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Abstract. In this article we study the asymptotic dynamics of highly oscillatory solutions
for the unbalanced Allen–Cahn equation with a slowly varying coefficient. We describe
the underlying structure of these solutions through a function we call the adiabatic profile,
which accounts for the asymptotic area covered by the solutions in the phase space. In finite
intervals, we construct solutions given any adiabatic profile. In the case of a periodic
coefficient we show that the system has chaotic behavior by constructing high-frequency
complex solutions which can be characterized by a bi-infinite sequence of real numbers in
[c1, c2] ∪ {0} (0 < c1 < c2).

1. Introduction
Slowly varying plane Hamiltonian systems appear as models for an ample variety of
problems in the sciences and applied sciences: particle mechanics, genetic evolution,
physics of alloys, water waves and many more. These three-dimensional systems often
present a very complicated behavior giving rise to intricate dynamics, which can be
interpreted as spatial or temporal chaos, depending of the problem under study. The general
problem is

dz

dt
= J∇zH(z, εt), z(t) ∈ R

2,

where J is the standard 2 × 2 symplectic matrix, ε > 0 is a small parameter and H is the
Hamiltonian.

Even though we believe that our results could be extended to a general class of
Hamiltonian systems, we concentrate our study in one particular second-order system
known as the unbalanced Allen–Cahn equation. This problem possesses solutions
exhibiting phase transitions and two types of spikes, providing a rich behavior that gives a
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good idea of a general second-order system. The unbalanced Allen–Cahn equation can be
written as

w′′ − (w2 − 1)(w − φ(εt)) = 0 in R, (1.1)

and is also known as the Fisher equation.
Equation (1.1) has been recently studied by Ai, Chen and Hastings [4], showing that it

possesses transition layers and two types of spike layers. They construct solutions having
multiple transition layers at points where φ(x) = 0 and φ′(x) �= 0, and multiple spike
layers at non-zero critical points of φ. In all cases, the solutions found in [4] have an
ε-independent number of transitions or spikes in any bounded interval. They even construct
complex solutions indexed by a bi-infinite sequence of integers in {0, 1, 2, . . . ,m}, m ∈ N,
proving that the system is chaotic.

This article goes a step further in the understanding of the dynamics of system (1.1) by
finding the underlying structure governing highly oscillatory solutions. This structure goes
far beyond the set of zeros and critical points of φ; it is richer and much more interesting.
We show that all solutions of equation (1.1) are associated asymptotically to an area-like
function, which we call adiabatic profile, that accounts for the asymptotic area described
by each oscillation in the phase space.

But our main contribution is the converse. In the case of a bounded interval,
we show that given any adiabatic profile there exists a family of solutions to (1.1)
associated asymptotically to this profile. Assuming some extra global conditions on φ,
like periodicity, we can also construct solutions in all R, associated to a certain class C
of adiabatic profiles, proving that the system is chaotic. This class C is indexed by
I = ([c1, c2] ∪ {0})Z, where 0 < c1 < c2.

The solutions that we construct are characterized by their highly oscillatory behavior
packed in the form of homoclinic and heteroclinic clusters. Each of these clusters oscillates
a number of times asymptotically equal to ω/ε, where ω ∈ [c1, c2].

Instead of working with (1.1), we prefer to consider the following equivalent form:

−ε2u′′ + f (x, u) = 0 in R, (1.2)

where the nonlinearity f is defined as f (x, u) = (u2 − 1)(u − φ(x)).
In order to describe our results in a more precise manner, we first introduce our

hypotheses on the function φ:
(φ1) φ : R → (−1, 1) is of class C1.
(φ2) All critical points of φ are isolated and they are local maxima or local minima.
(φ3) If φ(x) = 0 then φ′(x) �= 0.
We consider the primitive of f given by F(x, u) = ∫ u

0 f (x, s) ds, and we define the
function φ∗+ : R → [−1, 1] as the unique solution of F(x, y) = F(x,−1) if φ(x) < 0
and φ∗+(x) = −1 otherwise. Similarly we define φ∗− : R → [−1, 1] as the unique
solution of F(x, y) = F(x, 1) if φ(x) > 0 and φ∗+(x) = 1 otherwise. These functions
satisfy −1 ≤ φ∗−(x) < φ(x) < φ∗+(x) ≤ 1 for all x ∈ R. For a given x ∈ R and
e ∈ (φ∗−(x), φ∗+(x)) we denote by v(x, e; s) the solution of

v′′(s) − f (x, v(s)) = 0, v′(0) = 0, v(0) = e, (1.3)
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which is periodic and non-constant if e �= φ(x). If φ(x) > 0 we let v∗−(s) be the solution
of equation (1.3) with e = φ∗−(x), which corresponds to the homoclinic orbit at (1, 0).
In an analogous way, when φ(x) < 0 we let v∗+(s) be the homoclinic orbit at (−1, 0).
When φ(x) = 0, we denote by v∗

0 (s) the heteroclinic solution of (1.3) with v∗
0 (−∞) = −1,

v∗
0 (∞) = 1 and v∗

0 (0) = 0.
We define the trivial adiabatic profile (or trivial action) as the function

A0(x) =




∫ ∞

−∞
v∗−

′
(s)2 ds if φ(x) > 0,

∫ ∞

−∞
v∗+

′
(s)2 ds if φ(x) < 0,

2
∫ ∞

−∞
v∗

0
′
(s)2 ds if φ(x) = 0.

(1.4)

The function A0(x) corresponds to the area enclosed by the homoclinic (or heteroclinic)
orbit in the phase plane of equation (1.3).

Definition 1.1. We say that the functionA : R → (0,∞) is an adiabatic profile (or action)
if A is continuous, A(x) ≤ A0(x) for all x ∈ R and, whenever A(x) �= A0(x), we have
A′(x) = 0.

We define the support of an adiabatic profile as

supp(A) = {x ∈ R | A(x) �= A0(x)}.
Our first theorem describes the asymptotic behavior of a given family of solutions of

(1.1) in terms of adiabatic profiles. Given a family {uε} of solutions to (1.2) we define an
approximate action Aε as follows. Consider vε = vε(x; ·), the solution to the initial value
problem

v′′(s) − f (x, v(s)) = 0, (1.5)

v(0) = uε(x), v′(0) = εu′
ε(x). (1.6)

If u′
ε(x) ≥ 0 we define

T 0
ε (x) = inf{s | v′

ε(t) ≥ 0, −1 ≤ vε(t) ≤ 1, for all t ∈ (s, 0)}
and

T 1
ε (x) = sup{s | v′

ε(t) ≥ 0, −1 ≤ vε(t) ≤ 1, for all t ∈ (0, s)}.
In the case u′

ε(x) ≤ 0 we proceed in an analogous way. Then we define the approximate
action associated to uε as

Aε(x) = 2
∫ T 1

ε (x)

T 0
ε (x)

(v′
ε(s))

2 ds. (1.7)

We prove the following theorem.

THEOREM 1.1. There is a sequence εn → 0 such that Aεn converges locally uniformly
in R to an adiabatic profile A. Moreover, if the set of accumulation points of the maxima
of uεn contains a given interval [a, b] then the supp(A) contains (a, b).
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We should point out that, in an interval where the oscillations of uε stay away from the
homoclinic (or heteroclinic) orbits, this theorem simply states that the area function is an
adiabatic invariant, a well-known concept in the theory of averaging. See for example the
book by Arnold [6, §52]. The main point of our result is its global character. Moreover,
in its second part it establishes that if uε oscillates in a set which is dense in [a, b], then
the adiabatic profile is non-trivial in (a, b). Particularly, this implies that if xε → a with
uε(xε) → ±1 then for each y ∈ (a, b) we have that Aε(y) → A(y) with A(y) < A0(y),
that is, the solution uε separates from the homoclinic (or heteroclinic) solution at a.
The proof of this fact relies on Proposition 3.3, which happens to be crucial in the analysis
leading to Theorem 1.2.

Our main theorem asserts that, on the other hand, given any adiabatic profile A we can
construct a family of solutions having A as its asymptotic profile.

THEOREM 1.2. Given a bounded interval I and a non-trivial adiabatic profile A, there
exists a family uε of solutions to (1.2) in I , with Neumann boundary conditions on ∂I , such
that the approximate action Aε associated to uε converges to A in I .

At this point we mention the earlier work by Kurland [18], where the author constructs
highly oscillatory local solutions for (1.2) for which the oscillations stay away from
homoclinic or heteroclinic orbits. This allows a change of variables, transforming the
system to action-angle variables. In this context, our results prove the existence of global
solutions, crossing homoclinic or heteroclinic orbits.

We can also obtain results on the existence of solutions in all R. Actually, as a
consequence of Theorem 1.2 and the uniform control of the estimates that can be obtained
when φ is periodic, we can prove the existence of solutions for (1.1) in R, that exhibit
chaotic behavior. We prefer to postpone the precise description of this result to §7.

Oscillatory solutions of slowly varying systems have been studied by many authors.
In particular, we mention the work by Hastings and McLeod [15] and Gedeon et al [14].
Earlier results by Hale and Sakamoto [16], Angenent et al [8] and Alikakos et al [5] are
also contributions that motivated our work.

Highly oscillatory solutions are very natural in the context of slowly varying systems,
as shown by Kurland [18], but as far as we know not much is known in the literature
about the construction of solutions that cross homoclinic or heteroclinic orbits. Ai [1, 2],
Ai and Hastings [3], and Ali, Chen and Hastings [4] use uses a shooting method to
construct solutions for certain equations, somehow related to (1.1), having a number
of oscillations of order ε−1. On the other hand, for a one-dimensional Schrödinger
equation Felmer and Torres [11] obtained such highly oscillatory solutions, describing
the associated envelope equation. However, in [11] only single-cluster solutions were
constructed. In another work, Felmer and Martı́nez [12] obtained single-cluster solutions
for the balanced inhomogeneous Allen–Cahn equation in an interval. In [12] important
technical simplifications were obtained in the existence mechanism.

In [11] and [12] an important question was left open, which is the construction of
multi-cluster solutions. This problem is undertaken here for the unbalanced Allen–Cahn
equation.

