High-frequency chaotic solutions for a slowly varying dynamical system

PATRICIO FELMER \dagger, SALOMÉ MARTÍNEZ \dagger and KAZUNAGA TANAKA \ddagger
\dagger Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile (e-mail: pfelmer@dim.uchile.cl)
\ddagger Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

In this article we study the asymptotic dynamics of highly oscillatory solutions for the unbalanced Allen-Cahn equation with a slowly varying coefficient. We describe the underlying structure of these solutions through a function we call the adiabatic profile, which accounts for the asymptotic area covered by the solutions in the phase space. In finite intervals, we construct solutions given any adiabatic profile. In the case of a periodic coefficient we show that the system has chaotic behavior by constructing high-frequency complex solutions which can be characterized by a bi-infinite sequence of real numbers in $\left[c_{1}, c_{2}\right] \cup\{0\}\left(0<c_{1}<c_{2}\right)$.

1. Introduction

Slowly varying plane Hamiltonian systems appear as models for an ample variety of problems in the sciences and applied sciences: particle mechanics, genetic evolution, physics of alloys, water waves and many more. These three-dimensional systems often present a very complicated behavior giving rise to intricate dynamics, which can be interpreted as spatial or temporal chaos, depending of the problem under study. The general problem is

$$
\frac{d z}{d t}=J \nabla_{z} H(z, \varepsilon t), \quad z(t) \in \mathbb{R}^{2}
$$

where J is the standard 2×2 symplectic matrix, $\varepsilon>0$ is a small parameter and H is the Hamiltonian.

Even though we believe that our results could be extended to a general class of Hamiltonian systems, we concentrate our study in one particular second-order system known as the unbalanced Allen-Cahn equation. This problem possesses solutions exhibiting phase transitions and two types of spikes, providing a rich behavior that gives a

P. Felmer et al

good idea of a general second-order system. The unbalanced Allen-Cahn equation can be written as

$$
\begin{equation*}
w^{\prime \prime}-\left(w^{2}-1\right)(w-\phi(\varepsilon t))=0 \quad \text { in } \mathbb{R} \tag{1.1}
\end{equation*}
$$

and is also known as the Fisher equation.
Equation (1.1) has been recently studied by Ai, Chen and Hastings [4], showing that it possesses transition layers and two types of spike layers. They construct solutions having multiple transition layers at points where $\phi(x)=0$ and $\phi^{\prime}(x) \neq 0$, and multiple spike layers at non-zero critical points of ϕ. In all cases, the solutions found in [4] have an ε-independent number of transitions or spikes in any bounded interval. They even construct complex solutions indexed by a bi-infinite sequence of integers in $\{0,1,2, \ldots, m\}, m \in \mathbb{N}$, proving that the system is chaotic.

This article goes a step further in the understanding of the dynamics of system (1.1) by finding the underlying structure governing highly oscillatory solutions. This structure goes far beyond the set of zeros and critical points of ϕ; it is richer and much more interesting. We show that all solutions of equation (1.1) are associated asymptotically to an area-like function, which we call adiabatic profile, that accounts for the asymptotic area described by each oscillation in the phase space.

But our main contribution is the converse. In the case of a bounded interval, we show that given any adiabatic profile there exists a family of solutions to (1.1) associated asymptotically to this profile. Assuming some extra global conditions on ϕ, like periodicity, we can also construct solutions in all \mathbb{R}, associated to a certain class \mathcal{C} of adiabatic profiles, proving that the system is chaotic. This class \mathcal{C} is indexed by $\mathcal{I}=\left(\left[c_{1}, c_{2}\right] \cup\{0\}\right)^{\mathbb{Z}}$, where $0<c_{1}<c_{2}$.

The solutions that we construct are characterized by their highly oscillatory behavior packed in the form of homoclinic and heteroclinic clusters. Each of these clusters oscillates a number of times asymptotically equal to ω / ε, where $\omega \in\left[c_{1}, c_{2}\right]$.

Instead of working with (1.1), we prefer to consider the following equivalent form:

$$
\begin{equation*}
-\varepsilon^{2} u^{\prime \prime}+f(x, u)=0 \quad \text { in } \mathbb{R}, \tag{1.2}
\end{equation*}
$$

where the nonlinearity f is defined as $f(x, u)=\left(u^{2}-1\right)(u-\phi(x))$.
In order to describe our results in a more precise manner, we first introduce our hypotheses on the function ϕ :
$(\phi 1) \phi: \mathbb{R} \rightarrow(-1,1)$ is of class C^{1}.
($\phi 2$) All critical points of ϕ are isolated and they are local maxima or local minima.
($\phi 3$) If $\phi(x)=0$ then $\phi^{\prime}(x) \neq 0$.
We consider the primitive of f given by $F(x, u)=\int_{0}^{u} f(x, s) d s$, and we define the function $\phi_{+}^{*}: \mathbb{R} \rightarrow[-1,1]$ as the unique solution of $F(x, y)=F(x,-1)$ if $\phi(x)<0$ and $\phi_{+}^{*}(x)=-1$ otherwise. Similarly we define $\phi_{-}^{*}: \mathbb{R} \rightarrow[-1,1]$ as the unique solution of $F(x, y)=F(x, 1)$ if $\phi(x)>0$ and $\phi_{+}^{*}(x)=1$ otherwise. These functions satisfy $-1 \leq \phi_{-}^{*}(x)<\phi(x)<\phi_{+}^{*}(x) \leq 1$ for all $x \in \mathbb{R}$. For a given $x \in \mathbb{R}$ and $e \in\left(\phi_{-}^{*}(x), \phi_{+}^{*}(x)\right)$ we denote by $v(x, e ; s)$ the solution of

$$
\begin{equation*}
v^{\prime \prime}(s)-f(x, v(s))=0, \quad v^{\prime}(0)=0, \quad v(0)=e, \tag{1.3}
\end{equation*}
$$

High-frequency chaotic solutions

which is periodic and non-constant if $e \neq \phi(x)$. If $\phi(x)>0$ we let $v_{-}^{*}(s)$ be the solution of equation (1.3) with $e=\phi_{-}^{*}(x)$, which corresponds to the homoclinic orbit at $(1,0)$. In an analogous way, when $\phi(x)<0$ we let $v_{+}^{*}(s)$ be the homoclinic orbit at $(-1,0)$. When $\phi(x)=0$, we denote by $v_{0}^{*}(s)$ the heteroclinic solution of (1.3) with $v_{0}^{*}(-\infty)=-1$, $v_{0}^{*}(\infty)=1$ and $v_{0}^{*}(0)=0$.

We define the trivial adiabatic profile (or trivial action) as the function

$$
\mathcal{A}_{0}(x)= \begin{cases}\int_{-\infty}^{\infty} v_{-}^{* \prime}(s)^{2} d s & \text { if } \phi(x)>0 \tag{1.4}\\ \int_{-\infty}^{\infty} v_{+}^{* \prime}(s)^{2} d s & \text { if } \phi(x)<0 \\ 2 \int_{-\infty}^{\infty} v_{0}^{*^{\prime}}(s)^{2} d s & \text { if } \phi(x)=0\end{cases}
$$

The function $\mathcal{A}_{0}(x)$ corresponds to the area enclosed by the homoclinic (or heteroclinic) orbit in the phase plane of equation (1.3).

Definition 1.1. We say that the function $\mathcal{A}: \mathbb{R} \rightarrow(0, \infty)$ is an adiabatic profile (or action) if \mathcal{A} is continuous, $\mathcal{A}(x) \leq \mathcal{A}_{0}(x)$ for all $x \in \mathbb{R}$ and, whenever $\mathcal{A}(x) \neq \mathcal{A}_{0}(x)$, we have $\mathcal{A}^{\prime}(x)=0$.

We define the support of an adiabatic profile as

$$
\operatorname{supp}(\mathcal{A})=\left\{x \in \mathbb{R} \mid \mathcal{A}(x) \neq \mathcal{A}_{0}(x)\right\} .
$$

Our first theorem describes the asymptotic behavior of a given family of solutions of (1.1) in terms of adiabatic profiles. Given a family $\left\{u_{\varepsilon}\right\}$ of solutions to (1.2) we define an approximate action $\mathcal{A}_{\varepsilon}$ as follows. Consider $v_{\varepsilon}=v_{\varepsilon}(x ; \cdot)$, the solution to the initial value problem

$$
\begin{gather*}
v^{\prime \prime}(s)-f(x, v(s))=0 \tag{1.5}\\
v(0)=u_{\varepsilon}(x), \quad v^{\prime}(0)=\varepsilon u_{\varepsilon}^{\prime}(x) \tag{1.6}
\end{gather*}
$$

If $u_{\varepsilon}^{\prime}(x) \geq 0$ we define

$$
T_{\varepsilon}^{0}(x)=\inf \left\{s \mid v_{\varepsilon}^{\prime}(t) \geq 0,-1 \leq v_{\varepsilon}(t) \leq 1, \text { for all } t \in(s, 0)\right\}
$$

and

$$
T_{\varepsilon}^{1}(x)=\sup \left\{s \mid v_{\varepsilon}^{\prime}(t) \geq 0,-1 \leq v_{\varepsilon}(t) \leq 1, \text { for all } t \in(0, s)\right\}
$$

In the case $u_{\varepsilon}^{\prime}(x) \leq 0$ we proceed in an analogous way. Then we define the approximate action associated to u_{ε} as

$$
\begin{equation*}
\mathcal{A}_{\varepsilon}(x)=2 \int_{T_{\varepsilon}^{0}(x)}^{T_{\varepsilon}^{1}(x)}\left(v_{\varepsilon}^{\prime}(s)\right)^{2} d s \tag{1.7}
\end{equation*}
$$

We prove the following theorem.
THEOREM 1.1. There is a sequence $\varepsilon_{n} \rightarrow 0$ such that $\mathcal{A}_{\varepsilon_{n}}$ converges locally uniformly in \mathbb{R} to an adiabatic profile \mathcal{A}. Moreover, if the set of accumulation points of the maxima of $u_{\varepsilon_{n}}$ contains a given interval $[a, b]$ then the $\operatorname{supp}(\mathcal{A})$ contains (a, b).

