u′′ − V (x)u + |u|p−1u = 0,

when the parameter ε approaches zero. All possible asymptotic behaviors of
bounded solutions can be described by means of envelopes, or alternatively by
adiabatic profiles. We prove that for every envelope, there exists a family of solu-
tions reaching that asymptotic behavior, in the case of bounded intervals. We use a
combination of the Nehari finite dimensional reduction together with degree theory.
Our main contribution is to compute the degree of each cluster, which is a key piece
of information in order to glue them.

1. Introduction

In this paper we study the solutions of the one-dimensional nonlinear
Schrödinger equation

ε2u′′ − V (x)u + |u|p−1u = 0, (1.1)

where p > 1 and the potential V is positive and of class C1. We treat the equation on
a closed, bounded interval I with Neumann boundary conditions with no additional
assumptions on the potential. We also discuss extensions to IR assuming some extra
hypotheses on the potential. The nonlinear Schrödinger equation serves as a model
for various problems in physics, where usually the independent variable refers to
the space variable. However, our results can also be interpreted in the context of
dynamical systems, where the independent variable represents time.

As the parameter ε approaches zero, solutions to equation (1.1) become highly
oscillatory and it is possible to describe their behavior by means of an envelope,
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which determines the asymptotic amplitude of the solutions. Alternatively such
behavior can also be described by an adiabatic profile. Such phenomena has been
discussed for the nonlinear Schrödinger equation in some special cases in [13].
In subsequent works more complete results have been obtained for various kinds
of phase transition models in [14], [15] and [16].

On the other hand, having a prescribed envelope, a natural question is to ask
if there are solutions of (1.1) exhibiting such asymptotic behavior. This question
was studied in the case of the phase transition models in [15] and [16]. There, a
Nehari method and a maximization scheme for the finite dimensional functional is
developed to answer this question positively.

In this work we address the question for the nonlinear Schrödinger equation.
A particularly interesting case is when the potential has several critical points. Near
a positive local maximum of the potential we are able to construct positive (or
negative) oscillatory solutions, called positive single clusters, and near a positive
local minimum of the potential we can construct sign-changing single clusters. In
order to glue these solutions, it seems hard to use a variational method as in [16],
since these solutions correspond to saddle points of the functional, for which energy
estimates are hard to obtain. Moreover, it certainly seems impracticable when we
try to construct solutions in IR having infinitely many clusters.

The main purpose of this article is to develop a degree theoretic approach to
construct multiple clusters for the nonlinear Schrödinger equation. The key step in
our approach is the construction of an appropriate potential, for which it is possi-
ble to estimate the degree of a cluster. Then, through homotopy, we obtain degree
information for clusters of the original potential which allows us to glue them.

The degree theory approach for singularly-perturbed problems has been intro-
duced by Nakashima and Tanaka [23] for the Allen–Cahn equation and later
used by del Pino, Felmer and Tanaka [12] for the nonlinear Schrödinger
equation. In these papers, the construction of solutions with glued clusters, each
having a number of oscillations independent of ε is addressed. The main step
in [23] and [12] is the actual computation of the degree of a cluster, obtained
via a homotopy with a fairly explicit function. In our paper the main difficulty is
the computation of the degree, which is accomplished by constructing a suitable
homotopy.

As mentioned above, to describe the asymptotic behavior of the solutions of
(1.1) we may use the amplitude of the oscillations or the area enclosed by each
loop in the phase space. These quantities give rise to the envelope and the adiabatic
profile, respectively. The adiabatic profile is constant when the solution oscillates,
that is, it corresponds to an adiabatic invariant of the system, that may jump when
crossing the separatrix. In the description of our results, we may also use the energy
function which describes the approximate energy of the oscillations.

We believe that our approach could be used for the description and the construc-
tion of solutions of Hamiltonian systems in IR2 with a slowly-varying parameter
in a very general setting. We emphasize that in our work, in the case of a bounded
interval, we describe and construct solutions, including those crossing a separa-
trix. The phenomena of adiabatic jumps when solutions cross a separatrix has been
studied by many authors, see for example the work by Neishtadt [25, 26] and
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Bourland & Haberman [9]. We think that our analysis could shed new light on
this problem.

2. Statement of main results

Before stating our main results we introduce some necessary elements. Regard-
ing V ∈ IR+ and y ∈ IR as parameters, we consider the equation

v′′(s) − V v(s) + v|v|p−1(s) = 0, s ∈ IR, (2.1)

v(0) = y, v′(0) = 0, (2.2)

and denote its solution by v = v(V, y; s). We let y0 = (
p+1

2 V )1/(p−1) and y∗ =
V 1/(p−1). If y ∈ (0, ∞) \ {y0, y∗}, we denote by T (V, y) one half of the period of
v. In case y = y∗ we set T (V, y) = 2π/

√
pV and we extend T (V, y) as an even

function, for negative values of y. It is convenient to define a frequency function

ω(V, y) = 1

T (V, y)
.

We define ω(V, y0) = ω(V, −y0) = ω(V, 0) = 0 and we observe that ω is contin-
uous in all IR+ × IR, since lim|y|→y0 T (V, y) = limy→0 T (V, y) = ∞. We finally
see that lim|y|→∞ T (V, y) = 0 and lim|y|→∞ ω(V, y) = ∞.

Next, we define the function

A(V, y) =
{

1
2

∫ T (V,y)

0 (v′)2ds if y > y0,∫ T (V,y)

0 (v′)2ds if y∗ � y � y0,
(2.3)

which is a function of class C1. We observe that when y ∈ (y∗, y0) then A(V, y)

represents the area enclosed by the corresponding orbit in the phase space and when
y ∈[ y0, ∞) then A(V, y) represents half of the area enclosed by the orbit.

Given our potential V (x) on the bounded interval I , we let

e0(x) =
[
(p + 1)

2
V (x)

] 1
p−1

and e∗(x) = [V (x)]
1

p−1 . (2.4)

We define the trivial action

A0(x) = A(V (x), e0(x)), (2.5)

which is a C1 function on I .

Definition 2.1. We say that the function A : I → (0, ∞) is an adiabatic profile (or
action profile) if A is continuous and whenever A(x) �= A0(x), we have Ȧ(x) = 0.
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We define the support of an adiabatic profile as

supp(A) = {x ∈ I / A(x) �= A0(x)}.

In the study of the asymptotic behavior of systems with slowly-varying coeffi-
cients (or singularly-perturbed systems), one main feature is the oscillatory char-
acter of the solutions as ε approaches 0. This behavior is not arbitrary, as it
has been shown in different situations by Felmer and Torres [13], Felmer

and Martínez [14], and by Felmer, Martínez and Tanaka [15, 16].
Given a family {uε} of solutions to (1.1) we define an approximate action Aε.

Consider v = vε(x; ·), the solution to the initial-value problem

v′′(s) − V (x)v(s) + |v|p−1v(s) = 0, (2.6)

v(0) = uε(x), v′(0) = εu′
ε(x). (2.7)

We remark that this solution has constant energy equal to

Eε(x) = ε2

2
|u′

ε(x)|2 − 1

2
V (x)|uε(x)|2 + 1

p + 1
|uε(x)|p+1, (2.8)

and, depending on the values of this energy, it may be periodic (changing or fixed
sign) or homoclinic. We let Tε(x) half of the period of vε and define the approximate
action as

Aε(x) =
{

1
2

∫ Tε(x)

0 (v′
ε)

2ds if Eε(x) � 0,∫ Tε(x)

0 (v′
ε)

2ds if Eε(x) < 0.
(2.9)

In Section 4 we prove the following theorem.

Theorem 2.1. Let (uε)0<ε<ε0 be an L∞ bounded family of solutions of (1.1) with a
Neumann boundary condition on ∂I . Then after extracting a subsequence
εn → 0, Aεn(x) converges to an adiabatic profile A.

Remark 2.1. Let (a, b) be an isolated connected component of the support of A
then,

(i) if A(x) < A0(x) in (a, b), uεn(x) is constant sign cluster in (a, b), and
(ii) if A(x) > A0(x) in (a, b), uεn(x) is sign-changing cluster in (a, b).

Constant sign clusters may be classified according to their sign (two cases), and
sign-changing clusters may be classified according to the sign of the first and last
critical point (four cases).

Remark 2.2. As we see in Section 4, the proof of this theorem is essentially given
in [15, 16], where we studied a similar problem for the balanced and unbalanced
Allen–Cahn equations. There we used the notion of envelopes instead of adiabatic
profiles (see Section 3).



Nonlinear Schrödinger Equation 

Conversely, given an adiabatic profile in I , with connected support we can use
the techniques developed in [15] and [16] to construct clusters with an approximate
action converging to the A. Moreover, if the profile A possesses a support with
several connected components, but satisfies A(x) � A0(x) in I (or A(x) � A0(x)

in I ), we can still apply the ideas of [15] and [16]. In fact, the corresponding
finite-dimensional functional has to be minimized or maximized and the gluing
process can be done without extra difficulty (see [16]).

However, when the adiabatic profile A has values above A0 and below A0 in
I , then the corresponding finite-dimensional problem has a min–max structure. In
principle, we could try to find a critical point by a min–max technique, but it would
require very precise estimates, for a functional in a space of dimensions increasing
as ε−1. We do not know if this is possible. On the other hand, if we study the
problem in IR and try to construct solutions gluing an infinite number of clusters
(for a periodic potential for example) the estimates would simply be impossible to
obtain. Consequently a different approach is required.

It is the purpose of this article to develop a degree theoretic approach for the
construction of solutions with multiple clusters. At the heart of our construction
is the definition of a simple problem on which we can make degree computation.
Then, through homotopy, we obtain information on the degree for our original prob-
lem. More precisely, we associate a given component of the support of the adiabatic
profile a problem with a step potential, for which it is particularly easy to handle
degree computations. Once we have estimated the degree for each component of
the support of A, the gluing process is fairly simple.

With this construction we can prove our main theorem

Theorem 2.2. Assuming p>1 and V is positive and of class C1 in the interval
I , then given any adiabatic profile A there exists a family uε of solutions to (1.1)
with a Neumann boundary condition on ∂I , such that the approximate action Aε

associated to uε converges to A.