The problem of gluing concentrating solutions has received an enormous amount of
attention during the last 15 years. We mention the pioneering work of Séré [23] and
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Coti-Zelati and Rabinowitz [9], and subsequent papers of many others. Particularly
interesting to our analysis is the work of Alessio and Montecchiari [7] and Kang and
Wei [17]. In all these works a good understanding of the properties of the objects to
be glued is needed, like uniqueness or non-degeneracy which is expressed in analytical or
topological terms. In the problem under study such information seems more elusive, since
the clusters we have in mind are solutions that do not survive in a reasonable manner the
limit procedure, as in the case of a single- or multi-peak or transition layer.

However, our problem is three-dimensional, two equations plus time, and we can take
advantage of that. In a recent work, Nakashima and Tanaka [21] (see also Nakashima
[19, 20]) obtained several existence results on multiple transition layers for the balanced
Allen–Cahn equation. Their method is variational and well suited to treat these slowly
varying systems. This method was also used to find multiple spikes in the nonlinear
Schrödinger equation by del Pino et al [10].

In this article we extend this variational approach to the construction of multiple
heteroclinic and homoclinic clusters. We combine the basic ideas in [21] with the analysis
developed in [12] in order to gain understanding in this more difficult problem. We refer
also to the recent work of the present authors [13] where a simpler case is studied using a
different point of view.

The organization of this paper is the following. In §2 we study the adiabatic profiles and
their relation with envelopes, an alternative way of describing the problem. In §3 we prove
Theorem 1.1. We use some ideas from [12] for the study of the asymptotic behavior of a
family of solutions. This result, which is interesting on its own, is needed for the existence
theory. In §4 we study the basic solutions upon which we base our variational method.
In §5 we construct one cluster by maximizing a finite-dimensional functional of Nehari
type. In §6 we extend the previous construction to the case of finitely many clusters in a
finite interval. In §7 we present our results on chaotic solutions. We describe the class of
solutions, and we prove the existence result.

2. Adiabatic profiles and envelopes
In this section we analyze in more detail the adiabatic profiles, as defined in §1. We also
introduce the notion of envelope, which appears to be very useful in the analysis and proof
of our theorems. These functions account for the asymptotic amplitude of the solutions we
are studying.

We start by discussing the behavior of the trivial adiabatic profile A0. For this purpose
it is convenient to define another two primitives of f ,

F+(x, u) =
∫ u

−1
f (x, s) ds and F−(x, u) =

∫ u

1
f (x, s) ds, (2.1)

and we notice that

F+(x, u) − F−(x, u) =
∫ 1

−1
f (x, s) ds = 4

3
φ(x).

We define

N∗±(x) =
∫ +∞

−∞

(
v∗±(s) − (v∗±(s))3

3
± 2

3

)
ds,
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where v∗+ and v∗− were defined in the introduction. These functions satisfy N∗−(x) < 0
and N∗+(x) > 0, where they are defined. The following proposition gives us the behavior
of A0.

PROPOSITION 2.1. The function A0 is differentiable at x so that φ(x) �= 0 and
(1) if φ(x) > 0 then A′

0(x) = φ′(x)N∗−(x);
(2) if φ(x) < 0 then A′

0(x) = φ′(x)N∗+(x);
(3) the function A0 has its global maximum at points where φ(x) = 0.

Remark 2.1. The local maximum points of the function A0 are the positive minima of φ,
the negative maxima of φ and the points where φ vanishes. In the latter case the maximum
point is a global maximum and A0 is not differentiable there.

Having the graph of the function φ we can draw the qualitative graph of A0 and then
we easily identify all possible adiabatic profiles.

Now we consider the notion of envelope. For x ∈ R and e ∈ (φ∗−(x), φ∗+(x)) \ {φ(x)}
we denote by T (x, e) half the period of the solution v of equation (1.3) and we set
T (x, φ∗+(x)) = T (x, φ∗−(x)) = ∞ and T (x, φ(x)) = 2π/

√
1 − φ2(x). We define the

function A(x, e) as

A(x, e) = 2
∫ T (x,e)

0
|v′(x, e; s)|2 ds,

when e ∈ (φ∗−(x), φ∗+(x)), and we extend it as

A(x, φ∗+(x)) = A0(x) and A(x, φ∗−(x)) = A0(x).

We observe that A(x, ·) is strictly increasing in [φ(x), φ∗+(x)] and strictly decreasing in
[φ∗−(x), φ(x)]. Through this function we define the envelope function associated to an
adiabatic profile.

Definition 2.1. A function e : R → [−1, 1] is said to be an envelope function if it is
continuous and it satisfies

A(x) = A(x, e(x)), x ∈ R, (2.2)

for a given adiabatic profile A.

If A = A0 then e = φ∗+ or e = φ∗−. Thus, φ∗+ and φ∗− are envelopes, which we refer to
as trivial envelopes.

Given an adiabatic profile, an envelope e satisfies either e(x) ∈ [φ(x), φ∗+(x)] for all x

or e(x) ∈ [φ∗−(x), φ(x)] for all x. For e ∈ [φ∗−(x), φ∗+(x)] we define R(x, e) as the unique
solution of

F(x,R(x, e)) = F(x, e),

satisfying R(x, e) ∈ [φ∗−(x), φ(x)] if e ∈ [φ(x), φ∗+(x)] and R(x, e) ∈ [φ(x), φ∗+(x)] if
e ∈ [φ∗−(x), φ(x)]. We note that e is an envelope if and only if R(x, e(x)) is an envelope
and that R(x, φ(x)) = φ(x). The function φ is also referred to as a trivial envelope.

We define the support of an envelope function as

supp(e) = {x ∈ R | e(x) ∈ (φ∗−(x), φ∗+(x))}.
We observe that if A and e are related by (2.2) then supp(e) = supp(A).
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We may characterize the envelope functions as solutions of a first-order differential
equation. This characterization will be useful later in proving Theorem 1.1. Assume e(x)

is an envelope function and let x ∈ supp(A). Then by direct differentiation of (2.2) and
integrating by parts we find that

∫ T (x,e(x))

0
f (x, v)vx ds = 0, (2.3)

where vx denotes the derivative of v = v(x, e(x); s) with respect to x. On the other hand,
we may write

A(x) = 4
∫ T (x,e(x))

0
{F(x, v) − F(x, e(x))} ds.

Differentiating this expression, and using (2.3), we find that

T (x, e(x))f (x, e(x))e′ =
∫ T (x,e(x))

0

∂

∂x
{F(x, v) − F(x, e(x))} ds,

from which we conclude that
e′(x) = H(x, e(x)), (2.4)

if we define

H(x, e(x)) = φ′(x)
Q(x, e(x)) − (e(x) − 1

3e3(x))

f (x, e(x))

and

Q(x, e(x)) = 1

T (x, e(x))

∫ T (x,e(x))

0

(
v − v3

3

)
ds.

Conversely, if e(x) satisfies equation (2.4), then A given by (2.2) is constant.
In order to consider equation (2.4) at points x �∈ supp(A), we extend the definition of

the function Q by considering Q(x, φ∗+(x)) = −2/3 if φ(x) < 0, Q(x, φ∗−(x)) = 2/3 if
φ(x) > 0, and Q(x, φ(x)) = φ(x) − φ3(x)/3. Now we give a precise notion of a solution
to (2.4).

Definition 2.2. A continuous function e : R → [−1, 1] is said to be a solution of the
envelope equation (2.4) if e(x) satisfies (2.4) at every x for which e(x) ∈ (−1, 1).

With these definitions we can easily prove the following result.

PROPOSITION 2.2. A function e : R → [−1, 1] is an envelope function if and only if it
satisfies equation (2.4).

Remark 2.2. We consider the sets

E− = {(x, y) ∈ R
2 | φ∗−(x) ≤ y ≤ φ(x)},

E+ = {(x, y) ∈ R
2 | φ(x) ≤ y ≤ φ∗+(x)}

and E = E− ∪ E+. Then we observe that the solutions of the envelope equation come in
pairs, e(x) and R(x, e(x)), one contained in E+ and the other in E−. The boundary of E is
given by the graphs of φ∗+(x) and φ∗−(x), both envelopes, and the graph of φ is a separatrix
of E .
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We will see later that an envelope e in E+ is associated to the maximum points of the
solutions of (1.2) and the corresponding envelope R(x, e(x)) in E− is associated to the
minimum points of these solutions.

Remark 2.3. Solutions of equation (2.4) are in a one-to-one correspondence with adiabatic
profiles. We observe that these solutions exhibit bifurcations at points where the adiabatic
profile leaves the trivial profile. This bifurcation is understood by the fact that H(x, e)

is not Lipschitz continuous on the trivial envelopes (x, φ∗+(x)), (x, φ∗−(x)), as we can see
from the analysis on the period function that follows.

We end this section with an asymptotic estimate on the period function. This estimate
is very important in our proof of Proposition 3.3 to follow. We consider

T+(x, e) =
∫ e

φ(x)

dτ√
2(F (x, τ ) − F(x, e))

for (x, e) ∈ E+

and

T−(x, e) =
∫ φ(x)

e

dτ√
2(F (x, τ ) − F(x, e))

for (x, e) ∈ E−.

Naturally we have T (x, e) = T+(x, e) + T−(R(x, e)).

LEMMA 2.1. There are continuous functions γ± : E± → (0,∞), locally Lipschitz in x,
such that

T±(x, e) = −γ±(x, e) ln |e ∓ 1|, for (x, e) ∈ E±, |e ∓ 1| > 0.

Proof. We first consider the case T+(x, e). We notice that the interesting situation occurs
near points (x̄, 1), where φ(x̄) ≥ 0. By Taylor expansion we have

2(F (x, τ ) − F(x, e)) = f ′(x, 1)S(τ, e) + o((τ − 1)2 − (e − 1)2),

where S(τ, e) = (e − τ )(e − τ + 2(1 − e)). Then we can write

T+(x, e) =
∫ e

φ(x)

√
S(τ, e)√

2(F (x, τ ) − F(x, e))

dτ√
S(τ, e)

.