P. Felmer et al

We should point out that, in an interval where the oscillations of u_{ε} stay away from the homoclinic (or heteroclinic) orbits, this theorem simply states that the area function is an adiabatic invariant, a well-known concept in the theory of averaging. See for example the book by Arnold [$\mathbf{6}, \S 52$]. The main point of our result is its global character. Moreover, in its second part it establishes that if u_{ε} oscillates in a set which is dense in $[a, b]$, then the adiabatic profile is non-trivial in (a, b). Particularly, this implies that if $x_{\varepsilon} \rightarrow a$ with $u_{\varepsilon}\left(x_{\varepsilon}\right) \rightarrow \pm 1$ then for each $y \in(a, b)$ we have that $\mathcal{A}_{\varepsilon}(y) \rightarrow \mathcal{A}(y)$ with $\mathcal{A}(y)<\mathcal{A}_{0}(y)$, that is, the solution u_{ε} separates from the homoclinic (or heteroclinic) solution at a. The proof of this fact relies on Proposition 3.3, which happens to be crucial in the analysis leading to Theorem 1.2.

Our main theorem asserts that, on the other hand, given any adiabatic profile \mathcal{A} we can construct a family of solutions having \mathcal{A} as its asymptotic profile.
THEOREM 1.2. Given a bounded interval I and a non-trivial adiabatic profile \mathcal{A}, there exists a family u_{ε} of solutions to (1.2) in I, with Neumann boundary conditions on ∂I, such that the approximate action $\mathcal{A}_{\varepsilon}$ associated to u_{ε} converges to \mathcal{A} in I.

At this point we mention the earlier work by Kurland [18], where the author constructs highly oscillatory local solutions for (1.2) for which the oscillations stay away from homoclinic or heteroclinic orbits. This allows a change of variables, transforming the system to action-angle variables. In this context, our results prove the existence of global solutions, crossing homoclinic or heteroclinic orbits.

We can also obtain results on the existence of solutions in all \mathbb{R}. Actually, as a consequence of Theorem 1.2 and the uniform control of the estimates that can be obtained when ϕ is periodic, we can prove the existence of solutions for (1.1) in \mathbb{R}, that exhibit chaotic behavior. We prefer to postpone the precise description of this result to $\S 7$.

Oscillatory solutions of slowly varying systems have been studied by many authors. In particular, we mention the work by Hastings and McLeod [15] and Gedeon et al [14]. Earlier results by Hale and Sakamoto [16], Angenent et al [8] and Alikakos et al [5] are also contributions that motivated our work.

Highly oscillatory solutions are very natural in the context of slowly varying systems, as shown by Kurland [18], but as far as we know not much is known in the literature about the construction of solutions that cross homoclinic or heteroclinic orbits. Ai [1, 2], Ai and Hastings [3], and Ali, Chen and Hastings [4] use uses a shooting method to construct solutions for certain equations, somehow related to (1.1), having a number of oscillations of order ε^{-1}. On the other hand, for a one-dimensional Schrödinger equation Felmer and Torres [11] obtained such highly oscillatory solutions, describing the associated envelope equation. However, in [11] only single-cluster solutions were constructed. In another work, Felmer and Martínez [12] obtained single-cluster solutions for the balanced inhomogeneous Allen-Cahn equation in an interval. In [12] important technical simplifications were obtained in the existence mechanism.

In [11] and [12] an important question was left open, which is the construction of multi-cluster solutions. This problem is undertaken here for the unbalanced Allen-Cahn equation.

The problem of gluing concentrating solutions has received an enormous amount of attention during the last 15 years. We mention the pioneering work of Séré [23] and

High-frequency chaotic solutions

Coti-Zelati and Rabinowitz [9], and subsequent papers of many others. Particularly interesting to our analysis is the work of Alessio and Montecchiari [7] and Kang and Wei [17]. In all these works a good understanding of the properties of the objects to be glued is needed, like uniqueness or non-degeneracy which is expressed in analytical or topological terms. In the problem under study such information seems more elusive, since the clusters we have in mind are solutions that do not survive in a reasonable manner the limit procedure, as in the case of a single- or multi-peak or transition layer.

However, our problem is three-dimensional, two equations plus time, and we can take advantage of that. In a recent work, Nakashima and Tanaka [21] (see also Nakashima [19, 20]) obtained several existence results on multiple transition layers for the balanced Allen-Cahn equation. Their method is variational and well suited to treat these slowly varying systems. This method was also used to find multiple spikes in the nonlinear Schrödinger equation by del Pino et al [10].

In this article we extend this variational approach to the construction of multiple heteroclinic and homoclinic clusters. We combine the basic ideas in [21] with the analysis developed in [12] in order to gain understanding in this more difficult problem. We refer also to the recent work of the present authors [13] where a simpler case is studied using a different point of view.

The organization of this paper is the following. In $\S 2$ we study the adiabatic profiles and their relation with envelopes, an alternative way of describing the problem. In $\S 3$ we prove Theorem 1.1. We use some ideas from [12] for the study of the asymptotic behavior of a family of solutions. This result, which is interesting on its own, is needed for the existence theory. In $\S 4$ we study the basic solutions upon which we base our variational method. In $\S 5$ we construct one cluster by maximizing a finite-dimensional functional of Nehari type. In $\S 6$ we extend the previous construction to the case of finitely many clusters in a finite interval. In $\S 7$ we present our results on chaotic solutions. We describe the class of solutions, and we prove the existence result.

2. Adiabatic profiles and envelopes

In this section we analyze in more detail the adiabatic profiles, as defined in $\S 1$. We also introduce the notion of envelope, which appears to be very useful in the analysis and proof of our theorems. These functions account for the asymptotic amplitude of the solutions we are studying.

We start by discussing the behavior of the trivial adiabatic profile \mathcal{A}_{0}. For this purpose it is convenient to define another two primitives of f,

$$
\begin{equation*}
F_{+}(x, u)=\int_{-1}^{u} f(x, s) d s \quad \text { and } \quad F_{-}(x, u)=\int_{1}^{u} f(x, s) d s, \tag{2.1}
\end{equation*}
$$

and we notice that

$$
F_{+}(x, u)-F_{-}(x, u)=\int_{-1}^{1} f(x, s) d s=\frac{4}{3} \phi(x) .
$$

We define

$$
N_{ \pm}^{*}(x)=\int_{-\infty}^{+\infty}\left(v_{ \pm}^{*}(s)-\frac{\left(v_{ \pm}^{*}(s)\right)^{3}}{3} \pm \frac{2}{3}\right) d s
$$

P. Felmer et al

where v_{+}^{*} and v_{-}^{*} were defined in the introduction. These functions satisfy $N_{-}^{*}(x)<0$ and $N_{+}^{*}(x)>0$, where they are defined. The following proposition gives us the behavior of \mathcal{A}_{0}.
Proposition 2.1. The function \mathcal{A}_{0} is differentiable at x so that $\phi(x) \neq 0$ and
(1) if $\phi(x)>0$ then $\mathcal{A}_{0}^{\prime}(x)=\phi^{\prime}(x) N_{-}^{*}(x)$;
(2) if $\phi(x)<0$ then $\mathcal{A}_{0}^{\prime}(x)=\phi^{\prime}(x) N_{+}^{*}(x)$;
(3) the function \mathcal{A}_{0} has its global maximum at points where $\phi(x)=0$.

Remark 2.1. The local maximum points of the function \mathcal{A}_{0} are the positive minima of ϕ, the negative maxima of ϕ and the points where ϕ vanishes. In the latter case the maximum point is a global maximum and \mathcal{A}_{0} is not differentiable there.

Having the graph of the function ϕ we can draw the qualitative graph of \mathcal{A}_{0} and then we easily identify all possible adiabatic profiles.