Remark 2.3. In order to keep the statement of Theorem 2.2 simple, we do not make
precise considerations about the sign of the clusters that we construct. However,
we can handle all possible situations as seen in Section 9. For the case of a bounded
interval I , Theorem 2.2 and its extension in Section 9 gives account of all possible
L∞ bounded solutions.

Remark 2.4. In Section 9 we also consider the case of solutions of (1.1) in IR.
Several situations are considered, but in general we cannot prove that every adia-
batic profile is globally reached. Some uniform assumption on the potential, such
as periodicity for example, is needed to give a global control. In this case various
classes of chaotic solutions can be constructed.

Remark 2.5. In this article we only consider positive potentials. A potential with
negative values can also be treated, but we did not just do it for simplicity in the
description of the results.

Remark 2.6. Since our approach for the construction of solutions is based on a
combination of the Nehari method with degree theory, we think it is possible to
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extend it to study some non-variational perturbations of (1.1). Specifically we think
we can treat a problem like

εu′ = v + εg1(x, u, v) (2.10)

εv′ = V (x)u − |u|p−1u + εg2(x, u, v) (2.11)

under appropriate hypotheses on the perturbation functions g1 and g2. However,
we do not pursue this line of research.

Highly oscillatory solutions are very natural in the context of slowly-varying
systems, however, as far as we know, not much is known in the literature about the
rigorous construction of these solutions. In this direction we mention the earlier
work by Kurland [20] on the existence of highly-oscillatory solutions for unbal-
anced Allen–Cahn equation, and its connection with adiabatic invariants, see [7].
In [20], Kurland constructs highly-oscillatory local solutions for which the oscil-
lations stay away from homoclinic or heteroclinic orbits, in our terminology this
is the case where supp A= I . This allows a change of variables, transforming the
system to action–angle variables. We also mention the work by Ai in [1] and [2],
where the author uses a shooting method to construct solutions for certain equa-
tions, having a number of oscillations of order ε−1. Contributions are also given in
[14, 15] and [16] for the Allen–Cahn equation and for the nonlinear Schrödinger
equation in [13].

For solutions with prescribed Morse index, in the case of the balanced Allen–
Cahn equation we have the work by Nakashima [21, 22], and Nakashima &

Tanaka [23], and for unbalanced Allen–Cahn equation we have the work by
Alikakos, Bates and Fusco [6], where some highly-oscillatory solutions with
small amplitude are also constructed. We mention the work of Hastings and Mc

Leod [18], where periodic solutions to a second-order equation with a slowly-
varying force are found. This work motivated further research in systems with
slowly-varying coefficients. In more recent work, Ai and Hastings [4] and Ai,

Chen and Hastings [3] construct solutions that combine peaks and transition lay-
ers. We also refer to the work of Gedeon, Kokubu, Mischaikow and Oka [17]
where Conley index theory is used to construct solutions with oscillations pre-
scribed in terms of symbolic sequences of integers, for a slowly-varying planar
Hamiltonian system.

The problem of gluing concentrating solutions has received enormous attention
during the last fifteen years. We mention the pioneering work of Séré [27] and
Coti-Zelati and Rabinowitz [11], and subsequent papers of many others. Par-
ticularly interesting to our analysis is the work of Alessio and Montechiari [5]
and Kang & Wei [19]. In all these works a good understanding of the properties
of the objects to be glued is needed, for instance uniqueness or non-degeneracy,
which is expressed in analytical or topological terms. In the problem here such
information seems more elusive, since the clusters we have in mind are solutions
that do not survive in a reasonable manner in the limit procedure, as in the case of
a single or multi-peak or transition layer.
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3. Envelopes and adiabatic profiles

In earlier work [13, 16], we have defined the notion of an envelope, which is
very useful in the analysis of our problem. The envelope represents the asymptotic
amplitude of the solutions we are studying and it is closely related to the Nehari
method, which consists of matching the amplitude of broken solutions.

On the other hand, in Section 2 we have introduced the adiabatic profiles in
order to describe our results. These functions are easily defined and are very useful
to describe our results, see [16].

In this section we make the connection between these two important concepts.
Keeping the notation of Section 2, we define the auxiliary function

Q(V, y) = 1

T (V, y)

∫ T (V,y)

0
v2(V , y; s)ds,

when T (V, y) is finite, and we set Q(V, y) = 0 if y = −y0, 0 or y0. Then we
introduce the field

H(x, y) = V ′(x)(y2 − Q(V (x), y))

2y(|y|p−1 − V (x))
.

Definition 3.1. We say that a continuous function e : I → IR, such that e(x) �
e∗(x) for all x ∈ I , is an envelope if it satisfies the ordinary differential equation

e′ = H(x, e), for all x ∈ I. (3.1)

Among all envelopes, e∗ and e0 are distinguished and called trivial envelopes.
We define the support of an envelope, the set

supp(e) = {x ∈ IR/e(x) �= e0(x)}.
Since the function A, defined in (2.3), is an increasing function for y � y∗, the
equation

A = A(V, y)

defines also a C1 function y = y(V, A). Then we have the key relation

Lemma 3.1. If A and e are continuous functions and satisfy the equation

A(x) = A(V (x), e(x)), x ∈ I, (3.2)

then A is an adiabatic profile if and only if e is an envelope.

Before proving this lemma, we introduce the energy function, which provides
yet another alternative for the description of our results. We define the energy func-
tion as

E(x) = −V (x)
e(x)2

2
+ e(x)p+1

p + 1
. (3.3)
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Direct differentiation with respect to x, using equation (3.1) for e, leads to

Ė(x) = −V ′(x)

2
R(V (x), E(x)), (3.4)

which is analogous to equation (3.1) for the envelope e. Here the function R is
defined by

R(V, E) = Q(V, y),

where E = −Vy2/2 + yp+1/(p + 1). Thus E is a solution to (3.4) if and only if e

is an envelope.

Proof of Lemma 3.1. By conservation of energy, for the solution v = v(V (x),

e(x); s) of (2.1)–(2.2), we have

(v′(s))2

2
= V (x)

(v(s))2

2
− (v(s))p+1

p + 1
+ E(x). (3.5)

Then, differentiating (3.5) with respect tox, integrating from 0 toT = T (V (x), e(x))

and using the equation for v we get

2
∫ T

0
v′(vx)

′ds = V ′(x)

∫ T

0

(v(s))2

2
ds + T Ė(x). (3.6)

Thus, if e is an envelope, using the equation for E on x ∈ supp(e) we find that
Ȧ(x) = 0. Conversely, if A is an adiabatic profile, the left-hand side of (3.6) is
zero. Then we find

V ′(x)Q(V (x), e(x)) − V ′(x)
e2

2
− (V (x)e − ep)ė = 0,

from where the equation for e follows, proving e is an envelope. �	
It follows from (3.6) that

Ȧ0(x) = V ′(x)

∫ T

0

v2

2
ds,

so that, in particular, the critical points of V and of A0 are the same. Thus, we can
make a complete description of all possible adiabatic profiles.

In view of this observation and the relation between adiabatic profiles and enve-
lopes given by Lemma 3.1, we obtain all possible solutions of the envelope equation
in

{(x, y) / x ∈ I, y > e∗(x)}.
By proper reflection with respect to the x axis and also with respect to the graph of
e∗, we can obtain the whole diagram of solutions of (3.1) in the plane.
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Remark 3.1. From the connection between adiabatic profiles and envelopes we
observe a bifurcation phenomenon occurring in the envelopes. Let [a, b] be an
interval such that V ′(x) > 0 for all x ∈ (a, b), then for every x̄ ∈ (a, b) there is an
envelope e : I → IR such that (x̄, e0(x̄)) is a bifurcation point to the right, that is,
in a neighborhood of x̄, e(x) = e0(x) for x < x̄ and e(x) < e0(x) for x > x̄. This
envelope is the only one bifurcating to the right.

On the other hand, there is an envelope e such that (x̄, e0(x̄)) is a bifurca-
tion point to the left, that is, in a neighborhood of x̄, e(x) = e0(x) for x > x̄ and
e(x) > e0(x) for x > x̄. This is envelope is the only one bifurcating to the left. Cer-
tainly, there is also an envelope e bifurcating to both sides, such that e(x̄) = e0(x̄)

and, in a neighborhood of x̄, we have e(x̄) > e0(x̄) if x < x̄ and e(x̄) < e0(x̄) if
x > x̄.

Analogous bifurcation phenomena hold true in the interval [a, b] if we have
V ′(x) < 0 for all x ∈ (a, b).

Remark 3.2. If x̄ is an isolated local minimum of the potential, then x̄ is a bifur-
cation point to the right and to the left, with bifurcating e staying locally below e0.
An analogous statement holds true at an isolated local maximum of the potential
with bifurcation e staying locally above e0.

4. Asymptotic behavior of solutions to (1.1)

This section reviews some basic facts about the asymptotic behavior of a family
of solutions of (1.1), as the parameter ε approaches 0. The oscillatory character of
the solutions and their asymptotic behavior, as described by an envelope, or an adi-
abatic profile, has been obtained in the case of the unbalanced Allen–Cahn equation
in [16]. In this section, we provide proofs of these facts in the case of the nonlinear
Schrödinger equation for completeness.

Assume we have functions un : [an, bn] → IR satisfying

ε2
nu

′′
n − V (x)un + |un|p−1un = 0, (4.1)

u′
n(an) = u′

n(bn) = 0, (4.2)

where εn → 0 as n → ∞. Assume further that limn→∞ an = ā, limn→∞ bn = b̄,
and ‖un‖L∞(an,bn) is bounded.

Let an < y0
n < y1

n < · · · < y
sn−1
n < y

sn
n < bn be the local maximum points of

|un| in [an, bn] and assume that sn → ∞ as n → ∞. Considering a subsequence,
if necessary, we define

α = lim
n→∞ y0

n and β = lim
n→∞ ysn

n .

In Proposition 5.2 from [13], it is proved that if V ′ does not vanish in [α, β]
then in any given interval [x1, x2] ⊂ (α, β) there is n0 so that for every n � n0 the
solution un has at least one maximum point and one minimum point in [x1, x2].
The following result is crucial in our analysis.
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Proposition 4.1.