The first term in the integral is continuous and locally Lipschitz in x. For the second term,
after some calculations, we find that∫ e

φ(x)

dτ√
S(τ, e)

= s(x, e) ln(1 − e),

with s(x, e) continuous and locally Lipschitz in x. Now it is easy to obtain the desired
result. The case T−(x, e) is analogous. �

3. Asymptotic behavior of solutions to (1.2)
In this section we analyze the asymptotic behavior of a given sequence of solutions to
equation (1.2). Assume we have functions un : [an, bn] → R, with limn→∞ an = ā,
limn→∞ bn = b̄ and such that

−ε2
nu

′′
n + f (x, un) = 0, u′

n(an) = u′
n(bn) = 0, (3.1)
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where εn → 0 as n → ∞. Our purpose is to analyze the behavior of sub-sequences
of {un}. In particular we are interested in associating to {un} an envelope, that is a function
satisfying (2.4) describing the local maximum points of un asymptotically. For a related
analysis for other problems we refer to [11] and [12]. We start with the following result
which is a direct consequence of (3.1).

PROPOSITION 3.1. Under the conditions described above we have the following:
(1) If x ∈ (an, bn) is a local maximum of un then φ(x) < un(x) < 1, and if x is a local

minimum of un then −1 < un(x) < φ(x).
(2) If x1 < x2 are two consecutive maxima (or two consecutive minima) of un, and

φ′(x) > 0 (φ′(x) < 0) in (x1, x2) then un(x1) < un(x2) (un(x1) > un(x2)).

Next we consider an interval I+ = (�−, �+) ⊂ (ā, b̄) having one of the following
characteristics: (1) φ′(x) < 0, φ(x) > 0 for x ∈ [�−, �+], (2) φ′(x) > 0, φ(x) < 0 for
x ∈ [�−, �+].

Suppose that we are in case (1) and that an, bn are local maxima of un. Assume that
�− ≤ x1

n < x2
n < · · · < x

sn
n ≤ �+ are the local minima of un in [�−, �+] for i = 1, . . . , sn.

Furthermore, we assume that sn → ∞ as n → ∞.
For case (2), we suppose that an, bn are local minima of un, and that �− ≤ x1

n < x2
n <

· · · < x
sn
n ≤ �+ are the local maxima of un in [�−, �+] for i = 1, · · · , sn, and assume that

sn → ∞ as n → ∞. Considering a sub-sequence if necessary we define α = limn→∞ x1
n

and β = limn→∞ x
sn
n . We also denote by y1

n < · · · < y
sn−1
n , the local maxima or minima

of un in (x1
n, x

sn
n ) (if (1) or (2) holds respectively).

We have the following density property for the extreme points of un.

PROPOSITION 3.2. If x1 < x2 are such that [x1, x2] ⊂ (α, β) then there is n0 so that for
every n ≥ n0 the solution un has at least one maximum point and one minimum point in
[x1, x2].
Proof. We only sketch the proof. Let us assume for definiteness that case (1) holds
(the other case is analogous). If there is no critical point in the interval [x1, x2] then, up to a
sequence, un converges to 1 in [x1, x2], except possibly for a point. Using comparison, this
implies that for a sequence y+

n ∈ [x1, x2] we have 1 − un(y
+
n ), |u′

n(y
+
n )| ≤ e−δ/εn . On the

other hand, we can prove the existence of y−
n ∈ [α, x1] such that 1 − un(y

−
n ) ≤ e−δ/εn .

Then multiplying the equation by u′
n and integrating between y−

n and y+
n provides a

contradiction. �

The next proposition is crucial in proving our main result. This is the starting point for
understanding the relation between the oscillatory solutions with the envelope functions,
and consequently with the adiabatic profiles. It states that once a solution of (1.2) starts
oscillating at a point x, where for example φ(x) > 0 and φ′(x) < 0, then to the right
of x it also oscillates. Moreover, its maximum values become different from the maximum
associated to the homoclinic orbits, so entering an asymptotically periodic behavior.

PROPOSITION 3.3. Suppose that (1) holds:
(i) If α > �− then un(y

in
n ) → 1 for all sequences {yin

n } such that y
in
n → α.

(ii) If y
in
n → x̄ ∈ (α, �+] then lim supn→∞ un(y

in
n ) < 1, in particular β = �+.
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If (2) holds then we have:
(i) If α > �− then un(y

in
n ) → −1 for all sequences {yin

n } such that y
in
n → α.

(ii) If y
in
n → x̄ ∈ (α, �+] then lim supn→∞ un(y

in
n ) > −1: in particular β = �+.

Proof. Assume case (1) holds: the other case can be treated in a similar way.
(i) Since �− < α, we notice that un(y

1
n) → 1 because rescaling un around y1

n leads to
a homoclinic orbit of the limiting equation. Then, integrating (3.1) between y1

n and y
in
n we

obtain

F−(yin
n , un(y

in
n )) − F−(y1

n, un(y
1
n)) =

∫ y
in
n

y1
n

∂F−
∂x

(x, un(x)) dx, (3.2)

from which it follows that un(y
in
n ) → 1.

(ii) If lim supn→∞ un(y
1
n) < 1, then Proposition 3.1 implies the result. Thus, we may

assume that, up to a sub-sequence, limn→∞ un(y
1
n) = 1.

Let us assume that the proposition does not hold. Then, up to a sub-sequence, we have
that un(y

in
n ) → 1 as n → ∞ and so

lim
n→∞

∫ y
in
n

y1
n

∂F−
∂x

(x, un(x)) dx = 0. (3.3)

Our efforts are directed to proving that this is impossible, by providing a contradiction.
We start by observing that Proposition 3.1 implies that un(y

ln
n ) → 1, for all sequences {ln},

with ln ∈ {1, 2, . . . , in} ≡ Kn.

CLAIM. We have that, uniformly in the sequence {ln} ⊂ Kn

lim
n→∞

y
ln+1
n − y

ln
n

εn
= ∞.

Assuming the contrary, there is a sub-sequence of {un} and {ln}, for which by rescaling un

around y
ln
n we obtain a sequence vn that converges to a non-trivial solution of

v′′ − f (ȳ, v) = 0,

satisfying v′(ȳ) = v′(ȳ + y0) = 0, for a certain positive constant y0. But then v(ȳ) < 1
since v is periodic, providing a contradiction that proves the claim.

Returning to the proof of Proposition 3.3, part (iii), we next let r0 > 0 and v∗− be the
homoclinic solution of (1.3) with e = φ∗−(x), for x ∈ [α, x̄]. Then there exists a positive
constant A1 such that

∫ r0

−r0

∂F−
∂x

(x, v∗−(s)) ds = φ′(x)

∫ r0

−r0

(
v∗− − (v∗−)3

3
− 2

3

)
ds ≥ A1 > 0, (3.4)

for all x ∈ [α, x̄]. Thus, letting zk
n < yk

n < zk+1
n be the minimum points enclosing yk

n ,
we see that

lim inf
n→∞

1

εn

∫ z
ln
n +r0εn

z
ln
n −r0εn

∂F−
∂x

(x, un(x)) dx ≥ A1, (3.5)
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uniformly in the sequence {ln} ⊂ Kn. From here we find

∫ y
in
n

y1
n

∂F−
∂x

(x, un(x)) dx ≥
in−1∑
k=2

∫ zk
n+r0εn

zk
n−r0εn

∂F−
∂x

(x, un(x)) dx

≥ εn(in − 2)A2, (3.6)

for a certain constant A2 > 0. Thus, to get a contradiction between (3.6) and (3.3) we just
need to prove that the sequence {εnin} is bounded away from zero.

From (3.2) and (3.6) we find a positive constant A4 such that

F−(yk
n, un(y

k
n)) ≥ εnkA4 for all k ∈ Kn,

which implies that (1 − un(y
k
n))2 ≥ εnkA5, for some A5. This, together with Lemma 2.1,

shows that there is a constant γ1 > 0 such that for all k ∈ Kn,

T (yk
n, un(y

k
n)) ≤ −γ1 ln(εnkA2). (3.7)

Next we estimate zk+1
n − zk

n. We let vn be the solution of the equation

ε2
nv

′′
n − f (yk

n, vn(x)) = 0,

with initial conditions v′
n(y

k
n) = 0 and vn(y

k
n) = un(y

k
n). Since φ(x) ≥ φ(yk

n) for all
x ∈ [yk−1

n , yk
n] we have f (x, s) ≥ f (yk

n, s) for all x ∈ [yk−1
n , yk

n]. While un and vn are
decreasing we define xu and xv as their inverses, respectively. Then we have

−ε2

2

d

ds

(
1

(x ′
u)

2
− 1

(x ′
v)

2

)
= −f (xu, s) + f (yk

n, s),

and so (x ′
v)

2 > (x ′
u)

2. Let x̄k ∈ [yk
n − εnT (yk

n, un(y
k
n)), yk

n] so that un(x̄k) = vn(y
k
n −

εnT (yk
n, un(y

k
n))). We notice that (yk

n − x̄k)/εn ≤ T (yk
n, un(y

k
n)) and since un(y

k
n) → 1

we have that (x̄k − zk
n)/εn is bounded, and then (x̄k − zk

n)/εn ≤ T (yk
n, un(y

k
n)). Thus

(yk
n − zk

n) ≤ 2εnT (yk
n, un(y

k
n)) for all k ∈ Kn.

Using similar arguments, we compare un(x) with un(2yk
n − x) and we find the same

estimate for zk+1
n − yk

n, concluding that

1
2 (zk+1

n − zk
n) ≤ εnT (yk

n, un(y
k
n)) for all k ∈ Kn. (3.8)

From here and (3.7), we obtain

zin
n − z1

n =
in−1∑
k=1

zk+1
n − zk

n ≤ 2εn

in∑
k=1

T (yk
n, un(y

k
n)) ≤ −2γ1εn

in∑
k=1

ln(εnkA2).

Hence, using that M! ≥ (rM)M for a certain r > 0, we find

1
2 (x̄ − α) ≤ zin

n − z1
n ≤ −2γ1εnin ln(εninrA2),

from which we conclude that {εnin} must be bounded away from zero, completing the
proof of (ii). This completes the proof of Proposition 3.3. �
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Now we study the asymptotic behavior of un on the interval I+. We relate it with an
envelope by proving that an approximate envelope converges to a solution of the envelope
equation. Subsequently we relate the behavior of un with the associated adiabatic profile.