Now we consider the notion of envelope. For $x \in \mathbb{R}$ and $e \in\left(\phi_{-}^{*}(x), \phi_{+}^{*}(x)\right) \backslash\{\phi(x)\}$ we denote by $T(x, e)$ half the period of the solution v of equation (1.3) and we set $T\left(x, \phi_{+}^{*}(x)\right)=T\left(x, \phi_{-}^{*}(x)\right)=\infty$ and $T(x, \phi(x))=2 \pi / \sqrt{1-\phi^{2}(x)}$. We define the function $A(x, e)$ as

$$
A(x, e)=2 \int_{0}^{T(x, e)}\left|v^{\prime}(x, e ; s)\right|^{2} d s
$$

when $e \in\left(\phi_{-}^{*}(x), \phi_{+}^{*}(x)\right)$, and we extend it as

$$
A\left(x, \phi_{+}^{*}(x)\right)=\mathcal{A}_{0}(x) \quad \text { and } \quad A\left(x, \phi_{-}^{*}(x)\right)=\mathcal{A}_{0}(x) .
$$

We observe that $A(x, \cdot)$ is strictly increasing in $\left[\phi(x), \phi_{+}^{*}(x)\right]$ and strictly decreasing in [$\left.\phi_{-}^{*}(x), \phi(x)\right]$. Through this function we define the envelope function associated to an adiabatic profile.
Definition 2.1. A function $e: \mathbb{R} \rightarrow[-1,1]$ is said to be an envelope function if it is continuous and it satisfies

$$
\begin{equation*}
\mathcal{A}(x)=A(x, e(x)), \quad x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

for a given adiabatic profile \mathcal{A}.
If $\mathcal{A}=\mathcal{A}_{0}$ then $e=\phi_{+}^{*}$ or $e=\phi_{-}^{*}$. Thus, ϕ_{+}^{*} and ϕ_{-}^{*} are envelopes, which we refer to as trivial envelopes.

Given an adiabatic profile, an envelope e satisfies either $e(x) \in\left[\phi(x), \phi_{+}^{*}(x)\right]$ for all x or $e(x) \in\left[\phi_{-}^{*}(x), \phi(x)\right]$ for all x. For $e \in\left[\phi_{-}^{*}(x), \phi_{+}^{*}(x)\right]$ we define $R(x, e)$ as the unique solution of

$$
F(x, R(x, e))=F(x, e),
$$

satisfying $R(x, e) \in\left[\phi_{-}^{*}(x), \phi(x)\right]$ if $e \in\left[\phi(x), \phi_{+}^{*}(x)\right]$ and $R(x, e) \in\left[\phi(x), \phi_{+}^{*}(x)\right]$ if $e \in\left[\phi_{-}^{*}(x), \phi(x)\right]$. We note that e is an envelope if and only if $R(x, e(x))$ is an envelope and that $R(x, \phi(x))=\phi(x)$. The function ϕ is also referred to as a trivial envelope.

We define the support of an envelope function as

$$
\operatorname{supp}(e)=\left\{x \in \mathbb{R} \mid e(x) \in\left(\phi_{-}^{*}(x), \phi_{+}^{*}(x)\right)\right\} .
$$

We observe that if \mathcal{A} and e are related by (2.2) then $\operatorname{supp}(e)=\operatorname{supp}(\mathcal{A})$.

High-frequency chaotic solutions

We may characterize the envelope functions as solutions of a first-order differential equation. This characterization will be useful later in proving Theorem 1.1. Assume $e(x)$ is an envelope function and let $x \in \operatorname{supp}(\mathcal{A})$. Then by direct differentiation of (2.2) and integrating by parts we find that

$$
\begin{equation*}
\int_{0}^{T(x, e(x))} f(x, v) v_{x} d s=0 \tag{2.3}
\end{equation*}
$$

where v_{x} denotes the derivative of $v=v(x, e(x) ; s)$ with respect to x. On the other hand, we may write

$$
\mathcal{A}(x)=4 \int_{0}^{T(x, e(x))}\{F(x, v)-F(x, e(x))\} d s
$$

Differentiating this expression, and using (2.3), we find that

$$
T(x, e(x)) f(x, e(x)) e^{\prime}=\int_{0}^{T(x, e(x))} \frac{\partial}{\partial x}\{F(x, v)-F(x, e(x))\} d s
$$

from which we conclude that

$$
\begin{equation*}
e^{\prime}(x)=H(x, e(x)), \tag{2.4}
\end{equation*}
$$

if we define

$$
H(x, e(x))=\phi^{\prime}(x) \frac{Q(x, e(x))-\left(e(x)-\frac{1}{3} e^{3}(x)\right)}{f(x, e(x))}
$$

and

$$
Q(x, e(x))=\frac{1}{T(x, e(x))} \int_{0}^{T(x, e(x))}\left(v-\frac{v^{3}}{3}\right) d s
$$

Conversely, if $e(x)$ satisfies equation (2.4), then \mathcal{A} given by (2.2) is constant.
In order to consider equation (2.4) at points $x \notin \operatorname{supp}(\mathcal{A})$, we extend the definition of the function Q by considering $Q\left(x, \phi_{+}^{*}(x)\right)=-2 / 3$ if $\phi(x)<0, Q\left(x, \phi_{-}^{*}(x)\right)=2 / 3$ if $\phi(x)>0$, and $Q(x, \phi(x))=\phi(x)-\phi^{3}(x) / 3$. Now we give a precise notion of a solution to (2.4).

Definition 2.2. A continuous function $e: \mathbb{R} \rightarrow[-1,1]$ is said to be a solution of the envelope equation (2.4) if $e(x)$ satisfies (2.4) at every x for which $e(x) \in(-1,1)$.

With these definitions we can easily prove the following result.
Proposition 2.2. A function $e: \mathbb{R} \rightarrow[-1,1]$ is an envelope function if and only if it satisfies equation (2.4).

Remark 2.2. We consider the sets

$$
\begin{aligned}
\mathcal{E}_{-} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \phi_{-}^{*}(x) \leq y \leq \phi(x)\right\} \\
\mathcal{E}_{+} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \phi(x) \leq y \leq \phi_{+}^{*}(x)\right\}
\end{aligned}
$$

and $\mathcal{E}=\mathcal{E}_{-} \cup \mathcal{E}_{+}$. Then we observe that the solutions of the envelope equation come in pairs, $e(x)$ and $R(x, e(x))$, one contained in \mathcal{E}_{+}and the other in \mathcal{E}_{-}. The boundary of \mathcal{E} is given by the graphs of $\phi_{+}^{*}(x)$ and $\phi_{-}^{*}(x)$, both envelopes, and the graph of ϕ is a separatrix of \mathcal{E}.

P. Felmer et al

We will see later that an envelope e in \mathcal{E}_{+}is associated to the maximum points of the solutions of (1.2) and the corresponding envelope $R(x, e(x))$ in \mathcal{E}_{-}is associated to the minimum points of these solutions.

Remark 2.3. Solutions of equation (2.4) are in a one-to-one correspondence with adiabatic profiles. We observe that these solutions exhibit bifurcations at points where the adiabatic profile leaves the trivial profile. This bifurcation is understood by the fact that $H(x, e)$ is not Lipschitz continuous on the trivial envelopes $\left(x, \phi_{+}^{*}(x)\right),\left(x, \phi_{-}^{*}(x)\right)$, as we can see from the analysis on the period function that follows.

We end this section with an asymptotic estimate on the period function. This estimate is very important in our proof of Proposition 3.3 to follow. We consider

$$
T_{+}(x, e)=\int_{\phi(x)}^{e} \frac{d \tau}{\sqrt{2(F(x, \tau)-F(x, e))}} \quad \text { for }(x, e) \in \mathcal{E}_{+}
$$

and

$$
T_{-}(x, e)=\int_{e}^{\phi(x)} \frac{d \tau}{\sqrt{2(F(x, \tau)-F(x, e))}} \quad \text { for }(x, e) \in \mathcal{E}_{-} .
$$

Naturally we have $T(x, e)=T_{+}(x, e)+T_{-}(R(x, e))$.
Lemma 2.1. There are continuous functions $\gamma_{ \pm}: \mathcal{E}_{ \pm} \rightarrow(0, \infty)$, locally Lipschitz in x, such that

$$
T_{ \pm}(x, e)=-\gamma_{ \pm}(x, e) \ln |e \mp 1|, \quad \text { for }(x, e) \in \mathcal{E}_{ \pm},|e \mp 1|>0 .
$$

Proof. We first consider the case $T_{+}(x, e)$. We notice that the interesting situation occurs near points $(\bar{x}, 1)$, where $\phi(\bar{x}) \geq 0$. By Taylor expansion we have

$$
2(F(x, \tau)-F(x, e))=f^{\prime}(x, 1) S(\tau, e)+o\left((\tau-1)^{2}-(e-1)^{2}\right),
$$

where $S(\tau, e)=(e-\tau)(e-\tau+2(1-e))$. Then we can write

$$
T_{+}(x, e)=\int_{\phi(x)}^{e} \frac{\sqrt{S(\tau, e)}}{\sqrt{2(F(x, \tau)-F(x, e))}} \frac{d \tau}{\sqrt{S(\tau, e)}}
$$

The first term in the integral is continuous and locally Lipschitz in x. For the second term, after some calculations, we find that

$$
\int_{\phi(x)}^{e} \frac{d \tau}{\sqrt{S(\tau, e)}}=s(x, e) \ln (1-e)
$$

with $s(x, e)$ continuous and locally Lipschitz in x. Now it is easy to obtain the desired result. The case $T_{-}(x, e)$ is analogous.
3. Asymptotic behavior of solutions to (1.2)

In this section we analyze the asymptotic behavior of a given sequence of solutions to equation (1.2). Assume we have functions $u_{n}:\left[a_{n}, b_{n}\right] \rightarrow \mathbb{R}$, with $\lim _{n \rightarrow \infty} a_{n}=\bar{a}$, $\lim _{n \rightarrow \infty} b_{n}=\bar{b}$ and such that

$$
\begin{equation*}
-\varepsilon_{n}^{2} u_{n}^{\prime \prime}+f\left(x, u_{n}\right)=0, \quad u_{n}^{\prime}\left(a_{n}\right)=u_{n}^{\prime}\left(b_{n}\right)=0, \tag{3.1}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Our purpose is to analyze the behavior of sub-sequences of $\left\{u_{n}\right\}$. In particular we are interested in associating to $\left\{u_{n}\right\}$ an envelope, that is a function satisfying (2.4) describing the local maximum points of u_{n} asymptotically. For a related analysis for other problems we refer to [11] and [12]. We start with the following result which is a direct consequence of (3.1).