1. Assume V ′ is positive in
[
ā, b̄

]
. Suppose that un is positive (or negative), and an

and bn are local minima (or local maxima) of un, then we have
(i) if α > ā then |un|(y0

n) → e0(α),

(ii) if y
in
n → x̄ ∈ (α, b̄] then lim supn→∞ |un|(yin

n ) < e0(x̄), and
(iii) b̄ = β.

2. Assume V ′ is negative in
[
ā, b̄

]
. Suppose that un changes sign and at an it satisfies

un(an) = 0 and u′
n(an) > 0 (or u′

n(an) < 0) and at bn we assume un(bn) = 0
and u′

n(bn) < 0 (or u′
n(bn) > 0). Then

(i) if α > ā then |un|(y0
n) → e0(α),

(ii) if y
in
n → x̄ ∈ (α, b̄] then lim supn→∞ |un|(yin

n ) > e0(x̄), and
(iii) b̄ = β.

We can make analogous statements as in 1 if V ′ is negative, and as in 2 if V ′ is
positive.

Proof.
(i) Since ā < α, rescaling un around y1

n leads to a homoclinic orbit of the
limiting equation, so that un(y

1
n) → e0(α). Moreover, if {yin

n } is a sequence of
maximum points of un such that y

in
n → α then |un|(yin

n ) → e0(α), as we see from

(−V (y)
u2

n(y)

2
+ u

p+1
n (y)

p + 1
)

∣∣∣∣∣
y

in
n

y1
n

= −
∫ y

in
n

y1
n

V ′(x)
u2

n(x)

2
dx. (4.3)

(ii) If lim supn→∞ un(y
1
n) < e0(α), then the result follows from (4.3). We

assume then, for contradiction, that for a subsequence limn→∞ un(y
1
n) = e0(α)

and limn→∞ un(y
in
n ) → e0(x̄). In view of (4.3), this implies that

lim
n→∞

∫ y
in
n

y1
n

V ′(x)u2
n(x)dx = 0 (4.4)

and that for any sequence {ln}, with ln ∈ {1, 2, . . . , in} ≡ Kn, such that
y

ln
n → ȳ ∈ [α, x̄], we have

lim
n→∞ un(y

ln
n ) = e0(ȳ).

This last fact implies that, uniformly in the sequence {ln} ⊂ Kn,

lim
n→∞

y
ln+1
n − y

ln
n

εn

= ∞.

Next, let r0 > 0 and v∗ be the homoclinic solution of (2.1)–(2.2), with V = V (x)

and y = e0(x), for x ∈ [α, x̄]. Then there exists a positive constant A1 such that∫ r0

−r0

(v∗)2(s))ds � A1 > 0, (4.5)
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for all x ∈ [α, x̄] . Thus, letting zk
n < yk

n < zk+1
n be the minimum points enclosing

yk
n , we see that

lim inf
n→∞

1

εn

∫ z
ln
n +r0εn

z
ln
n −r0εn

u2
n(x)dx � A1, (4.6)

uniformly in the sequence {ln} ⊂ Kn. From here we find

∫ y
in
n

y1
n

V ′(x)u2
n(x))dx � εn(in − 2)A2, (4.7)

for certain constant A2 > 0. Thus, to get a contradiction between (4.7) and (4.4)
we just need to prove that the sequence {εnin} is bounded away from zero. From
(4.3) and (4.7) we find a positive constant A3 such that

−V (yk
n)

u2
n(y

k
n)

2
+ u

p+1
n (yk

n)

p + 1
� −εnkA3, ∀k ∈ Kn,

which implies that for any sequence {ln}, with ln ∈ {1, 2, . . . , in} ≡ Kn, such that
y

ln
n → ȳ ∈ [α, x̄], we have

e0(ȳ) − un(y
k
n) � εnkA4

for some A4. From here we can get an upper bound for the period, that is, there is
constant γ1 > 0 such that for all k ∈ Kn

T (V (yk
n), un(y

k
n)) � −γ1 ln(εnkA4) (4.8)

(see Lemma 4.1 in [13] for a similar logarithmic estimate of the period function).
Next we estimate zk+1

n − zk
n in terms of the period. We let vn be the solution of the

equation

ε2
nv

′′
n − V (yk

n)vn(x)) + v
p
n (x)) = 0,

with initial conditions v′
n(y

k
n) = 0 and vn(y

k
n) = un(y

k
n). By our hypothesis on V

we have V (x) � V (yk
n) for all x ∈ [

yk−1
n , yk

n

]
. While un and vn are decreasing, we

define xu and xv as their inverses, respectively. Then we have

−ε2

2

d

ds

(
1

(x′
u)

2 − 1

(x′
v)

2

)
= (−V (xu) + V (yk

n))s,

and so (x′
v)

2 > (x′
u)

2. Let x̄k ∈ [
yk
n − εnT (V (yk

n), un(y
k
n)), yk

n)
]

so that un(x̄k) =
vn(y

k
n − εnT (V (yk

n), un(y
k
n))). We note that (yk

n − x̄k)/εn � T (V (yk
n),

un(y
k
n)) and, since (x̄k − zk

n)/εn is bounded, we find (x̄k − zk
n)/εn � T (V (yk

n),

un(y
k
n)). Thus

(yk
n − zk

n) � 2εnT (V (yk
n), un(y

k
n)), ∀k ∈ Kn.
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Using similar arguments, we compare un(x) with un(2yk
n − x) and find the same

estimate for zk+1
n − yk

n , we conclude that

1

2
(zk+1

n − zk
n) � εnT (V (yk

n), un(y
k
n))), ∀k ∈ Kn. (4.9)

From here and (4.8), we obtain

zin
n − z1

n � 2εn

in∑
k=1

T (V (yk
n), un(y

k
n)) � −2γ1εn

in∑
k=1

ln(εnkA4).

Hence, using that M! � (rM)M for a certain r > 0, we find

1

2
(x̄ − α) � zin

n − z1
n � −2γ1εnin ln(εninrA4),

from where we conclude that {εnin} must be bounded away from zero, completing
the proof of (ii). �	
Remark 4.1. In Proposition 4.1 the way the oscillations take off from the trivial
envelope are made precise. Moreover, Proposition 4.1 assures that the oscillations
of positive solutions tend to concentrate where the potential has higher values and
that the oscillations of sign-changing solutions concentrates at lower values of V .

We observe that it could happen that α = β, in which case we have α = β = b̄.

With the information provided by Proposition 4.1 we can make precise state-
ments about the asymptotic behavior of un on the interval

[
ā, b̄

]
. We define the

approximate upper envelope function eεn : [an, bn] → IR as follows: in the inter-
val

[
y0
n, y

sn
n

]
we consider

eεn(x)= |un

(
yk
n

)
|+

∣∣un

(
yk+1
n

)∣∣ − ∣∣un

(
yk
n

)∣∣
yk+1
n − yk

n

(
yk+1
n − x

)
, x ∈

[
yk
n, yk+1

n

]
,

for k = 1, . . . , sn − 1. If α > ā we extend eεn as the trivial envelope e0 to[
an, y

0
n − εn

]
, and in (y0

n −εn, yn) we interpolate linearly. In case α = ā we extend
eεn linearly to

[
an, y

0
n

]
. To the other extreme we extend eεn linearly to

[
y

sn
n , bn

]
.

If we just assume V ′(ā) > 0 and V ′(b̄) < 0, we can extend our analysis by
working in subintervals where V ′ does not vanish and thus, we can thus construct
an approximate envelope in [an, bn].

Proposition 4.2. Under the conditions described above we have that the sequence
{eεn} converges uniformly to a solution e of (3.1) in

[
ā, b̄

]
. The envelope e is the

trivial envelope e0(x) in the intervals [ ā, α) and (β, b̄].

Proof. The proof of this proposition is similar to Theorem 6.1 in [13]. See also
Proposition 3.4 in [16]. �	
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Remark 4.2. Let us denote by Nn(x0, x1) the number of zeroes of un in
[x0, x1] ⊂ (ā, b̄) then, by a simple argument as in [14], we can prove that

lim
n→∞ Nnεn =

∫ x1

x0

ω((V (x), e(x))dx, (4.10)

where e is the envelope. The frequency function ω was defined in Section 2.

Remark 4.3. If un is positive and u′(an) �= 0 and u′(bn) �= 0, but an and bn are
local minima and both y0

n −an and bn −y
sn
n stays away from zero, then Proposition

4.2 still holds true. A similar situation occurs if un is negative or sign changing.

To conclude this section we see how to obtain Theorem 2.1 from here. We al-
ready know from Proposition 4.2 that the sequence eεn converges conclude up to
a subsequence to an envelope e. Moreover, if (a, b) ⊂ I is an isolated connected
component of the support of e then

(i) If e(x) < e0(x) in (a, b), un(x) is constant sign cluster in (a, b).
(ii) If e(x) > e0(x) in (a, b), un(x) is sign-changing cluster in (a, b).

We can say more, the solution un oscillates near x ∈ (a, b) with an amplitude
approximately equal to e(x) and with a frequency near ω(V (x), e(x)).

In order to complete the proof of Theorem 2.1, we just need to make the connec-
tion between the approximate envelope eεn with the approximate action as defined
in (2.9). For this purpose we consider x ∈ I and the function vεn defined by (2.6)–
(2.7). We define

ẽεn(x) = max
s∈IR

|vεn(x; s)|.
It is clear that the approximate action satisfies

Aεn(x) = A(V (x), ẽεn(x)),

so that we only need to prove that,

Lemma 4.1. After extracting a subsequence,

lim
n→∞ ẽεn(x) = lim

n→∞ eεn(x).