We define the approximate envelope function eεn : [�−, �+] → R as follows. In the
interval [y1

n, y
sn
n ] we consider

eεn(x) = un(y
k
n) + un(y

k+1
n ) − un(y

k
n)

yk+1
n − yk

n

(yk+1
n − x), x ∈ [yk

n, yk+1
n ], (3.9)

for k = 1, . . . , sn − 1. If α > �− we extend eεn as the trivial envelope φ∗+ to [�−, y1
n − εn]

and in (y1
n − εn, y

1
n) we extend it linearly. On the other extreme we extend eεn linearly to

[ysn
n , �+]. In the case α = �− we simply extend eεn linearly to [�−, y1

n]. Then we can prove
the following proposition.

PROPOSITION 3.4. The sequence {eεn} converges uniformly in I+ = [�−, �+] to a
solution e of (2.4) in (�−, �+). Moreover, supp(e) = (α, �+] if e(�−) = φ∗+(�−) and
supp(e) = [�−, �+] if e(�−) < φ∗+(�−).

Proof. Multiplying (3.1) by u′
n and integrating we get

F(yk+1
n , un(y

k+1
n )) − F(yk

n, un(y
k
n)) =

∫ yk+1
n

yk
n

∂F

∂x
(x, un(x)) dx,

from which, after writing uk+1
n = un(y

k+1
n ) and uk

n = un(y
k
n),

F(yk+1
n , uk+1

n ) − F(yk+1
n , uk

n)

uk+1
n − uk

n

uk+1
n − uk

n

yk+1
n − yk

n

= F(yk+1
n , uk

n) − F(yk
n, uk

n)

yk
n − yk+1

n

+ 1

yk+1
n − yk

n

∫ yk+1
n

yk
n

∂F

∂x
(x, un(x)) dx. (3.10)

Now let us consider x ∈ (α, β) and 1 ≤ kn ≤ sn so that y
kn
n → x and un(y

kn
n ) → u as

n → ∞, for a sub-sequence if necessary. Then, using Proposition 3.3 we obtain that

lim
n→∞

F(y
kn+1
n , u

kn+1
n ) − F(y

kn+1
n , u

kn
n )

u
kn+1
n − u

kn
n

= f (x, u),

where f (x, u) �= 0, since φ(x) < u < 1. Then, from (3.10) we find that for a certain
constant C ∣∣∣∣u

k+1
n − uk

n

yk+1
n − yk

n

∣∣∣∣ ≤ C for all n, k, 1 ≤ k ≤ sn.

This implies that the sequence {en} is equicontinuous and then, by the Arzela–Ascoli
theorem, after a sub-sequence, there is a function e : [�−, �+] → R, so that en → e,
uniformly. Actually, the Arzela–Ascoli theorem guarantees uniform convergence in every
closed interval contained in (α, �+]. However, the application of Proposition 3.1 allows one
to argue the uniform convergence in all [�−, �+]. We observe that φ(x) < e(x) < φ∗+(x),
for all x ∈ (α, �+].



High-frequency chaotic solutions

Next we look at the right-hand side of (3.10). We see that the function vn(y) =
un(y

kn
n + εny) converges locally uniformly to v, the solution in R of the equation (1.3)

with e = e(x). Then it follows that

lim
n→∞

1

y
kn+1
n − y

kn
n

∫ y
kn+1
n

y
kn
n

∂F

∂x
(z, un(z)) dz = 1

τ (x)

∫ τ (x)

0

∂F

∂x
(x, v(s)) ds

where τ (x) = T (x, e(x)). This completes the proof of Proposition 3.4. �

Next we may consider intervals of the form I− = (�+, �−) ⊂ (ā, b̄) having one of
the following characteristics: (1) φ′(x) > 0, φ(x) > 0 for x ∈ I− or (2) φ′(x) < 0,
φ(x) < 0 for x ∈ I−. Then the analogues of Propositions 3.2 and 3.3 can be proved.
Defining the corresponding approximate envelope in I− we can also prove an analogue of
Proposition 3.4.

We notice that the interval I = [ā, b̄] can be written as the union of intervals of type I+
and I−, alternatively. Thus, given our solution un in the interval [an, bn], we define an
approximate envelope eεn in [an, bn] and we have proved the following theorem.

THEOREM 3.1. Under the definitions and conditions given above, up to a sub-sequence,
{eεn} converges uniformly in I to a solution e of (2.4).

We complete this section by proving Theorem 1.1. For this purpose we just need to
make the connection between the approximate envelope eεn with the approximate action
as defined in (1.7). We consider x ∈ I and the function vεn defined by (1.5) and (1.6).
We define

ẽεn(x) = max
s∈R

|vεn(x; s)|.
It is clear that the approximate action satisfies

Aεn(x) = A(x, ẽεn(x)),

so that we only need to prove the following lemma.

LEMMA 3.1. Up to a sub-sequence,

lim
n→∞ ẽεn(x) = lim

n→∞ eεn(x).

Proof. Consider

Eεn(x) = ε2

2
|u′

εn
(x)|2 − F(x, uεn(x)).

Then we have
d

dx
Eεn(x) = φ′(x)

{
uε(x) − 1

3
u3

ε(x)

}
,

so that Eεn(x) is bounded in W 1,∞(I ) as n → ∞. In particular Eεn(x) has a uniformly
convergent sub-sequence. We also have that ẽεn(x) has a uniformly convergent sub-
sequence.

Let x0 ∈ int(I ) and suppose that, for δ > 0, local maxima of uεn(x) are dense
in (x0 − δ, x0 + δ). Then we can easily see that eεn(x0) and ẽεn(x0) have a common
limit. On the other hand, if for δ > 0 local maxima of uε(x) do not appear densely in
(x0 − δ, x0 + δ), by Proposition 3.4 we have limn→∞ eεn(x0) = φ∗+(x0). We also have
limn→∞ Eεn(x0) = 0 and thus ẽεn(x0) → φ∗+(x0). �
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Remark 3.1. Let us denote by Nn(x0, x1) the number of zeros of un in [x0, x1] ⊂ (ā, b̄).
Then, by a simple argument as in [12], we can prove that

lim
n→∞ Nnεn =

∫ x1

x0

1

T (x, e(x))
dx, (3.11)

where e is the envelope associated to {un}.

4. Existence of basic solutions
In this section we consider the existence of basic solutions for (1.2). Putting together these
solutions we construct a finite-dimensional functional in order to find more complicated
solutions, resembling earlier work by Nehari [22]. We start with the autonomous equation

v′′(s) − f (x, v(s)) = 0 v(0) = e, v′(0) = 0, (4.1)

where x ∈ [a, b] is a fixed parameter and e ∈ (−1, 1) and we denote its solution by
v(s) = v(x, e; s). When e ∈ (φ(x), φ∗+(x)) the solution v(x, e; s) is periodic and we
let T (x, e) be half of its period. When φ(x) is close to 0 and e ∈ (−1, 1) is close to 1
then v(x, e; s) remains positive in a symmetric bounded interval, whose length is denoted
by Tp(x, e). While if e ∈ (−1, 1) is close to −1 then v(x, e; s) remains negative in a
symmetric bounded interval of length Tn(x, e).

For our nonlinearity f (x, u), the following result was proved by Smoller and
Wasserman [24]

∂T

∂e
(x, e) > 0 for all x, e ∈ (φ(x), φ∗+(x)) (4.2)

and also for x such that φ(x) is close to 0

∂Tp

∂e
(x, e) > 0 and

∂Tn

∂e
(x, e) < 0, (4.3)

for e near 1 in the first inequality and e near −1 in the second one.
Based on the monotonicity of the period we obtain a non-degeneracy property of the

linearized equation associated to (4.1). We consider first the case of Neumann boundary
conditions. We observe that the solution v(x, e; s) of (4.1) satisfies the Neumann boundary
condition

v′(0) = v′(T (x, e)) = 0,

and v′(t) < 0 for t ∈ (0, T (x, e)). We have the following lemma.

LEMMA 4.1. The equation

h′′ − f ′(x, v(x, e; s))h = 0, h′(0) = h′(T (x, e)) = 0, (4.4)

has only the trivial solution. Here f ′(x, u) denotes the derivative with respect to u.

Proof. The differential equation in (4.4) has two linearly independent solutions that we can
write explicitly as

h1(s) = dv

ds
(s) and h2(s) = dv

de
(s).
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Differentiating we see that h1 and h2 do not satisfy the boundary condition in (4.4). In fact,

h′
1(0) = v′′(0) = f (x, e) �= 0

and by (4.2), and denoting by T ′ the derivative of T with respect to e,

h′
2(T ) = −v′′(T )T ′ = −f (x,R(e))T ′ �= 0. �

A similar statement can be made in the case of homoclinic orbits appearing when
φ(x) �= 0. We assume that φ(x) < 0; the other case is analogous. We write v∗(x, s)

for the solution of the equation in (4.1) satisfying the boundary condition v′∗(x, 0) = 0,
lims→∞ v∗(x, s) = −1, with v′∗(x, s) < 0 for all s > 0. Then we have the following
lemma.

LEMMA 4.2. The equation

h′′ − f ′(x, v∗(x, s))h = 0, h′(0) = lim
s→∞ h′(s) = 0, (4.5)

has only the trivial solution.

Proof. The equation has two independent solutions. One is v′∗(x, s), which does not satisfy
the boundary condition at 0 and which is bounded at infinity. The other solution of (4.5)
has to be unbounded. �

Before continuing, let us state an energy estimate for the homoclinic orbits v∗(x, s) in
terms of x. Still in the case φ(x) < 0 we define

E+(x) =
∫ ∞

0

(v′∗)2

2
+ F+(x, v∗) ds.

When φ(x) > 0 we denote by v∗(x, s) the solution equation in (4.1) satisfying the
boundary condition v′∗(x, 0) = 0, lims→∞ v∗(x, s) = 1, with v′∗(x, s) > 0 for all s > 0
and we consider the energy function

E−(x) =
∫ ∞

0

(v′∗)2

2
+ F−(x, v∗) ds.

Then we have our next lemma.

LEMMA 4.3. E′+(x)φ′(x) > 0 if φ(x) < 0 and φ′(x)E′−(x) < 0 if φ(x) > 0.