PROPOSITION 3.1. Under the conditions described above we have the following:
(1) If $x \in\left(a_{n}, b_{n}\right)$ is a local maximum of u_{n} then $\phi(x)<u_{n}(x)<1$, and if x is a local minimum of u_{n} then $-1<u_{n}(x)<\phi(x)$.
(2) If $x_{1}<x_{2}$ are two consecutive maxima (or two consecutive minima) of u_{n}, and $\phi^{\prime}(x)>0\left(\phi^{\prime}(x)<0\right)$ in $\left(x_{1}, x_{2}\right)$ then $u_{n}\left(x_{1}\right)<u_{n}\left(x_{2}\right)\left(u_{n}\left(x_{1}\right)>u_{n}\left(x_{2}\right)\right)$.

Next we consider an interval $I_{+}=\left(\ell_{-}, \ell_{+}\right) \subset(\bar{a}, \bar{b})$ having one of the following characteristics: (1) $\phi^{\prime}(x)<0, \phi(x)>0$ for $x \in\left[\ell_{-}, \ell_{+}\right]$, (2) $\phi^{\prime}(x)>0, \phi(x)<0$ for $x \in\left[\ell_{-}, \ell_{+}\right]$.

Suppose that we are in case (1) and that a_{n}, b_{n} are local maxima of u_{n}. Assume that $\ell_{-} \leq x_{n}^{1}<x_{n}^{2}<\cdots<x_{n}^{s_{n}} \leq \ell_{+}$are the local minima of u_{n} in $\left[\ell_{-}, \ell_{+}\right]$for $i=1, \ldots, s_{n}$. Furthermore, we assume that $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

For case (2), we suppose that a_{n}, b_{n} are local minima of u_{n}, and that $\ell_{-} \leq x_{n}^{1}<x_{n}^{2}<$ $\cdots<x_{n}^{s_{n}} \leq \ell_{+}$are the local maxima of u_{n} in $\left[\ell_{-}, \ell_{+}\right]$for $i=1, \cdots, s_{n}$, and assume that $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Considering a sub-sequence if necessary we define $\alpha=\lim _{n \rightarrow \infty} x_{n}^{1}$ and $\beta=\lim _{n \rightarrow \infty} x_{n}^{s_{n}}$. We also denote by $y_{n}^{1}<\cdots<y_{n}^{s_{n}-1}$, the local maxima or minima of u_{n} in ($x_{n}^{1}, x_{n}^{s_{n}}$) (if (1) or (2) holds respectively).

We have the following density property for the extreme points of u_{n}.
Proposition 3.2. If $x_{1}<x_{2}$ are such that $\left[x_{1}, x_{2}\right] \subset(\alpha, \beta)$ then there is n_{0} so that for every $n \geq n_{0}$ the solution u_{n} has at least one maximum point and one minimum point in $\left[x_{1}, x_{2}\right]$.

Proof. We only sketch the proof. Let us assume for definiteness that case (1) holds (the other case is analogous). If there is no critical point in the interval $\left[x_{1}, x_{2}\right]$ then, up to a sequence, u_{n} converges to 1 in $\left[x_{1}, x_{2}\right]$, except possibly for a point. Using comparison, this implies that for a sequence $y_{n}^{+} \in\left[x_{1}, x_{2}\right]$ we have $1-u_{n}\left(y_{n}^{+}\right),\left|u_{n}^{\prime}\left(y_{n}^{+}\right)\right| \leq e^{-\delta / \varepsilon_{n}}$. On the other hand, we can prove the existence of $y_{n}^{-} \in\left[\alpha, x_{1}\right]$ such that $1-u_{n}\left(y_{n}^{-}\right) \leq e^{-\delta / \varepsilon_{n}}$. Then multiplying the equation by u_{n}^{\prime} and integrating between y_{n}^{-}and y_{n}^{+}provides a contradiction.

The next proposition is crucial in proving our main result. This is the starting point for understanding the relation between the oscillatory solutions with the envelope functions, and consequently with the adiabatic profiles. It states that once a solution of (1.2) starts oscillating at a point x, where for example $\phi(x)>0$ and $\phi^{\prime}(x)<0$, then to the right of x it also oscillates. Moreover, its maximum values become different from the maximum associated to the homoclinic orbits, so entering an asymptotically periodic behavior.

Proposition 3.3. Suppose that (1) holds:
(i) If $\alpha>\ell_{-}$then $u_{n}\left(y_{n}^{i_{n}}\right) \rightarrow 1$ for all sequences $\left\{y_{n}^{i_{n}}\right\}$ such that $y_{n}^{i_{n}} \rightarrow \alpha$.
(ii) If $y_{n}^{i_{n}} \rightarrow \bar{x} \in\left(\alpha, \ell_{+}\right]$then $\lim \sup _{n \rightarrow \infty} u_{n}\left(y_{n}^{i_{n}}\right)<1$, in particular $\beta=\ell_{+}$.

P. Felmer et al

If (2) holds then we have:
(i) If $\alpha>\ell_{-}$then $u_{n}\left(y_{n}^{i_{n}}\right) \rightarrow-1$ for all sequences $\left\{y_{n}^{i_{n}}\right\}$ such that $y_{n}^{i_{n}} \rightarrow \alpha$.
(ii) If $y_{n}^{i_{n}} \rightarrow \bar{x} \in\left(\alpha, \ell_{+}\right]$then $\lim \sup _{n \rightarrow \infty} u_{n}\left(y_{n}^{i_{n}}\right)>-1$: in particular $\beta=\ell_{+}$.

Proof. Assume case (1) holds: the other case can be treated in a similar way.
(i) Since $\ell_{-}<\alpha$, we notice that $u_{n}\left(y_{n}^{1}\right) \rightarrow 1$ because rescaling u_{n} around y_{n}^{1} leads to a homoclinic orbit of the limiting equation. Then, integrating (3.1) between y_{n}^{1} and $y_{n}^{i_{n}}$ we obtain

$$
\begin{equation*}
F_{-}\left(y_{n}^{i_{n}}, u_{n}\left(y_{n}^{i_{n}}\right)\right)-F_{-}\left(y_{n}^{1}, u_{n}\left(y_{n}^{1}\right)\right)=\int_{y_{n}^{1}}^{y_{n}^{i_{n}}} \frac{\partial F_{-}}{\partial x}\left(x, u_{n}(x)\right) d x, \tag{3.2}
\end{equation*}
$$

from which it follows that $u_{n}\left(y_{n}^{i_{n}}\right) \rightarrow 1$.
(ii) If lim $\sup _{n \rightarrow \infty} u_{n}\left(y_{n}^{1}\right)<1$, then Proposition 3.1 implies the result. Thus, we may assume that, up to a sub-sequence, $\lim _{n \rightarrow \infty} u_{n}\left(y_{n}^{1}\right)=1$.

Let us assume that the proposition does not hold. Then, up to a sub-sequence, we have that $u_{n}\left(y_{n}^{i_{n}}\right) \rightarrow 1$ as $n \rightarrow \infty$ and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{y_{n}^{1}}^{y_{n}^{i_{n}}} \frac{\partial F_{-}}{\partial x}\left(x, u_{n}(x)\right) d x=0 . \tag{3.3}
\end{equation*}
$$

Our efforts are directed to proving that this is impossible, by providing a contradiction. We start by observing that Proposition 3.1 implies that $u_{n}\left(y_{n}^{l_{n}}\right) \rightarrow 1$, for all sequences $\left\{l_{n}\right\}$, with $l_{n} \in\left\{1,2, \ldots, i_{n}\right\} \equiv K_{n}$.

Claim. We have that, uniformly in the sequence $\left\{l_{n}\right\} \subset K_{n}$

$$
\lim _{n \rightarrow \infty} \frac{y_{n}^{l_{n}+1}-y_{n}^{l_{n}}}{\varepsilon_{n}}=\infty .
$$

Assuming the contrary, there is a sub-sequence of $\left\{u_{n}\right\}$ and $\left\{l_{n}\right\}$, for which by rescaling u_{n} around $y_{n}^{l_{n}}$ we obtain a sequence v_{n} that converges to a non-trivial solution of

$$
v^{\prime \prime}-f(\bar{y}, v)=0,
$$

satisfying $v^{\prime}(\bar{y})=v^{\prime}\left(\bar{y}+y_{0}\right)=0$, for a certain positive constant y_{0}. But then $v(\bar{y})<1$ since v is periodic, providing a contradiction that proves the claim.