Proof. Consider Eεn(x) as defined in (2.8). Then we have

d

dx
Eεn(x) = −1

2
V ′(x)|uε(x)|2,

so that Eεn(x) is bounded in W 1,∞(I ) as n → ∞. In particular Eεn(x) has a
uniformly convergent subsequence. We also have that

Eεn(x) = −1

2
V (x)ẽεn(x)2 + 1

p + 1
ẽεn(x)p+1, (4.11)

so that ẽεn(x) also has a uniformly convergent subsequence.
Let x0 ∈ int (I ) and suppose that for δ > 0, local maxima of uεn(x) are dense

in (x0 − δ, x0 + δ). Then we can easily see that eεn(x0) and ẽεn(x0) have a common
limit. On the other hand, if for δ > 0 local maxima of uε(x) do not appear densely
in (x0 − δ, x0 + δ), by Proposition 4.2 we have limn→∞ eεn(x0) = e0(x0). We also
have limn→∞ Eεn(x0) = 0 and thus ẽεn(x0) → e0(x). �	
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5. Formulation. Nehari’s method

In this section we formulate the finite-dimensional problem to which we reduce
our existence result. This reduction is well known in various contexts, such as
ordinary differential equations and geometry. In the case of nonlinear eigenvalue
problems for differential equations this method was first used by Nehari [24].

Consider an interval [m, M] and an envelope e : [m, M] → IR such that
supp(e) = (a, b) with m < a < b < M . Moreover, we assume that V ′(a) > 0,
V ′(b) < 0 and e(x) < e0(x) in (a, b).

Associated e we have the number Nε defined as

Nε =
⌊

1

ε

∫ M

m

ω(V (s), e(s))ds

⌋
, (5.1)

with �s� denoting the closest odd integer less than s; Nε corresponds to the expected
number of oscillations that the solution we are looking for has.

In order to formulate our finite-dimensional problem we need an auxiliary enve-

lope ẽ : [m, M] → IR+ such that [a, b] ⊂ supp(ẽ) = (ã, b̃) ⊂
[
ã, b̃

]
⊂ (m, M).

We define, for x, y ∈ [m, M],

d(x, y) = 1

ε

∫ y

x

ω(V (s), ẽ(s))ds (5.2)

and we introduce the domain in IRNε

	ε = {(x1, x2, . . . , xNε ) / d(xi, xi+1) > 1,

i = 1, . . . , Nε − 1, x1 > ã + εt0, xNε < b̃ − εt0}, (5.3)

with t0 > 0. Also consider x0 = m, xNε+1 = M. Since the period function is
monotone increasing in e, for e < e0(x) as we see later in Proposition 5.1, we have
that ω decreases in e and we obtain that∫ M

m

ω(V (s), ẽ(s))ds >

∫ M

m

ω(V (s), e(s))ds.

As a consequence the set 	ε is not empty.
Under our conditions in V and e we are in a position to construct a positive

cluster. Given X = (x1, x2, . . . , xNε ) ∈ 	ε, using the fact that d(xi, xi+1) � 1, we
will prove later in Theorem 5.1 that for every i = 0, . . . , Nε the equation

ε2u′′
i − f (x, ui) = 0, u′

i (xi) = 0 = u′
i (xi+1), (5.4)

with the extra condition

(−1)iu′
i > 0, ui > 0 in

[
xi, xi+1

]
, (5.5)

possesses a unique solution ui : [
xi, xi+1

] → IR. Here we have written f (x, u) =
V (x)u − |u|p−1u. Solutions to (5.4), for different i’s are our building blocks and
we call them basic solutions.
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It will be notationally convenient to define an energy density as

σε(x, u) = ε2 u′2(x)

2
+ F(x, u(x)),

where F(x, u) = V (x)u2

2 − up+1

p+1 . We define our finite-dimensional functional
gε: 	ε → IR for X ∈ 	ε as:

gε(X) =
Nε∑
i=0

∫ xi+1

xi

σε(x, ui)dx. (5.6)

We can easily check that

∂gε

∂xi

(X) = −F(xi, ui(xi)) + F(xi, ui−1(xi)), 1 � i � Nε.

Thus, if ∇gε(X) = 0 then the function uε, defined as

uε(x) = ui(x), x ∈ [
xi, xi+1

]
, i = 0, . . . , Nε, (5.7)

is a solution of (1.1) in (m, M) with u′
ε(m) = u′

ε(M) = 0.

If we are looking for a negative cluster, we just need to change the signs in
(5.5).

If we are looking for sign-changing clusters, we assume that the envelope
e: [m, M] → IR is such that supp(e) = (a, b) and e(x) > e0(x) in (a, b). More-
over, we assume that V ′(a) < 0, V ′(b) < 0.

Depending on the type of sign-changing cluster (among the four possible ones)
that we are willing to construct, we need to redefine Nε and change condition (5.5)
accordingly. If for example, we want a sign-changing cluster, starting with a maxi-
mum and ending with a minimum, then Nε needs to be chosen even and condition
(5.5) should be replaced by

(−1)iu′
i > 0, in

[
xi, xi+1

]
, u0 > 0, uNε < 0, (5.8)

and ui changing sign in
[
xi, xi+1

]
if 1 � i � Nε − 1. Moreover, in this case the

auxiliary envelope ẽ : [m, M] → IR+ is such that [a, b] ⊂ supp(ẽ) = (ã, b̃) ⊂[
ã, b̃

]
⊂ (m, M) and e(x) > e0(x) in (a, b).

We now discuss the existence and uniqueness of basic solutions. For this purpose
we need monotonicity properties of the period function T (·, ·) defined in Section
2. The next proposition provides the properties we need about the period function
T (y) = T (V, y).

Proposition 5.1. For the period function T defined in [ y∗, y0) ∪ (y0, ∞) we have

dT

dy
(y) > 0 y ∈ (y∗, y0) and

dT

dy
(y) < 0 y ∈ (y0, ∞).

Proof. If y ∈ (y0, ∞) then the result follows from the uniqueness theorem for the
Dirichlet problem as given in Theorem 7 and Lemma 8 of [8]. When y ∈[ y∗, y0)

the result is a consequence of Proposition 3.1 of [10]. �	
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Based on the monotonicity of the period we obtain a non-degeneracy property
of the linearized equation associated to (2.1) with Neumann boundary conditions.
We observe that the solution v = v(V (x), y; s) of (2.1)–(2.2) satisfies the Neumann
boundary condition

v′(0) = v′(T (V (x), y)) = 0,

and v′(s) < 0 for s ∈ (0, T (V (x), y)). When the initial value is e0(x), then the
period function is infinity and v0 = v(V (x), y; s) is a homoclinic orbit satisfying
the boundary condition v′

0(0) = 0, lims→∞ v0(s) = 0, with v′
0(s) < 0 for all

s > 0. We have

Lemma 5.1. The equations

h′′ − V (x)h + p|v|p−1h = 0, h′(0) = h′(T (V (x), y)) = 0,

and

h′′ − V (x)h + p|v0|p−1h = 0, h′(0) = lim
s→∞ h′(s) = 0,

have only the trivial solution.

From these non-degeneracy properties of the linearized frozen equations, we can
prove the existence and uniqueness theorem for basic solutions of our equation.
We remark that limy→∞ T (V (x), y) = 0 and l0(x) := limy→y∗ T (V (x), y) =
2π/

√
pV (x). We have

Theorem 5.1. Given δ > 0, there exists ε0 such that, for every ε ∈ (0, ε0),

x0 ∈ [m, M] , x0 + εl � M and letting l0(x0) + δ � l, the equation

u′′ − V (x0 + εs)u(s) + |u(s)|p−1u(s) = 0, (5.9)

u′(0) = u′(l) = 0, u′ > 0, u > 0 (5.10)

has a unique solution which is differentiable in x0 and l.
Sign-changing solutions can also be found: replacing l0(x0)+δ by δ and (5.10)

by

u′(0) = u′(l) = 0, u′ > 0, u(0)u(l) < 0. (5.11)

Naturally, in this theorem, the other combinations of positive/negative, increas-
ing/decreasing can also be considered.

The proof is completely analogous to Theorem 4.1 in [16] so we omit it. There
is one special case where the arguments in [16] may not be applicable directly,
which is the case of a sign-changing solution which is getting close to homoclinic
(from outside). In this case we can use Lemma 2.1 proved in [12].
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6. Existence of basic solutions for a step potential

This section is devoted to the study of existence and uniqueness of basic solu-
tions for a step potential. We discuss in detail the case of a positive cluster and at
the end we mention the changes necessary to include the other cases.

We consider a given positive number V0 > 0. We consider equation (2.1)–(2.2)
with V = V0 and we denote by v(y; ·) its solution.According to Proposition 5.1, the
period function of positive periodic orbits of this equation is monotone increasing
with a minimum value that we denote by l0. For T > l0 let yT ∈ (y∗, y0) such that
v′(yT ; −T ) = 0 and v′(yT ; s) > 0 for s ∈ (−T , 0). We write ŷT = v(yT ; −T )

and define the curve

γT (y) = (v(y; T ), v′(y; T ))

for y ∈ (0, ŷT ]. Next we consider a value V1 > V0 and define y1∗ = (V1)
1/(p−1),

y1
0 = (

p+1
2 V1)

1/(p−1) and v1(y; ·) as the solution to the equation (2.1)–(2.2) with
V = V1. Associated with V1 there is a minimum period l0(V1) < l0. Assuming that
t > l0(V1) we define y1

t ∈ (y1∗, y1
0) such that (v1)′(y1

t ; −t) = 0 and

γ 1
t (y) = (v1(y; −t), (v1)′(y; −t)), y ∈ (y1

t , y1
0).

Our goal is to prove existence and uniqueness of solutions for the equation

w′′ − V(x)w + |w|p−1w = 0, w′ > 0, w(0) < y1
0 , (6.1)

w′(0) = w′(−T − t) = 0, (6.2)

with the step potential V defined as

V(x) =
{

V0 if x ∈ [ −T − t, −t)

V1 if x ∈ [−t, 0] .
(6.3)

We have

Lemma 6.1. There exists t0 such that for all t � t0, for all T > l0 and for all
V1 ∈ [V0, V0 + 1], the equation (6.1)–(6.2) has exactly one solution.