Proof. We prove this only for E+. After a change of variables we obtain that

E+(x) =
∫ φ∗+(x)

−1

√
2F+(x,w) dw

and then simple differentiation gives φ′(x)E′+(x) > 0. �

Next we consider the associated non-autonomous linear problem. We need two extreme
functions in order to control the size of the period. First we consider a function �∞(x)

such that �∞(x) = +∞ for all x, except in a small neighborhood of {x | φ(x) = 0},
where it is continuous. We also define �0(x) = T (x, φ(x)). Given x0 ∈ [ā, b̄] and
� > �0(x0) = T (x0, φ(x0)), we consider the solution v0 = v(x0, e(�); ·) of (4.1) with
v′

0(t) < 0 in (0, �). Here e = e(�) is the unique e satisfying T (x0, e) = �.
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LEMMA 4.4. Given δ > 0, there are positive constants C, ε0 such that for every ε ∈
(0, ε0), x0 ∈ [ā, b̄],

�0(x0) + δ ≤ � < �∞(x0), (4.6)

x0 + ε� ≤ b̄ and g ∈ C([0, �]), the linear equation

h′′ − f ′(x0 + εs, v0(s))h = g, h′(0) = h′(�) = 0, (4.7)

has a unique solution h satisfying

‖h‖2 ≤ C‖g‖0. (4.8)

Here ‖ · ‖2 and ‖ · ‖0 denote the natural uniform norms in C2([0, �]) and C([0, �]),
respectively.

Proof. By Fredholm alternative, it is enough to prove (4.8) for all possible solutions
of (4.7). Suppose we have a sequence εn → 0, xn

0 ∈ [ā, b̄], �n ≥ �(xn
0 ) + δ, and

gn ∈ C([0, �n]) such that hn satisfies (4.7), ‖gn‖0 = 1 and ‖hn‖2 → ∞.
We define ĥn = hn/‖hn‖2 and ĝn = gn/‖hn‖2, then we have

ĥ′′
n − f ′(xn

0 + εns, v
n
0 (s))ĥn = ĝn, ĥ′

n(x
n
0 ) = ĥ′

n(x
n
0 + �n) = 0.

Let us assume first that for a sub-sequence �n → �̄ < ∞. Then, for a sub-sequence we
have xn

0 → x̄ and ĥn → h̄ such that

h̄′′ − f ′(x̄, v̄(s))h̄ = 0, h̄′(0) = h̄′(�̄) = 0,

where v̄ = v(x̄, ē; ·) satisfies (4.1) and ē is so that T (x̄, ē) = �̄. But in view of Lemma 4.1
this is impossible, since h̄ �= 0.

Assume next that �n → ∞. We notice that thanks to (4.6) this implies
that φ(x̄) �= 0. Let sn ∈ (0, �n) be a point where s �→ max{|ĥn(s)|,
|ĥ′

n(s)|, |ĥ′′
n(s)|} attains its global maximum value. If sn is bounded we proceed as above,

with the only difference being that we will use Lemma 4.2 to conclude. In the case sn → ∞
we center the equation at sn and we take the limit as n → ∞, for an appropriate sub-
sequence. Then we obtain a bounded function h̄ satisfying

h̄′′ − f ′(x̄,±1)h̄ = 0, s ≤ 0

and h̄′(0) = 0. Since f ′(x̄,±1) > 0 this is impossible. �

Now we can state our theorem on the existence and uniqueness of basic solutions with
Neumann boundary condition.

THEOREM 4.1. Given δ > 0, there exists ε0 such that, for every ε ∈ (0, ε0), x0 ∈ [ā, b̄],
x0 + ε� ≤ b̄,

�0(x0) + δ ≤ � < �∞(x0), (4.9)

the equation

u′′ − f (x0 + εs, u(s)) = 0, u′(0) = u′(�) = 0, u′ > 0 (4.10)

has a unique solution, which is differentiable in x0 and �.
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Proof. This theorem is a consequence of the implicit function theorem. We consider
w = u−v0, where v0 is defined just before Lemma 4.4. Then equation (4.10) is equivalent
to

w′′ − f ′(x0 + εs, v0(s))w = Q(x0, �, ε, s)w + E(x0, �, ε, s) (4.11)

w′(0) = w′(�) = 0, (4.12)

where Q and E are given by

Q(x0, �, ε, s)w = f (x0 + εs, v0 + w) − f (x0 + εs, v0(s))

− f ′(x0 + εs, v0(s))w

and
E(x0, �, ε, s) = f (x0 + εs, v0(s)) − f (x0, v0(s)).

Now, given σ > 0, we can find ε1 so that if ε ∈ (0, ε1) then

|E(x0, �, ε, t)| ≤ σ

2C
,

where C is the constant appearing in (4.8). On the other hand, by a direct computation
we have

|Q(x0, �, ε, s)w(s)| ≤ c|w(s)|2.
Now we choose σ so small that cσ 2 ≤ σ/(2C). Then, given w1 such that ‖w1‖0 ≤ σ ,
the equation

w′′ − f ′(x0 + εs, v0(s))w = Q(x0, �, ε, s)w1 + E(x0, �, ε, s)

with boundary condition (4.12) defines a unique w2 satisfying ‖w2‖2 ≤ σ , thanks to
Lemma 4.4. Thus we can define an operator F : Bσ ⊂ C0([0, �]) → Bσ , where Bσ

is the closed ball centered at 0 and with radius σ . In the same way we can prove that F
is a contraction. Therefore F has a fixed point that is a solution to (4.11) and (4.12), then
solving (4.10) in a unique way.

The differentiability properties of this solution require some extra work that we leave to
the reader. �

Remark 4.1. If φ : R → (−1, 1) is periodic, then ε0 may be taken independent of ā and b̄

in Theorem 4.1. More precisely, given δ > 0 there exists ε0 > 0 such that, for all ε < ε0,
x0 ∈ R and �(x0) + δ ≤ � ≤ �∞(x0), equation (4.10) has a unique solution.

When φ(x0) is close to zero, the Neumann problem may not behave well, and we prefer
to use the Dirichlet problem to construct basic solutions. Arguing as in the Neumann case,
but now using property (4.3), we can prove the following existence and uniqueness result.

THEOREM 4.2. Let x̄ ∈ (ā, b̄) such that φ(x̄) = 0. Then, there exists �̄ > 0 and ε0 such
that, for every x0 ∈ [x̄ − ε0, x̄ + ε0], ε ∈ (0, ε0) and �̄ ≤ � ≤ (b̄ − x0)/ε the equation

u′′ − f (x0 + εs, u(s)) = 0, u(0) = u(�) = 0, (4.13)

has a unique positive solution (negative solution), which is differentiable in x0 and �.

Remark 4.2. If φ : R → (−1, 1) is periodic, then �̄ and ε0 can be taken independent of x̄

in Theorem 4.2.
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5. Construction of single clusters
We start this section with a few definitions.

Definition 5.1. A solution e of (2.4) is an increasing heteroclinic envelope if supp(e) =
(a, b) with a, b satisfying φ(a) < 0 < φ(b), φ′(a), φ′(b) > 0. In a similar way we define
a decreasing heteroclinic envelope.

We say that a solution e of (2.4) is a positive homoclinic envelope if supp(e) = (a, b)

with a, b satisfying φ(a), φ(b) < 0, φ′(a) > 0, φ′(b) < 0. Similarly, we say that a
solution e of (2.4) is a negative homoclinic envelope if supp(e) = (a, b) with a, b satisfying
φ(a), φ(b) > 0 and φ′(a) < 0, φ′(b) > 0.

This section is devoted to proving that if e > φ is an increasing (decreasing) heteroclinic
envelope in a given bounded interval then for ε small enough there is a solution uε of (1.2)
such that its approximate upper envelope eε converges to e, uniformly.

PROPOSITION 5.1. Set φ < e1 ≤ e2 increasing (decreasing) heteroclinic envelopes of
(2.4), with supp(ei) = (ai, bi) for i = 1, 2 with φ′(x) > 0 (< 0) in [a1, a2] ∪ [b2, b1].
For all δ > 0 and ā, b̄ with ā < a1 < b1 < b̄ there exists εδ > 0 such that, for 0 < ε < εδ

and e1 ≤ e ≤ e2 solution of (2.4), the equation (1.2) admits a solution uε defined in [ā, b̄]
satisfying u′

ε(ā) = u′
ε(b̄) = 0, and ‖eε − e‖L∞(ā,b̄) < δ, where eε is the approximate

envelope of uε, defined as in (3.9). The family {uε} is called an increasing (decreasing)
heteroclinic cluster.

If e is a positive (negative) homoclinic envelope, we can write a similar statement for
the existence of homoclinic clusters. The arguments for the proof of such a statement can
be directly extended from those of Proposition 5.1.

We shall prove Proposition 5.1 under the extra assumption that there is exactly one
c ∈ (a2, b2) such that φ(c) = 0. The general case can be treated similarly. We need two
auxiliary envelopes ẽ, ec : R → E+ solutions of (2.4) satisfying ẽ ≤ e1 ≤ e2 ≤ ec, with
ẽ(c) < e1(c) < e2(c) < ec(c) < 1. We assume that supp(ẽ) = (ã, b̃) ⊂ (ā, b̄) and
φ′(x) > 0 in [ã, a1] ∪ [b1, b̃]. We also assume that supp(ec) = (ac, bc), with bc − ac

suitably small. We define, for x, y ∈ [ā, b̄],
d(x, y) = 1

ε

∫ y

x

ds

T (s, ẽ(s))
, dc(x, y) = 1

ε

∫ y

x

ds

T (s, ec(s))
(5.1)

and we introduce the domain in R
N

ε
e = {(x1, x2, . . . , xNε

e
) | x0 = ā, xNε

e +1 = b̄, x0 ≤ x1 ≤ · · · ≤ xNε
e +1,

d(xi, xi+1) ≥ 1, dc(xi, xi+1) ≤ 1, i = 0, 1, . . . , Nε
e }, (5.2)

where Nε
e is chosen so that

Nε
e =

⌊
1

ε

∫ b̄

ā

1

T (s, e(s))
ds

⌋
, (5.3)

with �s� denoting the closest even integer to s. Next we introduce our finite-dimensional
functional gε . It will be notationally convenient to define an energy density as

σ±
ε (x, u) = ε2 u′2(x)

2
+ F±(x, u(x)).
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We define gε : ε
e → R for X = (x1, x2, . . . , xNε

e
) ∈ ε

e as

gε(X) =
i0−1∑
i=0

∫ xi+1

xi

σ+
ε (x, ui) dx +

∫ c

xi0

σ+
ε (x, ui0) dx

+
∫ xi0+1

c

σ−
ε (x, ui0) dx +

Nε
e∑

i=i0+1

∫ xi+1

xi

σ−
ε (x, ui) dx, (5.4)

where i0 satisfies x1 ≤ · · · ≤ xi0 ≤ c ≤ xi0+1 ≤ · · · ≤ xNε
e
, and ui is defined as the

solution of
ε2u′′

i − f (x, ui) = 0, u′
i (xi) = 0 = u′

i (xi+1), (5.5)

with (−1)iu′
i > 0. We remark that this equation has a unique solution thanks to

Theorem 4.1 and the constraints d(xi, xi+1) ≥ 1 and dc(xi, xi+1) ≤ 1 in ε
e. We can

easily check that

∂gε

∂xj

(X) = −F+(xj , uj (xj )) + F+(xj , uj−1(xj )), 1 ≤ j ≤ i0

and
∂gε

∂xj
(X) = −F−(xj , uj (xj )) + F−(xj , uj−1(xj )), i0 + 1 ≤ j ≤ Nε

e .