Returning to the proof of Proposition 3.3, part (iii), we next let $r_{0}>0$ and v_{-}^{*} be the homoclinic solution of (1.3) with $e=\phi_{-}^{*}(x)$, for $x \in[\alpha, \bar{x}]$. Then there exists a positive constant A_{1} such that

$$
\begin{equation*}
\int_{-r_{0}}^{r_{0}} \frac{\partial F_{-}}{\partial x}\left(x, v_{-}^{*}(s)\right) d s=\phi^{\prime}(x) \int_{-r_{0}}^{r_{0}}\left(v_{-}^{*}-\frac{\left(v_{-}^{*}\right)^{3}}{3}-\frac{2}{3}\right) d s \geq A_{1}>0 \tag{3.4}
\end{equation*}
$$

for all $x \in[\alpha, \bar{x}]$. Thus, letting $z_{n}^{k}<y_{n}^{k}<z_{n}^{k+1}$ be the minimum points enclosing y_{n}^{k}, we see that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{\varepsilon_{n}} \int_{z_{n}^{l_{n}}-r_{0} \varepsilon_{n}}^{z_{n}^{l_{n}}+r_{0} \varepsilon_{n}} \frac{\partial F_{-}}{\partial x}\left(x, u_{n}(x)\right) d x \geq A_{1} \tag{3.5}
\end{equation*}
$$

High-frequency chaotic solutions

uniformly in the sequence $\left\{l_{n}\right\} \subset K_{n}$. From here we find

$$
\begin{align*}
\int_{y_{n}^{1}}^{y_{n}^{i_{n}}} \frac{\partial F_{-}}{\partial x}\left(x, u_{n}(x)\right) d x & \geq \sum_{k=2}^{i_{n}-1} \int_{z_{n}^{k}-r_{0} \varepsilon_{n}}^{z_{n}^{k}+r_{0} \varepsilon_{n}} \frac{\partial F_{-}}{\partial x}\left(x, u_{n}(x)\right) d x \\
& \geq \varepsilon_{n}\left(i_{n}-2\right) A_{2}, \tag{3.6}
\end{align*}
$$

for a certain constant $A_{2}>0$. Thus, to get a contradiction between (3.6) and (3.3) we just need to prove that the sequence $\left\{\varepsilon_{n} i_{n}\right\}$ is bounded away from zero.

From (3.2) and (3.6) we find a positive constant A_{4} such that

$$
F_{-}\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right) \geq \varepsilon_{n} k A_{4} \quad \text { for all } k \in K_{n}
$$

which implies that $\left(1-u_{n}\left(y_{n}^{k}\right)\right)^{2} \geq \varepsilon_{n} k A_{5}$, for some A_{5}. This, together with Lemma 2.1, shows that there is a constant $\gamma_{1}>0$ such that for all $k \in K_{n}$,

$$
\begin{equation*}
T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right) \leq-\gamma_{1} \ln \left(\varepsilon_{n} k A_{2}\right) . \tag{3.7}
\end{equation*}
$$

Next we estimate $z_{n}^{k+1}-z_{n}^{k}$. We let v_{n} be the solution of the equation

$$
\varepsilon_{n}^{2} v_{n}^{\prime \prime}-f\left(y_{n}^{k}, v_{n}(x)\right)=0
$$

with initial conditions $v_{n}^{\prime}\left(y_{n}^{k}\right)=0$ and $v_{n}\left(y_{n}^{k}\right)=u_{n}\left(y_{n}^{k}\right)$. Since $\phi(x) \geq \phi\left(y_{n}^{k}\right)$ for all $x \in\left[y_{n}^{k-1}, y_{n}^{k}\right]$ we have $f(x, s) \geq f\left(y_{n}^{k}, s\right)$ for all $x \in\left[y_{n}^{k-1}, y_{n}^{k}\right]$. While u_{n} and v_{n} are decreasing we define x_{u} and x_{v} as their inverses, respectively. Then we have

$$
-\frac{\varepsilon^{2}}{2} \frac{d}{d s}\left(\frac{1}{\left(x_{u}^{\prime}\right)^{2}}-\frac{1}{\left(x_{v}^{\prime}\right)^{2}}\right)=-f\left(x_{u}, s\right)+f\left(y_{n}^{k}, s\right)
$$

and so $\left(x_{v}^{\prime}\right)^{2}>\left(x_{u}^{\prime}\right)^{2}$. Let $\bar{x}_{k} \in\left[y_{n}^{k}-\varepsilon_{n} T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right), y_{n}^{k}\right]$ so that $u_{n}\left(\bar{x}_{k}\right)=v_{n}\left(y_{n}^{k}-\right.$ $\varepsilon_{n} T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right)$). We notice that $\left(y_{n}^{k}-\bar{x}_{k}\right) / \varepsilon_{n} \leq T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right)$ and since $u_{n}\left(y_{n}^{k}\right) \rightarrow 1$ we have that $\left(\bar{x}_{k}-z_{n}^{k}\right) / \varepsilon_{n}$ is bounded, and then $\left(\bar{x}_{k}-z_{n}^{k}\right) / \varepsilon_{n} \leq T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right)$. Thus

$$
\left(y_{n}^{k}-z_{n}^{k}\right) \leq 2 \varepsilon_{n} T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right) \quad \text { for all } k \in K_{n} .
$$

Using similar arguments, we compare $u_{n}(x)$ with $u_{n}\left(2 y_{n}^{k}-x\right)$ and we find the same estimate for $z_{n}^{k+1}-y_{n}^{k}$, concluding that

$$
\begin{equation*}
\frac{1}{2}\left(z_{n}^{k+1}-z_{n}^{k}\right) \leq \varepsilon_{n} T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right) \quad \text { for all } k \in K_{n} . \tag{3.8}
\end{equation*}
$$

From here and (3.7), we obtain

$$
z_{n}^{i_{n}}-z_{n}^{1}=\sum_{k=1}^{i_{n}-1} z_{n}^{k+1}-z_{n}^{k} \leq 2 \varepsilon_{n} \sum_{k=1}^{i_{n}} T\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right) \leq-2 \gamma_{1} \varepsilon_{n} \sum_{k=1}^{i_{n}} \ln \left(\varepsilon_{n} k A_{2}\right) .
$$

Hence, using that $M!\geq(r M)^{M}$ for a certain $r>0$, we find

$$
\frac{1}{2}(\bar{x}-\alpha) \leq z_{n}^{i_{n}}-z_{n}^{1} \leq-2 \gamma_{1} \varepsilon_{n} i_{n} \ln \left(\varepsilon_{n} i_{n} r A_{2}\right),
$$

from which we conclude that $\left\{\varepsilon_{n} i_{n}\right\}$ must be bounded away from zero, completing the proof of (ii). This completes the proof of Proposition 3.3.

P. Felmer et al

Now we study the asymptotic behavior of u_{n} on the interval I_{+}. We relate it with an envelope by proving that an approximate envelope converges to a solution of the envelope equation. Subsequently we relate the behavior of u_{n} with the associated adiabatic profile.

We define the approximate envelope function $e_{\varepsilon_{n}}:\left[\ell_{-}, \ell_{+}\right] \rightarrow \mathbb{R}$ as follows. In the interval $\left[y_{n}^{1}, y_{n}^{s_{n}}\right]$ we consider

$$
\begin{equation*}
e_{\varepsilon_{n}}(x)=u_{n}\left(y_{n}^{k}\right)+\frac{u_{n}\left(y_{n}^{k+1}\right)-u_{n}\left(y_{n}^{k}\right)}{y_{n}^{k+1}-y_{n}^{k}}\left(y_{n}^{k+1}-x\right), \quad x \in\left[y_{n}^{k}, y_{n}^{k+1}\right], \tag{3.9}
\end{equation*}
$$

for $k=1, \ldots, s_{n}-1$. If $\alpha>\ell_{-}$we extend $e_{\varepsilon_{n}}$ as the trivial envelope ϕ_{+}^{*} to $\left[\ell_{-}, y_{n}^{1}-\varepsilon_{n}\right.$] and in $\left(y_{n}^{1}-\varepsilon_{n}, y_{n}^{1}\right)$ we extend it linearly. On the other extreme we extend $e_{\varepsilon_{n}}$ linearly to [$y_{n}^{s_{n}}, \ell_{+}$]. In the case $\alpha=\ell_{-}$we simply extend $e_{\varepsilon_{n}}$ linearly to [ℓ_{-}, y_{n}^{1}]. Then we can prove the following proposition.

Proposition 3.4. The sequence $\left\{e_{\varepsilon_{n}}\right\}$ converges uniformly in $I_{+}=\left[\ell_{-}, \ell_{+}\right]$to a solution e of (2.4) in $\left(\ell_{-}, \ell_{+}\right)$. Moreover, $\operatorname{supp}(e)=\left(\alpha, \ell_{+}\right]$if $e\left(\ell_{-}\right)=\phi_{+}^{*}\left(\ell_{-}\right)$and $\operatorname{supp}(e)=\left[\ell_{-}, \ell_{+}\right]$if $e\left(\ell_{-}\right)<\phi_{+}^{*}\left(\ell_{-}\right)$.