Proof. If t is large enough then the curves γ 1
t and γT intersect, that is, there are

y ∈ (y1
t , y1

0) and ȳ ∈ (0, ŷT ) such that

γ 1
t (y) = γT (ȳ). (6.4)

Defining

w(x) =
{

v1(y; x) if x ∈ [−t, 0]
v(ȳ; x + T + t) if x ∈ [−T − t, −t]

(6.5)

we obtain a C1 solution to equation (6.1)–(6.2).
Assuming that there is a sequence {tn} diverging to infinity so that (6.1)–(6.2)

possesses more than one solution, we can construct a non-trivial solution to equation

h′′ − V1h + p|v∗|p−1h = 0, h′(0) = lim
s→∞ h′(s) = 0,

where v∗ is the positive homoclinic orbit of (2.1) with V = V1, for some V1 ∈
[V0, V0 + 1], contradicting Lemma 5.1. �	
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Keeping T fixed, we may consider y obtained in (6.4) as function of t , for
t � t0. We have

Lemma 6.2. Enlarging t0 if necessary we have that the function y = y(t) is strictly
increasing, actually

dy

dt
> 0, for t � t0.

Proof. As a first step we find the asymptotic behavior of γT (y) as y → 0. From
conservation of energy for system (2.1) with V = V0 we have

T =
∫ v(y,T )/y

1

dt√
V0(t2 − 1) − 2yp−1(tp+1 − 1)/(p + 1)

,

from where it follows that

lim
y→0

v(y, T )

y
= ᾱ,

where ᾱ is given by

T =
∫ ᾱ

1

dt√
V0(t2 − 1)

.

Next we consider y ∈ (y1∗, y1
0) and denote by T (V1, y) half of the period of the

solution of system (2.1)–(2.2) with V = V1, and we recall that T (V1, y) is mono-
tone in y and it approaches infinity as y → y1

0 . Given y ∈ (y1∗, y1
0) we solve the

equation γ 1
t (y)(y) = γT (ȳ) to get a solution w(x) as in (6.5), with

t (y) = T (V1, y) − t1(y), (6.6)

where t1(y) is the time it takes system (2.1) with V = V1 to go from γT (ȳ) to
(ȳ, 0). However, we see that

t1(y) =
∫ v(ȳ,T )/ȳ

1

dt√
V1(t2 − 1) − 2ȳp−1(tp+1 − 1)/(p + 1)

and then

lim
y→y1

0

t1(y) =
∫ ᾱ

1

dt√
V1(t2 − 1)

.

Now the result follows from (6.6), since t approaches infinity if and only if y

approaches y1
0 . �	

Next we construct solutions with a variable step potential, as will appear in
the next section in the homotopy argument. For this purpose we first state a non-
degeneracy property of the linearization of (6.1)–(6.2).
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Lemma 6.3. For t � t0 and T � l0, with V as in (6.3) and w as in (6.5), the
equation

h′′ − V(x)h + p|w|p−1h = 0, (6.7)

h′(0) = h′(−T − t) = 0, (6.8)

has only the trivial solution.
Here we may consider also the case when t or T are infinity, making the obvious

modifications.

Proof. The function w constructed as in (6.5) can be differentiated with respect to
the initial value. We obtain in such a way, a solution h1 to (6.7), which satisfies the
initial value h1(0) = 1 and h′

1(0) = 0. Moreover, it follows from Lemma 6.2 that
h′

1(−T − t) �= 0.
On the other hand, we construct a second solution as h2(x) = w′(x), for

x ∈ (−t, 0] extended as the solution to

h′′ − V0h + p|w|p−1h = 0, h(−t) = w′(−t), h′(−t) = w′′(−t),

for x ∈ [−T − t, −t]. This function h2 is a C1 solution of (6.7), with initial values
h2(0) = 0 and h′

2(0) �= 0.
If h is a C1 solution of (6.7)–(6.8) then h is a linear combination of h1 and h2.

Then the boundary conditions imply that h = 0. �	
Remark 6.1. If in the construction of w we consider, instead of V1, any value
Vλ ∈ [V0, V1], then the conclusion of the lemma still holds.

In Section 8 we consider a potential depending on a parameter V : (−∞, r] ×
[0, 1] → IR+, r > 0, with the following properties:

(i) V (x, λ) = V0 for all x < 0.

(ii) V (0, λ) = Vλ ∈ [V0, V1] for all λ ∈ [0, 1].

(iii) V is C1 in [ 0, r).

Under these general conditions, using the non-degeneracy properties of the solu-
tions of the step potential just proved in Lemma 6.3, we can follow the arguments
given in Theorem 4.1 in [16] to prove the following theorem.

Theorem 6.1. Given R > 0, there exists ε0 > 0 such that, for every ε ∈ (0, ε0), t >

εl0, t < r, λ ∈ [0, 1] the equation

ε2u′′ − V (s, λ)u(s) + |u(s)|p−1u(s) = 0, (6.9)

u′(−R) = u′(εt) = 0, u′(s) > 0, u(s) > 0 (6.10)

has a unique solution which is differentiable in t .
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Remark 6.2. Up to this point we considered a potential with a step up and we
constructed positive increasing solutions, with u(0) < y1

0 . In this situation a nega-
tive decreasing solutions is similarly obtained. By reflection, the same construction
allows us to consider a step down and a positive decreasing solution, and the corre-
sponding negative increasing one. These solutions will allow us to construct positive
(and negative) clusters.

In the construction of sign-changing clusters we need to obtain positive increas-
ing solutions for a step down, satisfying u(0) > y1

0 . This construction can be done
with only minor modifications to the arguments just given, in particular in the proof
of Lemma 6.2. The negative decreasing solution is readily obtained by the same
argument, and the other two solutions are obtained by reflection.

7. Computing the degree of a cluster for a step potential

In this section we define a special step potential in an interval, in such a way
that equation (1.1) possesses a unique positive (or sign-changing) cluster. When
this solution is considered as a critical point of (5.6) we prove it has index 1 or −1.
We will consider in detail the case of a positive cluster.

Given m < M ∈ IR and V0 < V1 � V0 + 1 fixed we define the step potential
V as

V̄ (x) =
{

V0 x ∈ IR \ [m − � + 1, M + � − 1]
V1 x ∈ [m − � + 1, M + � − 1] ,

(7.1)

where � is a positive constant.

Lemma 7.1. If � is large enough then there exists a unique positive cluster for the
equation

ε2u′′ − V̄ (x)u + |u|p−1u = 0 in (m − �, M + �), (7.2)

u′(m − �) = u′(M + �) = 0, (7.3)

having Nε oscillations in the interval (m − �, M + �).

Proof. We start considering T = ε−1 and t � t0, where t0 is given in Lemmas 6.1
and 6.2. Under this assumptions equation (6.1)–(6.2) has a unique solution wε and
we write yε(t) = wε(0). Consider vε, the unique solution of (2.1) with potential
V = V1 and vε(0) = yε(t), vε

′(0) = 0.
Then, provided ε, t, � satisfy

T (V1, y
ε(t)) = 2� + M − m − 2 − 2εt

ε(Nε − 1)
, (7.4)

the function uε defined as

uε(x) =



wε((x − m� − εt)/ε) x ∈ [m� − 1, m� + εt]
vε((x − m� − εt)/ε) x ∈ [m� + εt, M� − εt]
wε((−x − εt + M�)/ε) x ∈ [M� − εt, M� + 1] ,

for m� = m − � + 1 and M� = M + � − 1, is the unique solution of (6.1)–(6.2).
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To prove that for every ε small and � large there is exactly one t � t0 so that
(7.4) is actually satisfied, we assume that � > 0 is such that

� > lim
ε→0

εNε

2
T (V1, y

ε(t0)) + 1 − (M − m)

2
. (7.5)

Therefore, the lemma follows from Lemma 6.2 and the monotonicity ofT (V1, ·). �	
Associated with equation (7.2)–(7.3) we have a functional gε as in (5.6) defined

in an appropriate set 	ε ⊂ IRNε . In what follows we would like to show that
deg(gε, 	ε, 0) = −1.

We set x0 = m − � and xNε+1 = M + � and define the domain in IRNε

	ε = {(x1, x2, . . . , xNε ) / xi+1 − xi > d̃ε, i = 1, . . . , Nε − 1

x1 > m − � + 1 + t0ε, xNε < M + � − 1 − t0ε, }, (7.6)

where

�0 < d̃ < lim
ε→0

M − m + 2� − 2

εNε

.

We set the functional gε: 	ε → IR for X = (x1, x2, . . . , xNε ) ∈ 	ε as in (5.6)
replacing V (x) by V̄ (x). As before if ∇gε(X) = 0 then the function u, defined as

u(x) = ui(x), x ∈ [
xi, xi+1

]
, i = 0, . . . , Nε, (7.7)

is a solution of (7.2) with u′(x0) = u′(xNε+1) = 0.
We observe that from our discussion above and by the choice of � in (7.4), the

function uε is corresponding to the unique critical point of gε in 	ε. Moreover, the
functional gε does not have any critical point in ∂	ε.

Proposition 7.1. Under the conditions discussed in this section, there exist ε̄ > 0
such that if 0 < ε < ε̄, then uε has index −1 and

deg(∇gε, 	ε, 0) = −1.

Proof. We compute D2gε(X) at a point X = (x1, . . . , xNε ) in 	ε, a critical point
of gε. We let e+ = uε(xi) if i is odd and e− = uε(xi) if i is even, and note that
F(e±) does not depend explicitly on xi . For every odd i, except for i = 1 or i = Nε,
we have

∂2gε

∂x2
i

(X) = 2
f (e+)

T ′(e+)

and

∂2gε

∂xi∂xi−1
(X) = ∂2gε

∂xi∂xi+1
(X) = − f (e+)

T ′(e+)
,

where T ′(e+) is the derivative of the period function defined for (2.1), with V = V1,
which is positive as proved in Proposition 5.1.
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For an even i, we repeat the computation, noticing that F(e−) = F(e+), and
obtain the same result. For i = 1 we find

∂2gε

∂x2
1

(X) = f (e+)

T ′(e+)
+ f (e+)

T ′
1

and
∂2gε

∂x1∂x2
(X) = − f (e+)

T ′(e+)

where T ′
1 = 1/

dy

dt
, as given in Lemma 6.2. For i = Nε we obtain a similar result,

with the obvious changes. Thus,

D2gε(X) =
[

f (e+)

T ′(e+)

]Nε

A,

where A is a tridiagonal matrix with −1 in the upper and lower diagonal, and with
2 in the diagonal, except at the top and lower corner where we have the value

α = 1 + T ′(e+)

T ′
1

.