Thus, if ∇gε(X) = 0 then the function uε, defined as

uε(x) = ui(x), x ∈ [xi, xi+1], i = 0, . . . , Nε
e , (5.6)

is a solution of (1.2) with u′
ε(ā) = u′

ε(b̄) = 0. Consequently, in order to prove
Proposition 5.1 we just need to prove that gε has an interior critical point. Actually we
will show that the maximum of gε is achieved in int(ε

e).

Proof of Proposition 5.1. We prove that there is an ε0 > 0 such that for all 0 < ε < ε0

the finite-dimensional functional gε achieves its maximum in int(ε
e). Let us consider

sequences {εn}, en → e∞, e1 ≤ en ≤ e2, and {Xn} so that εn → 0, Xn ∈ 
εn
en and

gεn(Xn) ≥ gεn(X) for all X ∈ εn
en

.

It will be enough to prove that, up to a sub-sequence, for n large we have

Xn ∈ int(εn
en

) and ∇gεn(Xn) = 0.

We write Nn = N
εn
en , gn = g

εn
en , un = uεn and n = 

εn
en for simplicity.

It will be convenient to consider another auxiliary envelope ê between ẽ and e1. Let ê be
a solution of (2.4) such that supp(ê) = (â, b̂) and ā < ã < â < a1 and b1 < b̂ < b̃ < b̄.
We define

Bn = {i | [xn
i , xn

i+1] ∩ (â, b̂) �= ∅},
B1

n = {i | [xn
i , xn

i+1] ∩ (â, ac) �= ∅},
B2

n = {i | [xn
i−1, x

n
i ] ∩ (bc, b̂) �= ∅}.

The proof of Proposition 5.1 consists of several steps.
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Step 1. There exists jn ∈ B1
n ∪ B2

n such that, up to a sub-sequence,

lim
n→∞ d(xn

jn
, xn

jn+1) ≥ 1 + κ, (5.7)

with κ > 0.
Assuming the contrary, we see that d(xn

j , xn
j+1) approaches 1 uniformly in j ∈ B1

n ∪B2
n .

Then we have

|B1
n ∪ B2

n| = (1 + γn)

εn

{∫ ac

â

1

T (x, ẽ(x))
dx +

∫ b̂

bc

1

T (x, ẽ(x))
dx

}
,

where γn → 0 as n → ∞. Since Nn ≥ |B1
n ∪ B2

n |, taking the limit we obtain
∫ b1

a1

1

T (x, e∞(x))
dx ≥

∫ ac

â

1

T (x, ẽ(x))
dx +

∫ b̂

bc

1

T (x, ẽ(x))
dx,

which is a contradiction, if we have chosen bc − ac small enough. This proves Step 1.

We may assume without loss of generality that jn ∈ B1
n for all n. We write B1

n =
{i1, . . . , il}, with i1 < i2 < · · · < il , where we have omitted the index n to simplify
notation.

Step 2. For all n, the function uεn defined in (5.6) is a solution of (1.2) in (xn
i1
, xn

il+1) and
satisfies u′

εn
(xn

i1
) = u′

εn
(xn

il+1) = 0.
If not, there is a sequence of integers kn so that i1 < kn ≤ jn for all n (or jn + 1 ≤ kn <

il + 1 for all n) so that
∂gn(Xn)

∂xn
kn

�= 0

and un is a solution of (1.2) in (xn
kn

, xn
jn+1) (or in (xn

jn
, xn

kn
)).

Assume that we are in the first case (the other case is completely analogous). From (5.7)
and Theorem 3.1 we have that for a certain κ̃ > 0 it holds that

d(xn
kn

, xn
kn+1) ≥ 1 + κ̃ for all n. (5.8)

Then we have the following possibilities.
(a) If for a sub-sequence d(xn

kn−1, x
n
kn

) > 1, then the point Yn = (y1, . . . , yNn), such
that yi = xi for all i �= kn and ykn close to xn

kn
, also belongs to n. Choosing ykn so that

∂gn

∂xn
kn

(Xn)(ykn − xn
kn

) > 0

we contradict the maximality of Xn.
(b) For a sub-sequence we have that d(xn

kn−1, x
n
kn

) = 1 for all n. Then, up to a sub-
sequence, we see that xn

kn
converges to some point x̄. By (5.8),

lim
n→∞ F(xkn, ukn−1(x

n
kn

)) > lim
n→∞ F(xkn , ukn(x

n
kn

)),

from which we conclude that
∂gn

∂xn
kn

(Xn) > 0,

for large n. If we define Yn as before, with ykn slightly bigger than xn
kn

, we see that Yn ∈ n

and Xn is not a maximum point. This completes the proof of Step 2.
Let imn be the rightmost index in B2

n .
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Step 3. The function uεn defined in (5.6) is a solution of (1.2) in (xn
i1
, xn

imn
) and satisfies

u′
εn

(xn
i1
) = u′

εn
(xn

imn+1) = 0.

We see that xn
i�+1 > ac. For j ≥ i� + 1 we need to check dc(x

n
j , xn

j+1) < 1 as well
as d(xn

j , xn
j+1) > 1. Proceeding exactly as in Step 2 we prove Step 3 by the maximality

of Xn.

Next we prove i1 = 0 and imn = Nn + 1 to finish the proof. If this is not the case,
we may assume without loss of generality that i1 ≥ 1 for all n.

Step 4. The approximate envelope associated to {un}, as defined in §3, converges, up to a
sub-sequence, to an envelope function e0. Moreover supp(e0) ⊂ (â, b̂).

We apply Theorem 3.1 to the sequence {un}. We define an = xn
i1

if xn
i1

is a minimum
point of un or an = xn

i1+1 if xn
i1

is a maximum point of un. We also take bn = xn
imn+1

if xn
imn+1 is a maximum point of un, otherwise bn = xn

imn
. Then Theorem 3.1 implies

that the approximate envelope associated to {un} converges, up to a sub-sequence, to an
envelope function e0 in (a0, b0), where a0 = limn→∞ an and b0 = limn→∞ bn. In view of
Remark 3.1 we have that

∫ b0

a0

dx

T (x, e0(x))
≤ lim

n→∞ εnNn =
∫ b̄

ā

dx

T (x, e∞(x))
.

We easily see that ∫ b̂

â

dx

T (x, e0(x))
=

∫ b0

a0

dx

T (x, e0(x))
.

Then, e0 and e∞ being solutions of (2.4) in [â, b̂] we have that e0(x) ≥ e∞(x) for all
x ∈ [â, b̂], and this implies that supp(e0) ⊂ (â, b̂). This proves Step 4.

We observe that this last conclusion implies that d(xi1, xi1+1) > 1.

Step 5. xi1 is a local minimum of un and ximn
is a local maximum of un .

Suppose that xi1 is a local maximum of un.
In order to complete our proof we analyze three possible cases:

(1) for a sub-sequence we have d(xn
i1−1, x

n
i1
) > 1;

(2) for a sub-sequence we have d(xn
i1−1, x

n
i1
) = 1 and xn

i1−1 → x̄ > ã;
(3) for a sub-sequence we have d(xn

i1−1, x
n
i1
) = 1 and xn

i1−1 → ã.

For case (1) by the argument in Step 2(a) we can conclude that

∂gn

∂xn
i1

(Xn) = 0.

Therefore, un defined in (5.6) is a solution of (1.2) in (xn
i1−1, x

n
imn+1) with a maximum in

xn
i1

which contradicts Proposition 3.2. To check that case (2) does not hold, we can use an
argument as in Step 2(b).
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If case (3) holds, we have that there exists a constant c > 0 such that |xn
i1

− xn
i1+1| > c.

Hence we can define Yn = (yn
1 , . . . , yn

Nn
) ∈ n as yn

i = xn
i if i �= i1 and yi1 = xi1 + ζ ,

where ζ > 0 small. We have

gn(Yn) − gn(Xn) =
∫ xn

i1
+ζ

xn
i1−1

σ+
εn

(x, vi1−1) dx +
∫ xn

i1+1

xn
i1

+ζ

σ+
εn

(x, vi1) dx

−
∫ xn

i1

xn
i1−1

σ+
εn

(x, ui1−1) dx −
∫ xn

i1+1

xn
i1

σ+
εn

(x, ui1) dx, (5.9)

where vi1−1 and vi1 satisfy (5.5) replacing xn
i1

by xn
i1

+ ζ in both cases. Rescaling these
functions as zi1−1(t) = vi1−1(x

n
i1

+ ζ − εnt) and zi1(t) = vi1(x
n
i1

+ ζ + εnt), t ≥ 0, we see
both converge to the solution z of the equation

z′′(s) − f (ã + ζ, z(s)) = 0, z′(0) = 0, z(∞) = 1, z′ < 0. (5.10)

Similarly we define the functions wi1−1(t) = ui1−1(xi1 − εnt) and wi1(t) = ui1(x
n
i1

+ εnt),
for t ≥ 0, and we see that they converge to the solution w of (5.10), but replacing ã + ζ

by ã.
Next we rescale the integrals in (5.9) and we obtain

gn(Yn) − gn(Xn) = εnIn where lim
n→∞ In = I,

and I is given by

I = 2
∫ ∞

0

(z′)2

2
+ F+(ã + ζ, z) ds − 2

∫ ∞

0

(w′)2

2
+ F+(ã, w) ds.