Proof. Multiplying (3.1) by u_{n}^{\prime} and integrating we get

$$
F\left(y_{n}^{k+1}, u_{n}\left(y_{n}^{k+1}\right)\right)-F\left(y_{n}^{k}, u_{n}\left(y_{n}^{k}\right)\right)=\int_{y_{n}^{k}}^{y_{n}^{k+1}} \frac{\partial F}{\partial x}\left(x, u_{n}(x)\right) d x
$$

from which, after writing $u_{n}^{k+1}=u_{n}\left(y_{n}^{k+1}\right)$ and $u_{n}^{k}=u_{n}\left(y_{n}^{k}\right)$,

$$
\begin{align*}
& \frac{F\left(y_{n}^{k+1}, u_{n}^{k+1}\right)-F\left(y_{n}^{k+1}, u_{n}^{k}\right)}{u_{n}^{k+1}-u_{n}^{k}} \frac{u_{n}^{k+1}-u_{n}^{k}}{y_{n}^{k+1}-y_{n}^{k}} \\
& \quad=\frac{F\left(y_{n}^{k+1}, u_{n}^{k}\right)-F\left(y_{n}^{k}, u_{n}^{k}\right)}{y_{n}^{k}-y_{n}^{k+1}}+\frac{1}{y_{n}^{k+1}-y_{n}^{k}} \int_{y_{n}^{k}}^{y_{n}^{k+1}} \frac{\partial F}{\partial x}\left(x, u_{n}(x)\right) d x \tag{3.10}
\end{align*}
$$

Now let us consider $x \in(\alpha, \beta)$ and $1 \leq k_{n} \leq s_{n}$ so that $y_{n}^{k_{n}} \rightarrow x$ and $u_{n}\left(y_{n}^{k_{n}}\right) \rightarrow u$ as $n \rightarrow \infty$, for a sub-sequence if necessary. Then, using Proposition 3.3 we obtain that

$$
\lim _{n \rightarrow \infty} \frac{F\left(y_{n}^{k_{n}+1}, u_{n}^{k_{n}+1}\right)-F\left(y_{n}^{k_{n}+1}, u_{n}^{k_{n}}\right)}{u_{n}^{k_{n}+1}-u_{n}^{k_{n}}}=f(x, u)
$$

where $f(x, u) \neq 0$, since $\phi(x)<u<1$. Then, from (3.10) we find that for a certain constant C

$$
\left|\frac{u_{n}^{k+1}-u_{n}^{k}}{y_{n}^{k+1}-y_{n}^{k}}\right| \leq C \quad \text { for all } n, k, 1 \leq k \leq s_{n}
$$

This implies that the sequence $\left\{e_{n}\right\}$ is equicontinuous and then, by the Arzela-Ascoli theorem, after a sub-sequence, there is a function $e:\left[\ell_{-}, \ell_{+}\right] \rightarrow \mathbb{R}$, so that $e_{n} \rightarrow e$, uniformly. Actually, the Arzela-Ascoli theorem guarantees uniform convergence in every closed interval contained in $\left(\alpha, \ell_{+}\right]$. However, the application of Proposition 3.1 allows one to argue the uniform convergence in all $\left[\ell_{-}, \ell_{+}\right]$. We observe that $\phi(x)<e(x)<\phi_{+}^{*}(x)$, for all $x \in\left(\alpha, \ell_{+}\right]$.

Next we look at the right-hand side of (3.10). We see that the function $v_{n}(y)=$ $u_{n}\left(y_{n}^{k_{n}}+\varepsilon_{n} y\right)$ converges locally uniformly to v, the solution in \mathbb{R} of the equation (1.3) with $e=e(x)$. Then it follows that

$$
\lim _{n \rightarrow \infty} \frac{1}{y_{n}^{k_{n}+1}-y_{n}^{k_{n}}} \int_{y_{n}^{k_{n}}}^{y_{n}^{k_{n}+1}} \frac{\partial F}{\partial x}\left(z, u_{n}(z)\right) d z=\frac{1}{\tau(x)} \int_{0}^{\tau(x)} \frac{\partial F}{\partial x}(x, v(s)) d s
$$

where $\tau(x)=T(x, e(x))$. This completes the proof of Proposition 3.4.
Next we may consider intervals of the form $I_{-}=\left(\ell_{+}, \ell_{-}\right) \subset(\bar{a}, \bar{b})$ having one of the following characteristics: (1) $\phi^{\prime}(x)>0, \phi(x)>0$ for $x \in I_{-}$or (2) $\phi^{\prime}(x)<0$, $\phi(x)<0$ for $x \in I_{-}$. Then the analogues of Propositions 3.2 and 3.3 can be proved. Defining the corresponding approximate envelope in I_{-}we can also prove an analogue of Proposition 3.4.

We notice that the interval $I=[\bar{a}, \bar{b}]$ can be written as the union of intervals of type I_{+} and I_{-}, alternatively. Thus, given our solution u_{n} in the interval $\left[a_{n}, b_{n}\right]$, we define an approximate envelope $e_{\varepsilon_{n}}$ in $\left[a_{n}, b_{n}\right]$ and we have proved the following theorem.
THEOREM 3.1. Under the definitions and conditions given above, up to a sub-sequence, $\left\{e_{\varepsilon_{n}}\right\}$ converges uniformly in I to a solution e of (2.4).

We complete this section by proving Theorem 1.1. For this purpose we just need to make the connection between the approximate envelope $e_{\varepsilon_{n}}$ with the approximate action as defined in (1.7). We consider $x \in I$ and the function $v_{\varepsilon_{n}}$ defined by (1.5) and (1.6). We define

$$
\tilde{e}_{\varepsilon_{n}}(x)=\max _{s \in \mathbb{R}}\left|v_{\varepsilon_{n}}(x ; s)\right|
$$

It is clear that the approximate action satisfies

$$
\mathcal{A}_{\varepsilon_{n}}(x)=A\left(x, \tilde{e}_{\varepsilon_{n}}(x)\right),
$$

so that we only need to prove the following lemma.
Lemma 3.1. Up to a sub-sequence,

$$
\lim _{n \rightarrow \infty} \tilde{e}_{\varepsilon_{n}}(x)=\lim _{n \rightarrow \infty} e_{\varepsilon_{n}}(x) .
$$

Proof. Consider

$$
E_{\varepsilon_{n}}(x)=\frac{\varepsilon^{2}}{2}\left|u_{\varepsilon_{n}}^{\prime}(x)\right|^{2}-F\left(x, u_{\varepsilon_{n}}(x)\right)
$$

Then we have

$$
\frac{d}{d x} E_{\varepsilon_{n}}(x)=\phi^{\prime}(x)\left\{u_{\varepsilon}(x)-\frac{1}{3} u_{\varepsilon}^{3}(x)\right\}
$$

so that $E_{\varepsilon_{n}}(x)$ is bounded in $W^{1, \infty}(I)$ as $n \rightarrow \infty$. In particular $E_{\varepsilon_{n}}(x)$ has a uniformly convergent sub-sequence. We also have that $\tilde{e}_{\varepsilon_{n}}(x)$ has a uniformly convergent subsequence.

Let $x_{0} \in \operatorname{int}(I)$ and suppose that, for $\delta>0$, local maxima of $u_{\varepsilon_{n}}(x)$ are dense in $\left(x_{0}-\delta, x_{0}+\delta\right)$. Then we can easily see that $e_{\varepsilon_{n}}\left(x_{0}\right)$ and $\tilde{e}_{\varepsilon_{n}}\left(x_{0}\right)$ have a common limit. On the other hand, if for $\delta>0$ local maxima of $u_{\varepsilon}(x)$ do not appear densely in $\left(x_{0}-\delta, x_{0}+\delta\right)$, by Proposition 3.4 we have $\lim _{n \rightarrow \infty} e_{\varepsilon_{n}}\left(x_{0}\right)=\phi_{+}^{*}\left(x_{0}\right)$. We also have $\lim _{n \rightarrow \infty} E_{\varepsilon_{n}}\left(x_{0}\right)=0$ and thus $\tilde{e}_{\varepsilon_{n}}\left(x_{0}\right) \rightarrow \phi_{+}^{*}\left(x_{0}\right)$.

P. Felmer et al

Remark 3.1. Let us denote by $N_{n}\left(x_{0}, x_{1}\right)$ the number of zeros of u_{n} in $\left[x_{0}, x_{1}\right] \subset(\bar{a}, \bar{b})$. Then, by a simple argument as in [12], we can prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N_{n} \varepsilon_{n}=\int_{x_{0}}^{x_{1}} \frac{1}{T(x, e(x))} d x \tag{3.11}
\end{equation*}
$$

where e is the envelope associated to $\left\{u_{n}\right\}$.

4. Existence of basic solutions

In this section we consider the existence of basic solutions for (1.2). Putting together these solutions we construct a finite-dimensional functional in order to find more complicated solutions, resembling earlier work by Nehari [22]. We start with the autonomous equation

$$
\begin{equation*}
v^{\prime \prime}(s)-f(x, v(s))=0 \quad v(0)=e, v^{\prime}(0)=0, \tag{4.1}
\end{equation*}
$$

where $x \in[a, b]$ is a fixed parameter and $e \in(-1,1)$ and we denote its solution by $v(s)=v(x, e ; s)$. When $e \in\left(\phi(x), \phi_{+}^{*}(x)\right)$ the solution $v(x, e ; s)$ is periodic and we let $T(x, e)$ be half of its period. When $\phi(x)$ is close to 0 and $e \in(-1,1)$ is close to 1 then $v(x, e ; s)$ remains positive in a symmetric bounded interval, whose length is denoted by $T_{\mathrm{p}}(x, e)$. While if $e \in(-1,1)$ is close to -1 then $v(x, e ; s)$ remains negative in a symmetric bounded interval of length $T_{\mathrm{n}}(x, e)$.