It is important to note that α > 1 thanks to Lemma 6.2. Through a recursive formula
it is not hard to prove that

det(A) = (Nε − 1)

(
(α − 1)2 + 2α − 2

Nε − 1

)
,

so that det(A) > 0. Since f (e+) < 0 and T ′(e+) > 0, then det(D2gε(X)) < 0,
because Nε is odd. We can repeat this argument for every principal matrix, just
changing α by 2. We conclude that D2gε(X) is negative definite. �	
Remark 7.1. In our analysis we have considered positive solutions. The case of
negative solutions which give rise to negative clusters can be treated in a com-
pletely analogous way.

The case of sign-changing clusters requires some slight changes in the argu-
ments, but we do not provide the details. We should emphasize that in this case
sign-changing solutions correspond to minima of the functional gε in 	ε.

8. Computing the degree of a cluster

In this section we will compute the degree of the functional gε in the set 	ε ⊂
IRNε , with Nε, gε and 	ε as defined in Section 5 and ε > 0 small. We recall that
we are given a prescribed envelope e : [m, M] → IR such that supp(e) = (a, b),
with m < a < b < M , and an auxiliary envelope ẽ with

[a, b] ⊂ supp(ẽ) = (ã, b̃) ⊂
[
ã, b̃

]
⊂ (m, M).

Our goal in this section is to prove the following

Proposition 8.1. Assume that V ′(a) > 0 and V ′(b) < 0 and that ã and b̃ are close
enough to a and b, respectively. Then there is ε0 > 0 such that

deg(∇gε, 	ε, 0) = −1, 0 < ε � ε0.



Nonlinear Schrödinger Equation

This proposition is the crucial ingredient to glue clusters in the next section. How-
ever, for the equation

ε2u′′ − V (x)u + |u|p−1u = 0, in [m, M] , (8.1)

u′(m) = u′(M) = 0, (8.2)

we can already obtain an existence theorem for a single cluster, that we state at the
end of this section.

We will prove Proposition 8.1 by means of a series of lemmas. The idea is that
through various homotopies, we obtain the required degree information starting
from the step potential.

Our first step is to compute the degree of the gradient of an auxiliary functional
g1

ε considered in a set 	1
ε , defined through an extension of the potential V to the

interval [m − �, M + �], with � > 0 large.
Set 0 < V0 < minx∈[m,M] V (x) fixed and choose V1 with

min
x∈[m,M]

V (x) > V1 > V0, V1 � V0 + 1,

as in Lemma 6.1 and choose � satisfying (7.5), so that Proposition 7.1 holds. We start
by extending V as a C1 function in [m − 1, M + 1], with V (m − 1) = V (M +
1) > V1, V

′(m − 1) = −V ′(M + 1) > 0. Then we extend V to the interval
[m − �, M + �] as a positive C1 function satisfying: V (m − � + 2) = V1, V (x) =
V0 in [m − �, m − � + 1] ; V ′(x) > 0 in [m − � + 1, m − 1] ; V ′(x) = C/� in
[m − � + 2, m − 2]; and V (M + x) = V (m − x) if x ∈ [1, �]. The shape of V in
[m − �, m − � + 2] ∪ [M + � − 2, M + �] is independent of �.

Next we consider the homotopy Vλ = λV + (1 −λ)V̄ , where V̄ was defined in
(7.1). It can be easily checked that if � is large enough, then there exists a solution
êλ of the equation (3.1) considered with the potential V = Vλ, with

êλ(m − � + 2) <

(
p + 1

2
V1

) 1
p−1

and satisfying

∫ M+�−1

m−�+1
ω(Vλ(s), êλ(s))ds >

∫ M

m

ω(V (s), ẽ(s))ds, (8.3)

for λ ∈ [0, 1]. Hence, there exists a unique solution ẽλ of (3.1), considered with
Vλ, defined in (m − � + 1, M + � − 1) for which

∫ M+�−1

m−�+1
ω(Vλ(s), ẽλ(s))ds =

∫ M

m

ω(V (s), ẽ(s))ds. (8.4)

We observe that there exists 0 < λ̄ < 1 such that

supp(ẽλ) ⊂ [m − � + 2, M + � − 2] for λ̄ � λ � 1. (8.5)
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At this point we fix t0 > 0, so that Lemmas 6.1 and 6.2 hold. We see that for
0 < ε < ε0 small there exists η > 0 such that the unique increasing solution of

ε2u′′ − Vλ(x)u + |u|p−1u = 0, (8.6)

u′(m − �) = u′(m − � + 1 + εt0) = 0, (8.7)

satisfies

u(m − � + 1 + εt0) <

(
p + 1

2
Vλ(m − � + 1 + εt0)

) 1
p−1 − 2η, (8.8)

for 0 � λ � λ̄. Also, if we choose � large enough, then for every λ ∈ [0, 1],

ẽλ(m − � + 1) >

(
p + 1

2
Vλ(m − � + 1)

) 1
p−1 − η. (8.9)

For x, y ∈ (m − �, M + �) we define the distance

dλ(x, y) = 1

ε

∫ y

x

ω(Vλ(s), ẽλ(s))ds,

and we let x0 = m − � and xNε+1 = M + �. We introduce the domain in IRNε

	λ
ε = {(x1, x2, . . . , xNε ) / dλ(xi, xi+1) > 1, i = 1, . . . , Nε − 1

x1 > m − � + 1 + εt0, xNε < M + � − 1 − εt0}. (8.10)

Theorems 5.1 and 6.1 allow us to define the C1 functional gλ
ε : 	λ

ε → IR, using
the potential Vλ instead of V in (5.6), for 0 < ε < ε0 and λ ∈ [0, 1].

Lemma 8.1. Additionally assume that there is c ∈ (m, M) such that V ′(x) > 0
in [ m, c) and V ′(x) < 0 in (c, M]. Then there exists ε0 > 0 such that for all
0 < ε < ε0

deg(∇g1
ε , 	

1
ε, 0) = −1.

Proof. We consider � large and Vλ as before, and note that the extension of V can
be taken strictly increasing in [ m − 1, c) and strictly decreasing in (c, M + 1].
Using the homotopy invariance of the degree and Proposition 7.1, we see that we
just need to prove that the functional gλ

ε does not have critical points in ∂	λ
ε , for

all λ ∈ [0, 1].
We proceed by contradiction. Suppose that there exist sequences εn → 0, λn →

λ∗ as n → ∞ such that g
λn
εn has a critical point Xn = (xn

1 , . . . , xn
Nεn

) in ∂	
λn
εn . To

simplify notation, we set gn ≡ g
λn
εn and 	n = 	

λn
εn . Since ∇gn(X

n) = 0, using
(5.7) we can define un, a solution of (8.1) in [m − �, M + �] considered with the
potential Vλn , satisfying u′

n(m − �) = u′
n(M + �) = 0.

Now we use Proposition 4.2 to obtain some asymptotic information. Unfortu-
nately, the potentialVλ has jumps, so we cannot use Proposition 4.2 in [m−�, M+�],
but we need to consider a subinterval. Up to a subsequence we can assume that



Nonlinear Schrödinger Equation

xn
2 → ā and xn

Nεn−1 → b̄ as n → ∞. Then, the approximate envelope en asso-

ciated to un, converges uniformly in
[
ā, b̄

]
to an envelope eλ∗ with potential Vλ∗

satisfying

∫ b̄

ā

ω(Vλ∗(s), eλ∗(s))ds =
∫ M

m

ω(V (s), e(s))ds. (8.11)

We claim that∫ M+�−1

m−�+1
ω(Vλ∗(s), eλ∗(s))ds =

∫ M

m

ω(V (s), e(s))ds, (8.12)

and then eλ∗ is uniquely determined because V has a unique maximum point in
[m, M]. By the same reason we also observe that the envelope ẽλ∗ is uniquely
determined by (8.4).

In order to prove the claim assume that eλ∗(ā) < ( 2
p+1Vλ∗(ā))2/(p−1). Then

xn
3 − xn

1 → 0, which implies that we can use Proposition 4.2 (after Remark 4.3)

in the interval
[
m − � + 1, xn

Nεn−1

]
and we may replace the lower limit ā in (8.11)

by m − � + 1. Of course, we can do the same if eλ∗(ā) = ( 2
p+1Vλ∗(ā))2/(p−1). By

repeating the argument on the other extreme of the interval, we complete the proof
of the claim.

To continue we distinguish three cases. By extracting a subsequence if neces-
sary, we just have to consider: Case 1: xn

1 = m − � + 1 + εnt0 for all n, Case 2:
xn
Nεn

= M + � − 1 − εnt0 for all n, and Case 3: there is a sequence in, with

1 � in < Nεn − 1, such that dλn(x
n
in
, xn

in+1) = 1.

Case 1. Suppose further that λ∗ ∈ [
0, λ̄

]
. Then, taking into account that

dλn(x
n
1 , xn

2 ) � 1 we have that limn→∞ un(x
n
1 ) � ẽλ∗(m − � + 1), which is impos-

sible in view of (8.8) and (8.9). On the other hand, if λ∗ ∈ [
λ̄, 1

]
then we claim that

|xn
1 − xn

3 | � 1/2. Assuming the claim for the moment, we can find α > 0 such that
for vn(x) = un(m − � + 1 + εnx) we have∫ (xn

1 −xn
2 )/εn

0
V ′

λn
(m − � + 1 + εnx)

v2
n(x)

2
� C

εn

e
− α

εn . (8.13)

On the other hand, vn converges locally and uniformly in IR to the homoclinic
solution of

v′′ + Vλ∗(m + � − 1)v + vp = 0, v′(0) = 0, v > 0.