Then we use Lemma 4.3 to get I > 0 and we conclude that gn(Yn) − gn(Xn) > 0, which
is a contradiction. Therefore, xi1 is a minimum. Similarly we have ximn

is a maximum.

Step 6. i1 = 0 and imn = Nn + 1.

Suppose that i1 ≥ 2. Since xn
i1

is a minimum we have that there exists a constant c > 0
such that |xn

i1
− xn

i1+1| > c. If d(xn
i1−1, x

n
i1
) > 1 and d(xn

i1−2, x
n
i1−1) > 1 then proceeding

as in Step 5(1) we obtain a contradiction. If d(xn
i1−1, x

n
i1
) = 1 and xi1−1 → x̄ > ã, then we

proceed as in Step 5(2) to reach a contradiction. When d(xn
i1−1, x

n
i1
) = 1 and xi1−1 → ã,

then we define Yn = (yn
1 , . . . , yn

Nn
) ∈ n as yn

i = xn
i if i �= i1 − 1, i1, yi1−1 = xi1−1 + ζ ,

yi1 = xi1 + ζ , where ζ > 0 small. Then, following the same reasoning as in Step 5(3) we
obtain a contradiction. Similarly, we can show that imn = Nn + 1.

This ends the proof of Proposition 5.1. �

Remark 5.1. In view of Remark 4.1 we can show that, when φ : R → (−1, 1) is periodic,
the number εδ in Proposition 5.1 can be chosen independent of ā and b̄. Indeed, if we
consider ā ≤ a0 < a1 and b̄ ≥ b0 > b1 then εδ depends only on e1, e2, a0, b0 and δ.

Remark 5.2. We can generalize Proposition 5.1 to solutions having the following
degeneracy in the closed interval I : the boundary of supp(e) ∩ int(I ) contains critical
points of φ. This occurs if the function e touches a trivial envelope at a critical point of φ.
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For example let e be a non-trivial envelope with graph in E+ for all x ∈ I and for which φ

has a negative minimum at x̄ with e(x̄) = φ∗+(x̄).

To construct {uε} corresponding to e, we argue as in [13]. First we approximate e by
a sequence of envelopes {en} such that en satisfies the assumptions of Proposition 5.1 and
en → e. We construct solutions {un

i }∞i=1 and use a diagonal argument to conclude.

Remark 5.3. We say that an envelope e on the interval (a, b) is a boundary envelope if
e(a) (or e(b)) does not belong to a trivial envelope. In a similar way to Proposition 5.1,
we can construct a family {uε} of solutions to equation (1.2) in (a, b) under the Neumann
boundary condition, corresponding to any given boundary envelope.

6. Gluing clusters

In this section we will prove that it is possible to glue an arbitrary finite number of
homoclinic or heteroclinic clusters.

THEOREM 6.1. Set e1, e2 : R → E+ solutions of (2.4) with supp(ei) = ⋃k
j=1(a

j
i , b

j
i )

where a
j

1 < a
j

2 < b
j

2 < b
j

1 for all j , b
j

1 < a
j+1
1 for j = 1, . . . , k − 1 and φ′(x) �= 0 in⋃k

j=1[aj

1 , a
j

2 ] ∪ [bj

2, b
j

1 ]. Then for ā < a1
1 and b̄ > bk

1 there exists ε0 > 0 such that for

e1 ≤ e ≤ e2 solution of (2.4) there exists uε solution of (1.2) satisfying u′
ε(ā) = u′

ε(b̄) = 0
with the envelope eε converging uniformly to e in [ā, b̄].

We notice that from here we directly obtain Theorem 1.2. The proof of Theorem 6.1 is
a consequence of the following proposition.

PROPOSITION 6.1. Under the conditions of Theorem 6.1 with k = 2 assume that either,
for i = 1, 2:

(a) ei : (a1
i , b

1
i ) → E+ are increasing heteroclinic envelopes and ei : (a2

i , b
2
i ) → E+

are positive homoclinic envelopes; or
(b) ei : (a1

i , b
1
i ) → E+ are positive homoclinic envelopes and ei : (a2

i , b
2
i ) → E+ are

increasing heteroclinic envelopes.

Then there exists ε0 > 0 such that for any e1 ≤ e ≤ e2 solution of (2.4) there exists uε

solution of (1.2) satisfying u′
ε(ā) = u′

ε(b̄) = 0 with envelope eε converging uniformly to e

in [ā, b̄].

Proof of Proposition 6.1 part (a). We prove Proposition 6.1 part (a) under the extra
assumption that there is exactly one c ∈ (a1

1, b1
1) such that φ(c) = 0 and φ < 0 in

(a2
1, b2

1). The general case can be treated with minor changes. Following the ideas of
§5, we introduce two auxiliary envelopes ẽ, ec : R → E+ solutions of (2.4), satisfying
ẽ ≤ e1 ≤ e2 ≤ ec, with ẽ(c) < e1(c) ≤ e2(c) < ec(c) < 1 and supp(ec) = (ac, bc),
with a1

2 < ac < c < bc < b1
2 and bc − ac suitably small. We also assume that

supp(ẽ) = (ã1, b̃1) ∪ (ã2, b̃2) ⊂ (ā, b̄) and φ′(x) > 0 in [ã1, a1
1] ∪ [b1

1, b̃
1] ∪ [ã2, a2

1]
and φ′(x) < 0 in [b2

1, b̃
2]. As in §5, for x, y ∈ [ā, b̄], we define the distances d(x, y) and

dc(x, y) as in (5.1). Set c∗ ∈ (b1
1, a

2
1) such that φ(c∗) = 0 and φ′(c∗) < 0.
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We let Nε
1 and Nε

2 be the even integers defined by

Nε
i =

⌊
1

ε

∫ bi
1

ai
1

1

T (s, e(s))
ds

⌋
for i = 1, 2 (6.1)

and Nε = Nε
1 + Nε

2 + 2, where we have omitted the dependence on e to keep the notation
simpler. Then we introduce the domain in R

Nε

ε
e = {(x1, x2, . . . , xNε ) | ā = x0 ≤ x1 ≤ · · · ≤ xNε+1 = b̄,

c∗ − δ ≤ xNε
1 +2 ≤ c∗ + δ, |xNε

1 +j+1 − xNε
1 +j | ≥ lε, for j = 1, 2,

d(xi, xi+1) ≥ 1, dc(xi, xi+1) ≤ 1, for 0 ≤ i ≤ Nε
1 ,

Nε
1 + 3 ≤ i ≤ Nε}, (6.2)

where l > 0 and δ > 0 are constants to be suitably chosen. In order to define our finite-
dimensional functional we consider the function ui defined by (5.5) with (−1)iu′

i ≥ 0 for
i = 0, . . . , Nε

1 and (−1)iu′
i ≤ 0 for i = Nε

1 +3, . . . , Nε . We notice that these solutions are
well defined thanks to our constraints d ≥ 1 and dc ≤ 1 and Theorem 4.1. For i = Nε

1 + 1
we define ui to be the solution of

ε2u′′ − f (x, u) = 0, (6.3)

with u′
i (xi) = 0, ui(xi+1) = 0, u′

i ≤ 0. In addition, for i = Nε
1 +2 the function ui satisfies

(6.3) with ui(xi) = 0, u′
i (xi+1) = 0, u′

i ≥ 0. If δ is chosen small and l is large, we can
properly define these solutions using Theorem 4.2.

Now we define gε : ε
e → R for X ∈ ε

e as

gε(X) =
i0−1∑
i=0

∫ xi+1

xi

σ+
ε (x, ui) dx +

∫ c

xi0

σ+
ε (x, ui0) dx

+
∫ xi0+1

c

σ−
ε (x, ui0) dx +

j0−1∑
i=i0+1

∫ xi+1

xi

σ−
ε (x, ui) dx +

∫ c∗

xj0

σ−
ε (x, uj0) dx

+
∫ xj0+1

c∗
σ−

ε (x, uj0) dx +
Nε∑

i=j0+1

∫ xi+1

xi

σ+
ε (x, ui) dx, (6.4)

where i0, j0 satisfy x1 ≤ · · · ≤ xi0 ≤ c ≤ xi0+1 ≤ · · · ≤ xj0 ≤ c∗ ≤ xj0+1 ≤ · · · ≤ xNε
e
.

We observe that by the constraint dc(xi, xi+1) ≤ 1 we certainly have i0 + 1 ≤ j0.
We can easily check that for j = Nε

1 + 2

∂gε

∂xj

(X) = ε2

2
(u′

j
2
(xj ) − u′

j−1
2
(xj ))

and for j �= Nε
1 + 2 we have

∂gε

∂xj

(X) = F+(xj , uj−1(xj )) − F+(xj , uj (xj )), j ≤ i0 or j ≥ j0 + 1,

∂gε

∂xj
(X) = F−(xj , uj−1(xj )) − F−(xj , uj (xj )), i0 + 1 ≤ j ≤ j0.
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Thus, if ∇gε(X) = 0 then the function uε, defined as

uε(x) = ui(x), x ∈ [xi, xi+1], i = 0, . . . , Nε, (6.5)

is a solution of (1.2) with u′
ε(ā) = u′

ε(b̄) = 0.

Hence, to complete the proof of the proposition, it suffices to show that the maximum of
gε is achieved on int(ε

e). We proceed by contradiction. Suppose that there exist sequences
εn → 0, e1 ≤ en ≤ e2 and Xn = (xn

1 , . . . , xn
Nεn ) ∈ ∂

εn
en

such that gεn(Xn) ≥ gεn(X) for
all X ∈ 

εn
en

. For simplicity we denote xi = xn
i , n = 

εn
en

, gn = gεn and Nn
i = N

εn

i , for
i = 1, 2.

Since Xn ∈ ∂n we have three possible cases:
(1) Case 1. Except possibly for a sub-sequence, we have

|xNn
1 +2 − xNn

1 +1| = εnl or |xNn
1 +3 − xNn

1 +2| = εnl.