For our nonlinearity $f(x, u)$, the following result was proved by Smoller and Wasserman [24]

$$
\begin{equation*}
\frac{\partial T}{\partial e}(x, e)>0 \quad \text { for all } x, e \in\left(\phi(x), \phi_{+}^{*}(x)\right) \tag{4.2}
\end{equation*}
$$

and also for x such that $\phi(x)$ is close to 0

$$
\begin{equation*}
\frac{\partial T_{\mathrm{p}}}{\partial e}(x, e)>0 \quad \text { and } \quad \frac{\partial T_{n}}{\partial e}(x, e)<0, \tag{4.3}
\end{equation*}
$$

for e near 1 in the first inequality and e near -1 in the second one.
Based on the monotonicity of the period we obtain a non-degeneracy property of the linearized equation associated to (4.1). We consider first the case of Neumann boundary conditions. We observe that the solution $v(x, e ; s)$ of (4.1) satisfies the Neumann boundary condition

$$
v^{\prime}(0)=v^{\prime}(T(x, e))=0,
$$

and $v^{\prime}(t)<0$ for $t \in(0, T(x, e))$. We have the following lemma.
Lemma 4.1. The equation

$$
\begin{equation*}
h^{\prime \prime}-f^{\prime}(x, v(x, e ; s)) h=0, h^{\prime}(0)=h^{\prime}(T(x, e))=0, \tag{4.4}
\end{equation*}
$$

has only the trivial solution. Here $f^{\prime}(x, u)$ denotes the derivative with respect to u.
Proof. The differential equation in (4.4) has two linearly independent solutions that we can write explicitly as

$$
h_{1}(s)=\frac{d v}{d s}(s) \quad \text { and } \quad h_{2}(s)=\frac{d v}{d e}(s) .
$$

High-frequency chaotic solutions

Differentiating we see that h_{1} and h_{2} do not satisfy the boundary condition in (4.4). In fact,

$$
h_{1}^{\prime}(0)=v^{\prime \prime}(0)=f(x, e) \neq 0
$$

and by (4.2), and denoting by T^{\prime} the derivative of T with respect to e,

$$
h_{2}^{\prime}(T)=-v^{\prime \prime}(T) T^{\prime}=-f(x, R(e)) T^{\prime} \neq 0 .
$$

A similar statement can be made in the case of homoclinic orbits appearing when $\phi(x) \neq 0$. We assume that $\phi(x)<0$; the other case is analogous. We write $v_{*}(x, s)$ for the solution of the equation in (4.1) satisfying the boundary condition $v_{*}^{\prime}(x, 0)=0$, $\lim _{s \rightarrow \infty} v_{*}(x, s)=-1$, with $v_{*}^{\prime}(x, s)<0$ for all $s>0$. Then we have the following lemma.

Lemma 4.2. The equation

$$
\begin{equation*}
h^{\prime \prime}-f^{\prime}\left(x, v_{*}(x, s)\right) h=0, \quad h^{\prime}(0)=\lim _{s \rightarrow \infty} h^{\prime}(s)=0 \tag{4.5}
\end{equation*}
$$

has only the trivial solution.
Proof. The equation has two independent solutions. One is $v_{*}^{\prime}(x, s)$, which does not satisfy the boundary condition at 0 and which is bounded at infinity. The other solution of (4.5) has to be unbounded.

Before continuing, let us state an energy estimate for the homoclinic orbits $v_{*}(x, s)$ in terms of x. Still in the case $\phi(x)<0$ we define

$$
E_{+}(x)=\int_{0}^{\infty} \frac{\left(v_{*}^{\prime}\right)^{2}}{2}+F_{+}\left(x, v_{*}\right) d s
$$

When $\phi(x)>0$ we denote by $v_{*}(x, s)$ the solution equation in (4.1) satisfying the boundary condition $v_{*}^{\prime}(x, 0)=0, \lim _{s \rightarrow \infty} v_{*}(x, s)=1$, with $v_{*}^{\prime}(x, s)>0$ for all $s>0$ and we consider the energy function

$$
E_{-}(x)=\int_{0}^{\infty} \frac{\left(v_{*}^{\prime}\right)^{2}}{2}+F_{-}\left(x, v_{*}\right) d s
$$

Then we have our next lemma.
Lemma 4.3. $E_{+}^{\prime}(x) \phi^{\prime}(x)>0$ if $\phi(x)<0$ and $\phi^{\prime}(x) E_{-}^{\prime}(x)<0$ if $\phi(x)>0$.
Proof. We prove this only for E_{+}. After a change of variables we obtain that

$$
E_{+}(x)=\int_{-1}^{\phi_{+}^{*}(x)} \sqrt{2 F_{+}(x, w)} d w
$$

and then simple differentiation gives $\phi^{\prime}(x) E_{+}^{\prime}(x)>0$.
Next we consider the associated non-autonomous linear problem. We need two extreme functions in order to control the size of the period. First we consider a function $\ell_{\infty}(x)$ such that $\ell_{\infty}(x)=+\infty$ for all x, except in a small neighborhood of $\{x \mid \phi(x)=0\}$, where it is continuous. We also define $\ell_{0}(x)=T(x, \phi(x))$. Given $x_{0} \in[\bar{a}, \bar{b}]$ and $\ell>\ell_{0}\left(x_{0}\right)=T\left(x_{0}, \phi\left(x_{0}\right)\right)$, we consider the solution $v_{0}=v\left(x_{0}, e(\ell) ; \cdot\right)$ of (4.1) with $v_{0}^{\prime}(t)<0$ in $(0, \ell)$. Here $e=e(\ell)$ is the unique e satisfying $T\left(x_{0}, e\right)=\ell$.

P. Felmer et al

Lemma 4.4. Given $\delta>0$, there are positive constants C, ε_{0} such that for every $\varepsilon \in$ $\left(0, \varepsilon_{0}\right), x_{0} \in[\bar{a}, \bar{b}]$,

$$
\begin{equation*}
\ell_{0}\left(x_{0}\right)+\delta \leq \ell<\ell_{\infty}\left(x_{0}\right) \tag{4.6}
\end{equation*}
$$

$x_{0}+\varepsilon \ell \leq \bar{b}$ and $g \in C([0, \ell])$, the linear equation

$$
\begin{equation*}
h^{\prime \prime}-f^{\prime}\left(x_{0}+\varepsilon s, v_{0}(s)\right) h=g, \quad h^{\prime}(0)=h^{\prime}(\ell)=0 \tag{4.7}
\end{equation*}
$$

has a unique solution h satisfying

$$
\begin{equation*}
\|h\|_{2} \leq C\|g\|_{0} . \tag{4.8}
\end{equation*}
$$

Here $\|\cdot\|_{2}$ and $\|\cdot\|_{0}$ denote the natural uniform norms in $C^{2}([0, \ell])$ and $C([0, \ell])$, respectively.

Proof. By Fredholm alternative, it is enough to prove (4.8) for all possible solutions of (4.7). Suppose we have a sequence $\varepsilon_{n} \rightarrow 0, x_{0}^{n} \in[\bar{a}, \bar{b}], \ell_{n} \geq \ell\left(x_{0}^{n}\right)+\delta$, and $g_{n} \in C\left(\left[0, \ell_{n}\right]\right)$ such that h_{n} satisfies (4.7), $\left\|g_{n}\right\|_{0}=1$ and $\left\|h_{n}\right\|_{2} \rightarrow \infty$.

We define $\hat{h}_{n}=h_{n} /\left\|h_{n}\right\|_{2}$ and $\hat{g}_{n}=g_{n} /\left\|h_{n}\right\|_{2}$, then we have

$$
\hat{h}_{n}^{\prime \prime}-f^{\prime}\left(x_{0}^{n}+\varepsilon_{n} s, v_{0}^{n}(s)\right) \hat{h}_{n}=\hat{g}_{n}, \quad \hat{h}_{n}^{\prime}\left(x_{0}^{n}\right)=\hat{h}_{n}^{\prime}\left(x_{0}^{n}+\ell_{n}\right)=0 .
$$

Let us assume first that for a sub-sequence $\ell_{n} \rightarrow \bar{\ell}<\infty$. Then, for a sub-sequence we have $x_{0}^{n} \rightarrow \bar{x}$ and $\hat{h}_{n} \rightarrow \bar{h}$ such that

$$
\bar{h}^{\prime \prime}-f^{\prime}(\bar{x}, \bar{v}(s)) \bar{h}=0, \quad \bar{h}^{\prime}(0)=\bar{h}^{\prime}(\bar{\ell})=0
$$

where $\bar{v}=v(\bar{x}, \bar{e} ; \cdot)$ satisfies (4.1) and \bar{e} is so that $T(\bar{x}, \bar{e})=\bar{\ell}$. But in view of Lemma 4.1 this is impossible, since $\bar{h} \neq 0$.