At this point we observe that even though V ′(m−�+1) = 0, in the construction of
the extension of the potential we could have further assumed that V ′(m−�+1+h) �
h, for small h > 0. Then (8.13) would be impossible. To complete the argument
we prove the claim: by (8.4), (8.12) and the choice of ẽ, we see that

supp(eλ∗) ⊂ supp(ẽλ∗). (8.14)

Then, it follows from (8.5) that xn
3 � m − � + 2, proving the claim.
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Case 2. By a completely analogous argument we see that Case 2 does not take
place.

Case 3. Since en converges to eλ∗ in
[
ā, b̄

]
, we see that it is not possible that

dλn(x
n
in
, xn

in+1) = 1 with 2 � in < Nεn − 2 for all n, because that would imply
that en converges to ẽλ∗ . Then we may have that dλn(x

n
1 , xn

2 ) = 1 for all n. If
ẽλ∗(m + � − 1) < ( 2

p+1Vλ∗(m + � − 1))1/(p−1) then dλn(x
n
2 , xn

3 ) → 1 and we can

conclude as above. When ẽλ∗(m + � − 1) = ( 2
p+1Vλ∗(m + � − 1))1/(p−1) we have

two cases. First, if xn
1 −m+�−1 stays away from zero we can use Proposition 4.2

with an = m − � + 1, as in Remark 4.3, and get the same contradiction as before.
Second, when xn

1 − m + � − 1 → 0 one has xn
3 − xn

1 > r > 0 and in this situation
we can proceed as in Case 1, using (8.13). The case in = xn

Nεn
is analogous. �	

In our next lemma we come back to the original interval.

Lemma 8.2. Assume that there is c ∈ (m, M) such that V ′(x) > 0 in [ m, c) and
V ′(x) < 0 in (c, M]. Then there exists ε0 > 0 such that for all 0 < ε < ε0

deg(∇gε, 	ε, 0) = −1.

Proof. We will consider the following homotopy. For µ ∈ [0, 1] we define x
µ
0 =

(1 − µ)(m − �) + µm and x
µ
Nε+1 = (1 − µ)(M + �) + µM and the domain

	ε,µ = {(x1, x2, . . . , xNε ) / d(xi, xi+1) > 1, i = 1, . . . , Nε − 1,

x1 > (1 − µ)(m − � + 1) + µã + εt0,

xNε < (1 − µ)(M + � − 1) + µb̃ − εt0}.

We then define the function gε,µ in 	ε,µ as in (5.6). By Lemma 8.1 we just need
to check that gε,µ does not have critical points in ∂	εµ. We will proceed by con-
tradiction, that is we assume that there exist sequences εn → 0, µn → µ∗ and
Xn = (xn

1 , . . . , xn
Nεn

) in ∂	n such that ∇gn(X
n) = 0, whereas before we wrote

	n = 	εn,µn and gn = gεn,µn . We denote by un the induced solution of (8.1) in the
interval [(1 − µn)(m − �) + µnm, (1 − µn)(M − �) + µnM] where we replace
the boundary conditions by u′

n((1 − µn)(m − �) + µnm) = 0, u′
n((1 − µn)(M −

�) + µnM) = 0.
As in the proof of Lemma 8.1, extracting a subsequence if necessary, we have

one of the following situations: Case 1: xn
1 = (1 − µn)(m − � + 1) + µnã + εnt0

for all n, Case 2: xn
Nεn

= (1 − µn)(M + � − 1) + µnb̃ − εnt0 for all n, and Case 3:

for every n there exists 1 � in � Nε − 1 for which d(xn
in
, xn

in+1) = 1.
All three cases can be handled as in the proof of Lemma 8.1. However, here

the situation is simpler, since we can use Proposition 4.2 taking an = (1 − µn)

(m − �) + µnm and bn = (1 − µn)(M + �) + µnM . �	
Now we handle more general cases of positive clusters, allowing V to have

several critical points in (a, b), the support of the envelope e.



Nonlinear Schrödinger Equation

Lemma 8.3. Suppose that V ′(x) > 0 for x ∈ [m, a] , V ′(x) < 0 if x ∈ [b, M]
then there exists ε0 > 0 such that for every 0 < ε < ε0 we have

deg(∇gε, 	ε, 0) = −1.

Proof. Note that under the hypothesis of the lemma V (m), V (M) < minx∈[a,b]
V (x) = V (a) = V (b).

Let l > 0 be a fixed but large constant. We define a C1 potential V̄ in the interval
[m − l, M + l] so that V̄ (x) = V (x) if x ∈ [m, a] ∪ [b, M] ; V̄ ′(c) = 0 for some
c ∈ (a, b); V̄ ′(x) > 0 in

[
m − l, c); V̄ ′(x) < 0 in (c, M + l] ; |V̄ ′(x)| � C/l for

some constant C independent of l in [m − l + 2, m − 1] ∪ [M + 1, M + l − 2];
and

V̄ (m − l + 1 + x) = V̄ (M + l − 1 − x) = v̄0x + v̄1 for x ∈ [−1, 0] ,

where

v̄1 = 1

2
min

x∈[m,M]
V (x), v̄0 = 1

4
min

x∈[m,M]
V (x).

We also extend V to [m − l, M + l] as V (x) = V̄ (x) in [m − l, m] ∪ [M, M + l].
We then define the homotopy potential Vλ = λV +(1−λ)V̄ and we consider ẽλ

the auxiliary envelope associated with Vλ with supp(ẽλ) = (m− l + 1, M + l + 1).
It is clear that if l is chosen large enough then∫ M+�−1

m−�+1
ω(Vλ(s), ẽλ(s))ds >

∫ m

M

ω(V (s), ẽ(s))ds,

for all λ ∈ [0, 1]. We consider the domain

	λ
ε = {(x1, x2, . . . , xNε ) / dλ(xi, xi+1) > 1, i = 1, . . . , Nε − 1

x1 > m − l + 1 + εt0, xNε < M + l − 1 − εt0},
where dλ is defined as before but using the auxiliary envelope ẽλ, and we consider
the functional gλ

ε as before using the potential Vλ. Using arguments as in the proof
Lemma 8.1 we can prove that ∇gλ

ε �= 0 in ∂	ε
λ for all λ ∈ [0, 1]. Then, using

Lemma 8.2 we have

deg(∇g1
ε , 	

1
ε, 0) = −1. (8.15)

To conclude the proof we need to find a homotopy between g1
ε and gε. For

µ ∈ (0, 1) we set an envelope ẽµ with support (ãµ, b̃µ), where ãµ = (m − l +
1)µ + ã(1 − µ) and V (b̃µ) = V (ãµ). As before we define

	ε
µ = {(x1, x2, . . . , xNε ) / dµ(xi, xi+1) > 1, i = 1, . . . , Nε − 1,

x1 > ãµ + εt0, xNε < b̃µ − εt0},
where the distance dµ is induced by ẽµ and we consider the corresponding func-
tional g

µ
ε . Using previous arguments we can prove that ∇g

µ
ε �= 0 in ∂	ε

µ for all
µ ∈ [0, 1]. Hence, the result follows using (8.15). �	
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Proof of Proposition 8.1. After Lemma 8.3 we just need to make a final homotopy
to connect our potential V with one potential V̄ , which coincides with V in some
interval [a − δ1, b + δ2] and satisfies V̄ ′(x) > 0 in [m, a − δ1] and V̄ ′(x) < 0 in
[b + δ2, M]. By arguments simpler that those already given above, we can complete
the proof. �	
Remark 8.1. So far we have considered only the case of a positive cluster asso-
ciated with a connected component (a, b) of the support of the envelope e. In a
completely analogous way we can consider negative clusters. Moreover, under the
appropriate changes in the hypothesis for V , and doing some variations of the
arguments given already for positive clusters, we can also treat all four possible
sign-changing clusters. Actually, considering that V ′(a) < 0 and V ′(b) > 0 we
can prove

deg(∇gε, 	ε, 0) = 1, (8.16)

with the appropriate changes in the definition of Nε, 	ε and gε.

The results about the degree of a single cluster that we have obtained in this
section allows us to write a first existence theorem

Theorem 8.1. Assume that m < a < b < M and V ′(a) > 0 and V ′(b) < 0
or V ′(a) < 0 and V ′(b) > 0. Let e: [m, M] → IR be an envelope such that
supp(e) = (a, b), then there is ε0 > 0 such that for every 0 < ε < ε0 the equation
(8.1) admits a solution with Nε critical points in (m, M). Moreover, the approximate
envelope eε converges to the envelope e, as ε → 0.

Proof. By Proposition 8.1 (see also Remark 8.1) there is ε0 > 0 such that for
every 0 < ε < ε0 we have deg(∇gε, 	ε, 0) �= 0. Thus (8.1) has a solution uε.
By Proposition 4.2 such a solution gives rise to an approximate envelope eε, which
converges to an envelope, as ε → 0. Because of the choice of Nε the limiting
envelope is precisely the prescribed e. �	
Remark 8.2. Theorem 8.1 can be extended, with minor modifications, to include
a case where all oscillations concentrate at a point. We assume that V has exactly
one critical point in [m, M], say at c ∈ (m, M). Then, given a sequence of integer
numbers Nε such that limε→0 εNε = 0, there exists a sequence of solutions of (8.1)
with Nε critical points, all of them converging to c, as ε → 0. Of course, in this
case we do not have an associated envelope. In dealing with multi-clusters in the
next section, we can also include this situation, but we will not make it explicit.

9. Proof of Theorem 2.2 and extensions

In this section we give the proof of Theorem 2.2 and provide some natural
extensions. We start proving the theorem in a particular case to illustrate the tech-
nique.
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Theorem 9.1. Assume that e > e∗ is an envelope in the interval I such that

(i) supp(e) = (a1, b1) ∪ (a2, b2), a1 < b1 < a2 < b2, [a1, b2] ⊂ I .
(ii) V ′(a1) < 0, V ′(b1) > 0, V ′(a2) > 0, V ′(b2) < 0.

Then there exists ε0 and a family uε, ε ∈ (0, ε0) of solutions to (1.1) with a Neu-
mann boundary condition in ∂I , such that the approximate envelope eε associated
to uε converges to e.