(2) Case 2. Except for a sub-sequence we have that

xNn
1 +2 = c∗ − δ or xNn

1 +2 = c∗ + δ.

(3) Case 3. Except for a sub-sequence,

d(xin, xin+1) = 1 or dc(xin, xin+1) = 1

for some 0 ≤ in ≤ Nn
1 or Nn

1 + 3 ≤ in ≤ Nn.
Case 1. We may assume that |xNn

1 +2 − xNn
1 +1| = εnl, for a sub-sequence. Then, after

scaling, we see that uNn
1 +1 converges to a limiting solution defined in [0, l], while uNn

1

converges to a heteroclinic solution. Then we find that

∂gn(Xn)

∂xNn
1 +1

= F±(xNn
1 +1, uNn

1
(xNn

1 +1)) − F±(xNn
1 +1, uNn

1 +1(xNn
1 +1)) < 0.

Therefore we can find Yn ∈ n such that gn(Yn) > gn(Xn), which contradicts our
assumption.

Case 2. Since Case 1 does not hold, we may assume that |xNn
1 +2 − xNn

1 +1| > εnl and
|xNn

1 +3 − xNn
1 +2| > εnl. We may also assume that xNn

1 +2 = c∗ − δ. Then, using an
argument like in Step 5 in the proof of Proposition 5.1, we can prove that

∂gn(Xn)

∂xNn
1 +2

= ε2
n

2
((u′

Nn
1 +2)

2(xNn
1 +2) − (u′

Nn
1 +1)

2(xNn
1 +2)) > 0.

Hence increasing the value of xNn
1 +2 yields a point Yn ∈ n such that gn(Yn) > gn(Xn),

contradicting our assumption again.
Case 3. Here we are in a position of repeating the arguments given in Proposition 5.1,

completing the proof of part (a) of Proposition 6.1. �

Proof of Proposition 6.1 part (b). We prove the proposition assuming additionally that
there exists a unique c ∈ (a2

1, b2
1) such that φ(c) = 0 and that φ < 0 in [a1

1, b1
1].

Keeping the notation of part (a), we introduce ẽ and ec. We notice that now a2
2 < ac <

c < bc < b2
2 and φ′(x) > 0 in [ã1, a1

1 ] ∪ [ã2, a2
1] ∪ [b2

1, b̃
2] and φ′(x) < 0 in [b1

1, b̃
1].

We define the distances d and dc as before.
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With Nε
i , i = 1, 2, as in (6.1), we define Nε = Nε

1 + Nε
2 + 1. Next we introduce the

domain

ε
e = {(x1, x2, . . . , xNε ) | ā = x0 ≤ x1 ≤ · · · ≤ xNε+1 = b̄,

xNε
1

≤ b̃1 + δ, xNε
1 +2 ≥ ã2 − δ,

d(xi, xi+1) ≥ 1, dc(xi, xi+1) ≤ 1, for 0 ≤ i ≤ Nε}, (6.6)

where δ > 0 is small and fixed. We set the functional gε : ε → R as

gε(X) =
i0−1∑
i=0

∫ xi+1

xi

σ+
ε (x, ui) dx +

Nε∑
i=i0+1

∫ xi+1

xi

σ−
ε (x, ui) dx

+
∫ c

xi0

σ+
ε (x, ui0) dx +

∫ xi0+1

c

σ−
ε (x, ui0) dx,

where x1 ≤ · · · ≤ xi0 ≤ c < xi0+1 ≤ · · · ≤ xNε+1. The function ui is defined by (5.5).
As before, to complete the proof we just need to show that gε achieves its maximum in

int(ε). Assuming the contrary, and with the notational convention of the previous proof,
there exist sequences {εn}, e1 ≤ en ≤ e2, {Xn} so that εn → 0 as n → ∞ and Xn ∈ ∂n

satisfies gn(Xn) ≥ gn(X) for all X ∈ n. We have three possible cases:
(1) Case 1. Except possibly for a sub-sequence, we have

Xn = (x1, . . . , xNn
1 −1, b̃1 + δ, xNn

1 +1, . . . , xNn
1 +Nn

2 +1).

(2) Case 2. Except for a sub-sequence we have that

Xn = (x1, . . . , xNn
1
, xNn

1 +1, ã2 − δ, . . . , xNn
1 +Nn

2 +1).

(3) Case 3. Except for a sub-sequence,

Xn = (x1, . . . ., xNn
1 +Nn

2 +1), x1
Nn

1
< b̃1 + δ, xNn

1 +2 > ã2 − δ

and there is in such that d(xin, xin+1) = 1 for all n ∈ N.
Case 1. We assume that xNn

1 −1 > c. The case xn
Nn

1 −1 ≤ c can be handled in a similar

way. We consider

Yn = (x1, . . . , xNn
1 −1, b̃1 + δ/2, xNn

1 +1, . . . , xNn
1 +Nn

2 +1),

which belongs to ∂n if δ is small. The difference gn(Yn) − gn(Xn) can be written by an
expression similar to (5.9). Then, proceeding as in Step 5 in the proof of Proposition 5.1,
we can show that

gn(Yn) − gn(Xn) = εnJn, where lim
n→∞ Jn = J,

and J is given by
J = 2{E+(b̃1 + δ/2) − E+(b̃1 + δ)},

with

E+(x) =
∫ ∞

0

(y ′)2

2
+ F+(x, y) ds x ∈ (c, b + δ],

for y satisfying a suitable limiting equation. Then, in view of Lemma 4.3 we obtain J > 0,
which leads to a contradiction.

Case 2. This can be handled in a similar way.
Case 3. We proceed following the proof of Proposition 5.1 with minor modifications. �
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Proof of Theorem 6.1. In order to glue any pair of clusters, we can proceed as in part (a)
or part (b) of Proposition 6.1. The case of a general k can be handled as in Proposition 6.1,
with obvious changes of notation, but by means of the same ideas. �

Remark 6.1. Suppose that φ : R → (−1, 1) is 1-periodic and there exist solutions e1,
e2 : R → [−1, 1] of (2.4) with supp(ei) = (ai, bi) for i = 1, 2 with 0 < a1 < a2 < b2 <

b1 < 1. From the argument given above, for any δ > 0 we can find εδ > 0 such that for a
given k ∈ N and {j1, j2, . . . jk} ⊂ Z and for any solution e of (2.4) satisfying

e1(x − ji) ≤ e(x) ≤ e2(x − ji) in [ji, ji + 1],
for i = 1, 2, . . . , k, e(x) = φ∗+(x) in R \ ⋃k

i=1[ji, ji + 1] and ā < j1 < jk + 1 < b̄,
there exists uε (0 < ε < εδ) solution of (1.2) with u′

ε(ā) = u′
ε(b̄) = 0 satisfying

‖eε(x) − e(x)‖L∞(ā,b̄) < δ.
We remark that εδ is independent of k, as can be proved by a contradiction argument in

combination with Propositions 3.3 and 3.4.

7. Existence of chaotic solutions
In this section we will construct solutions of (1.2) in R whose envelope will be
characterized in terms of a sequence of real numbers.

We assume that φ : R → (−1, 1) is 1-periodic. We fix solutions e1, e2 : R → E+ of
(2.4), with supp(ei) = (ai, bi) for i = 1, 2 and 0 < a1 < a2 < b2 < b1 < 1. Moreover,
we suppose that φ′ �= 0 in [a1, a2] ∪ [b2, b1]. Set

ci =
∫ b1

a1

1

T (x, ei(x))
dx for i = 1, 2.

Then, for any γ ∈ [c1, c2] there exists a unique envelope e1 ≤ eγ ≤ e2 such that

γ =
∫ b1

a1

1

T (x, eγ (x))
dx.

For notational convenience we set e0(x) = φ∗+(x).
We will consider sequences (γn)n∈Z ∈ ([c1, c2] ∪ {0})Z.

THEOREM 7.1. For any δ > 0 there exists εδ > 0 such that for any prescribed sequence
(γn)n∈Z ∈ ([c1, c2] ∪ {0})Z there exists a solution uε : R → [−1, 1] of (1.2) such that

sup
n∈Z

‖eε(x + n) − eγn(x)‖L∞(0,1) < δ,

where eε is the approximate envelope of uε .

Proof. Fix δ > 0 and (γn)n∈Z ∈ ([c1, c2] ∪ {0})Z. By Remark 6.1 there exists εδ > 0
independent of k such that for any k ∈ N and 0 < ε < εδ there exists a solution
uk,ε : [−k − 1, k + 2] → [−1, 1] of (1.2) with uk,ε

′(−k − 1) = uk,ε
′(k + 2) = 0

satisfying
sup
|n|≤k

‖ek,ε(x + n) − eγn(x)‖L∞(0,1) < δ.

Here ek,ε is the approximate envelope of uk,ε.
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For fixed ε we consider the sequence uk,ε. Since the u′
k,ε are bounded independent of k,

we can use the Arzela–Ascoli theorem to show that, except for a sub-sequence, uk,ε → uε

locally uniformly in R as k → ∞. It can be checked that uε is the desired solution. �

Remark 7.1. We can generalize Theorem 7.1 to a more general situation. We assume
that φ : R → (−1, 1) is 1-periodic and there exist solutions e

j

1 < e
j

2 : R → E+
(j = 1, 2, . . . , k) of (2.4), with supp(e

j
i ) = (a

j
i , b

j
i ) for i = 1, 2, j = 1, 2, . . . , k and

0 < a1
1 < a1

2 < b1
2 < b1

1 < a2
1 < a2

2 < b2
2 < b2

1 < · · · < ak
1 < ak

2 < bk
2 < bk

1 < 1. Set

c
j
i =

∫ b
j
i

a
j
i

1

T (x, e
j
i (x))

dx for i = 1, 2 and j = 1, 2, . . . , k.

Then for any given sequence

((γ 1
n , γ 2

n , . . . , γ k
n ))n∈N ∈ (([c1

1, c
1
2] ∪ {0}) × ([c2

1, c
2
2] ∪ {0}) × · · · × ([ck

1, c
k
2] ∪ {0}))Z

we can construct the corresponding solutions uε and envelope eε as in Theorem 7.1.
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