Proof. First we remark that there exist numbers mj , Mj , such that mj < aj <

bj < Mjj = 1, 2, M1 < m2, [m1, M2] ⊂ I . Moreover, V ′(x) < 0 in [m1, a1] ∪
[b2, M2] and V ′(x) > 0 in [b1, M1] ∪ [m2, a2] .

We will construct a sign-changing solution in [m1, M1] starting and ending
with a positive maximum, and a positive solution in [m2, M2]. The other possible
combinations are obtained in a similar way.

We consider two auxiliary envelopes ẽj , such that supp(ẽj ) = (ãj , b̃j ), with
mj < ãj < aj and bj < b̃j < Mj , for j =1, 2.

We define the numbers

Nj
ε =

⌊
1

ε

∫ bj

aj

ω(V (s), e(s))ds

⌋
, j = 1, 2.

We define the distance function

dj (x, y) = 1

ε

∫ y

x

ω(V (s), ẽj (s))ds,

and the subset of IRN
j
ε

	j
ε = {(xj

1 , x
j
2 , . . . , x

j

N
j
ε

) / dj (x
j
i , y

j
i+1) > 1, i = 1, . . . , Nj

ε − 1,

x
j
1 > ãj + εt0, x

j

N
j
ε

< b̃j − εt0}.

In each subset 	
j
ε we define the functionals g

j
ε , as in Section 5. In section 8 we

proved that

deg(∇gj
ε , 	j

ε , 0) = (−1)j+1, j = 1, 2, (9.1)

in particular, we proved that

∇gj
ε (Xj ) �= 0, for all Xj ∈ ∂	j

ε , j = 1, 2. (9.2)

We define the function

G0
ε : 	1

ε × 	2
ε → IR,

for (X1, X2) ∈ 	1
ε × 	2

ε as

G0
ε(X

1, X2) = g1
ε (X

1) + g2
ε (X

2).
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We also define the functional G1
ε : 	1

ε × 	2
ε → IR in the following way

G1
ε(X

1, X2) = g1
ε (X

1) + g2
ε (X

2) −
∫ M1

x1
N1

ε

σε(x, u1
N1

ε
)

−
∫ x2

1

m2

σε(x, u2
0) +

∫ x2
1

x1
N1

ε

σε(x, u12),

where u12 is the positive solution of equation ε2u′′ − V (x)u + up = 0, with a
Neumann boundary condition (u12)′(x1

N1
ε
) = 0 = (u12)′(x2

1 ), and having exactly

two local maxima, at x1
N1

ε
and x2

1 . These solutions and their uniqueness were studied

in [12] Lemma 2.1.
In what follows we prove that there is ε0 > 0 so that for 0 < ε < ε0

deg(∇G1
ε, 	

1
ε × 	2

ε, 0) = deg(∇G0
ε, 	

1
ε × 	2

ε, 0). (9.3)

Since the degree at the right is non-zero, we have existence of desired solutions.
The asymptotic behavior is already known by the general theory, as discussed in
Section 4. Thus, to complete the proof of the theorem, we just need to prove (9.3).

Let us consider Gλ
ε : 	1

ε × 	2
ε → IR defined as Gλ

ε = λG1
ε + (1 − λ)G0

ε . We
use homotopy invariance of the degree in order to prove (9.3). For this we show
that in ∂(	1

ε × 	2
ε) = (∂	1

ε × 	2
ε) ∪ (	1

ε × ∂	2
ε) we have that ∇Gλ

ε �= 0, for all
λ ∈ [0, 1].

Let (X1, X2) ∈ ∂(	1
ε × 	2

ε) and assume that

∂g
j
ε

∂x
j
i

(Xj ) �= 0,

for some j = 1, i = 1, 2, . . . , N1
ε − 1 or j = 2, i = 2, 3, . . . , N2

ε then we clearly
have ∇Gλ

ε(X
1, X2) �= 0, for all λ ∈ [0, 1]. If this is not the case, then we can define

solutions u1 and u2 to (1.1) in (m1, x
1
N1

ε
) and in (x2

1 , M2), respectively. We observe

that it follows from Proposition 4.2 that the approximate envelope e2
ε associated

with u2 converges, up to a subsequence, to an envelope ē2 in the interval [x̄, M2],
where x̄ = lim x2

2 (for notational convenience, here we omit ε). A similar statement

can be made on the interval
[
m1, x

1
N1

ε

]
.

To continue, let us assume that X2 ∈ ∂	2
ε (if X1 ∈ ∂	1

ε we proceed similarly).
Here we have two possibilities:

(i) If ē2 = ẽ2 in [x̄, M2]. In this case we have necessarily x̄ > ã2 and conse-
quently u0(x

2
1 ) > u1(x

2
1 ) and u12(x2

1 ) > u1(x
2
1 ). This implies that

∂G0
ε

∂x2
1

< 0 and
∂G1

ε

∂x2
1

< 0.

It is clear then that ∇Gλ
ε(X

1, X2) �= 0, for all λ ∈ [0, 1].
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(ii) If ē2 �= ẽ2. Then, for all ε small enough, d(x2
i , x2

i+1) > 1 for all i =
2, . . . , N2

ε − 1. Assume further that d(x2
1 , x2

2 ) > 1 (for a subsequence), then as
X2 ∈ ∂	2

ε we must have x2
1 = ã2 + εt0 and then x2

3 −x2
1 � r > 0, for some r > 0.

(The constraint x2
N2

ε −1
= b̃2 − εt0 cannot be active, since u2 is a solution).

We have that

∂G0
ε

∂x2
1

= d

dx2
1

[∫ x2
1

m2

σ(x, u0) +
∫ x2

2

x2
1

σ(x, u1)

]
= I1 + I2.

We analyze the second integral (the other is similar). Re-scaling v(s) = u1(x
2
1 +εs)

and differentiating directly we obtain

I2 = −
[
V (x2

2 )
v2(s)

2
− vp+1(s)

p + 1

]
s=(x2

2−x2
1 )/ε

+ε

∫ (x2
2−x2

1 )/ε

0
V ′(x2

1 + εs)
v2(s)

2
ds.

Here the first term is exponentially small and the second one is positive. This implies
that

∂G0
ε

∂x2
1

> 0.

By similar reasons we have this inequality changing G0
ε by G1

ε and then ∇Gλ
ε(X

1,

X2) �= 0, for all λ ∈ [0, 1].
In case d(x2

1 , x2
2 ) = 1 for all ε > 0 small, we have x2

1 −ã2 → 0, as ε approaches
0, and this implies x2

3 − x2
1 � r , for some r > 0. We then apply the argument give

above. This completes the proof. �	
Corollary 9.1. Assume that e > e∗ is an envelope in the interval I such that

(i) supp(e) = (a1, c) ∪ (c, b2), a1 < c < b1, [a1, b1] ⊂ I .
(ii) V ′(a1) < 0, V ′(c) = 0, V ′(b2) > 0.

Then there exists ε0 and a family uε, ε ∈ (0, ε0) of solutions to (1.1) with a Neu-
mann boundary condition in ∂I , such that the approximate envelope eε associated
to uε converges to e.

Proof. For a every k � k0 we consider numbers bk
1 = c − 2/k, Mk

1 = c − 1/k,
mk

2 = c + 1/k and ak
2 = c + 2/k, and an envelope ek such that supp(ek) =

(ak
1, bk

1) ∪ (ak
2, bk

2), where ak
1 and bk

2 are chosen appropriately. We see that for
k � k0, and k0 large enough, we can apply Theorem 9.1 to obtain εk

0 and solu-
tions to (1.1) uk

ε, ε ∈ (0, εk
0) such that their approximate envelope ek

ε → ek . Since
ek → e as k → ∞, from here we construct the desired family of solutions. �	

An extension of Theorem 9.1 to envelopes with support made up of a finite
number of intervals and allowing maximal sign generality follows.
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Theorem 9.2. Assume that e > e∗ an envelope such that

(i) supp(e) = ∪�1
k=1(a

p
k , b

p
k ) ∪ ∪�2

k=1(a
c
k, b

c
k) is a disjoint union.

(ii) There are numbers m, M , such that supp(e) ⊂ (m, M) ⊂ I .
(iii) V ′(ap

k ) > 0, V ′(bp
k ) < 0, V ′(ac

k) < 0 and V ′(bc
k) > 0, for all possible k.

Given sk ∈ {+, −} and (sk
1 , sk

2 ) ∈ {+, −}2 Then there exists ε0 and a family
uε, ε ∈ (0, ε0) of solutions to (1.1) with a Neumann boundary condition in ∂I , such
that the approximate envelope eε associated to uε converge to e and so that:

(i) uε is a positive cluster in (a
p
k , b

p
k ) if sk = + and a negative cluster if sk = −,

for all 1 � k � �1.
(ii) uε is a sign-changing cluster in (ac

k, b
c
k) such that the first critical point of uε

is positive (negative) if sk
1 = + (sk

1 = −) and the last one is positive (negative)
if sk

2 = + (sk
2 = −).

Proof. The proof of Theorem 9.1 can be adapted to this more general case, without
major changes. �	

Proof of Theorem 2.2.. Theorem 2.2 is essentially Theorem 9.2, except for the
fact that the support of e may be the infinite union of disjoint open intervals. This
case can be treated by a limiting process similar to that used in Corollary 9.1. �	

Remark 9.1. In all theorems discussed so far we have considered envelopes e with
support completely contained in I , that is, e = e0 over ∂I . Our results can be
extended to also consider boundary layers, but we do not provide details.

Remark 9.2. At this point we want to mention two extensions to solutions of (1.1)
to all IR. We observe that the envelope equation can be considered naturally in all IR
and then, in principle, we could try to obtain the analogue of Theorem 2.2 for every
envelope in IR. However, this is not possible unless some control on the potential
and the envelope is considered at infinity.

First we consider the case of a periodic potential. With our construction and
the use of the Arzela–Ascoli Theorem, we can construct solutions associated with
envelopes with support having infinitely many components. In [16], this is done
for the unbalanced Allen–Cahn equation. Choosing the envelopes appropriately we
can construct in this way various kinds of chaotic solutions to (1.1).

Second, assuming that the potential is bounded away from zero at infinity, we
can construct solutions associated with any envelope with a bounded support.
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