Assume next that $\ell_{n} \rightarrow \infty$. We notice that thanks to (4.6) this implies that $\phi(\bar{x}) \neq 0$. Let $s_{n} \in\left(0, \ell_{n}\right)$ be a point where $s \mapsto \max \left\{\left|\hat{h}_{n}(s)\right|\right.$, $\left.\left|\hat{h}_{n}^{\prime}(s)\right|,\left|\hat{h}_{n}^{\prime \prime}(s)\right|\right\}$ attains its global maximum value. If s_{n} is bounded we proceed as above, with the only difference being that we will use Lemma 4.2 to conclude. In the case $s_{n} \rightarrow \infty$ we center the equation at s_{n} and we take the limit as $n \rightarrow \infty$, for an appropriate subsequence. Then we obtain a bounded function \bar{h} satisfying

$$
\bar{h}^{\prime \prime}-f^{\prime}(\bar{x}, \pm 1) \bar{h}=0, \quad s \leq 0
$$

and $\bar{h}^{\prime}(0)=0$. Since $f^{\prime}(\bar{x}, \pm 1)>0$ this is impossible.
Now we can state our theorem on the existence and uniqueness of basic solutions with Neumann boundary condition.

THEOREM 4.1. Given $\delta>0$, there exists ε_{0} such that, for every $\varepsilon \in\left(0, \varepsilon_{0}\right), x_{0} \in[\bar{a}, \bar{b}]$, $x_{0}+\varepsilon \ell \leq \bar{b}$,

$$
\begin{equation*}
\ell_{0}\left(x_{0}\right)+\delta \leq \ell<\ell_{\infty}\left(x_{0}\right) \tag{4.9}
\end{equation*}
$$

the equation

$$
\begin{equation*}
u^{\prime \prime}-f\left(x_{0}+\varepsilon s, u(s)\right)=0, \quad u^{\prime}(0)=u^{\prime}(\ell)=0, u^{\prime}>0 \tag{4.10}
\end{equation*}
$$

has a unique solution, which is differentiable in x_{0} and ℓ.

High-frequency chaotic solutions

Proof. This theorem is a consequence of the implicit function theorem. We consider $w=u-v_{0}$, where v_{0} is defined just before Lemma 4.4. Then equation (4.10) is equivalent to

$$
\begin{align*}
w^{\prime \prime}-f^{\prime}\left(x_{0}+\varepsilon s, v_{0}(s)\right) w & =Q\left(x_{0}, \ell, \varepsilon, s\right) w+E\left(x_{0}, \ell, \varepsilon, s\right) \tag{4.11}\\
w^{\prime}(0) & =w^{\prime}(\ell)=0, \tag{4.12}
\end{align*}
$$

where Q and E are given by

$$
\begin{aligned}
Q\left(x_{0}, \ell, \varepsilon, s\right) w= & f\left(x_{0}+\varepsilon s, v_{0}+w\right)-f\left(x_{0}+\varepsilon s, v_{0}(s)\right) \\
& -f^{\prime}\left(x_{0}+\varepsilon s, v_{0}(s)\right) w
\end{aligned}
$$

and

$$
E\left(x_{0}, \ell, \varepsilon, s\right)=f\left(x_{0}+\varepsilon s, v_{0}(s)\right)-f\left(x_{0}, v_{0}(s)\right) .
$$

Now, given $\sigma>0$, we can find ε_{1} so that if $\varepsilon \in\left(0, \varepsilon_{1}\right)$ then

$$
\left|E\left(x_{0}, \ell, \varepsilon, t\right)\right| \leq \frac{\sigma}{2 C}
$$

where C is the constant appearing in (4.8). On the other hand, by a direct computation we have

$$
\left|Q\left(x_{0}, \ell, \varepsilon, s\right) w(s)\right| \leq c|w(s)|^{2}
$$

Now we choose σ so small that $c \sigma^{2} \leq \sigma /(2 C)$. Then, given w_{1} such that $\left\|w_{1}\right\|_{0} \leq \sigma$, the equation

$$
w^{\prime \prime}-f^{\prime}\left(x_{0}+\varepsilon s, v_{0}(s)\right) w=Q\left(x_{0}, \ell, \varepsilon, s\right) w_{1}+E\left(x_{0}, \ell, \varepsilon, s\right)
$$

with boundary condition (4.12) defines a unique w_{2} satisfying $\left\|w_{2}\right\|_{2} \leq \sigma$, thanks to Lemma 4.4. Thus we can define an operator $\mathcal{F}: B_{\sigma} \subset C^{0}([0, \ell]) \rightarrow B_{\sigma}$, where B_{σ} is the closed ball centered at 0 and with radius σ. In the same way we can prove that \mathcal{F} is a contraction. Therefore \mathcal{F} has a fixed point that is a solution to (4.11) and (4.12), then solving (4.10) in a unique way.

The differentiability properties of this solution require some extra work that we leave to the reader.

Remark 4.1. If $\phi: \mathbb{R} \rightarrow(-1,1)$ is periodic, then ε_{0} may be taken independent of \bar{a} and \bar{b} in Theorem 4.1. More precisely, given $\delta>0$ there exists $\varepsilon_{0}>0$ such that, for all $\varepsilon<\varepsilon_{0}$, $x_{0} \in \mathbb{R}$ and $\ell\left(x_{0}\right)+\delta \leq \ell \leq \ell_{\infty}\left(x_{0}\right)$, equation (4.10) has a unique solution.

When $\phi\left(x_{0}\right)$ is close to zero, the Neumann problem may not behave well, and we prefer to use the Dirichlet problem to construct basic solutions. Arguing as in the Neumann case, but now using property (4.3), we can prove the following existence and uniqueness result.

THEOREM 4.2. Let $\bar{x} \in(\bar{a}, \bar{b})$ such that $\phi(\bar{x})=0$. Then, there exists $\bar{\ell}>0$ and ε_{0} such that, for every $x_{0} \in\left[\bar{x}-\varepsilon_{0}, \bar{x}+\varepsilon_{0}\right], \varepsilon \in\left(0, \varepsilon_{0}\right)$ and $\bar{\ell} \leq \ell \leq\left(\bar{b}-x_{0}\right) / \varepsilon$ the equation

$$
\begin{equation*}
u^{\prime \prime}-f\left(x_{0}+\varepsilon s, u(s)\right)=0, \quad u(0)=u(\ell)=0 \tag{4.13}
\end{equation*}
$$

has a unique positive solution (negative solution), which is differentiable in x_{0} and ℓ.
Remark 4.2. If $\phi: \mathbb{R} \rightarrow(-1,1)$ is periodic, then $\bar{\ell}$ and ε_{0} can be taken independent of \bar{x} in Theorem 4.2.

P. Felmer et al

5. Construction of single clusters

We start this section with a few definitions.
Definition 5.1. A solution e of (2.4) is an increasing heteroclinic envelope if $\operatorname{supp}(e)=$ (a, b) with a, b satisfying $\phi(a)<0<\phi(b), \phi^{\prime}(a), \phi^{\prime}(b)>0$. In a similar way we define a decreasing heteroclinic envelope.

We say that a solution e of (2.4) is a positive homoclinic envelope if $\operatorname{supp}(e)=(a, b)$ with a, b satisfying $\phi(a), \phi(b)<0, \phi^{\prime}(a)>0, \phi^{\prime}(b)<0$. Similarly, we say that a solution e of (2.4) is a negative homoclinic envelope if $\operatorname{supp}(e)=(a, b)$ with a, b satisfying $\phi(a), \phi(b)>0$ and $\phi^{\prime}(a)<0, \phi^{\prime}(b)>0$.

This section is devoted to proving that if $e>\phi$ is an increasing (decreasing) heteroclinic envelope in a given bounded interval then for ε small enough there is a solution u_{ε} of (1.2) such that its approximate upper envelope e_{ε} converges to e, uniformly.

Proposition 5.1. Set $\phi<e_{1} \leq e_{2}$ increasing (decreasing) heteroclinic envelopes of (2.4), with $\operatorname{supp}\left(e_{i}\right)=\left(a_{i}, b_{i}\right)$ for $i=1,2$ with $\phi^{\prime}(x)>0(<0)$ in $\left[a_{1}, a_{2}\right] \cup\left[b_{2}, b_{1}\right]$. For all $\delta>0$ and \bar{a}, \bar{b} with $\bar{a}<a_{1}<b_{1}<\bar{b}$ there exists $\varepsilon_{\delta}>0$ such that, for $0<\varepsilon<\varepsilon_{\delta}$ and $e_{1} \leq e \leq e_{2}$ solution of (2.4), the equation (1.2) admits a solution u_{ε} defined in $[\bar{a}, \bar{b}]$ satisfying $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$, and $\left\|e_{\varepsilon}-e\right\|_{L^{\infty}(\bar{a}, \bar{b})}<\delta$, where e_{ε} is the approximate envelope of u_{ε}, defined as in (3.9). The family $\left\{u_{\varepsilon}\right\}$ is called an increasing (decreasing) heteroclinic cluster.

If e is a positive (negative) homoclinic envelope, we can write a similar statement for the existence of homoclinic clusters. The arguments for the proof of such a statement can be directly extended from those of Proposition 5.1.

We shall prove Proposition 5.1 under the extra assumption that there is exactly one $c \in\left(a_{2}, b_{2}\right)$ such that $\phi(c)=0$. The general case can be treated similarly. We need two auxiliary envelopes $\tilde{e}, e_{c}: \mathbb{R} \rightarrow \mathcal{E}_{+}$solutions of (2.4) satisfying $\tilde{e} \leq e_{1} \leq e_{2} \leq e_{c}$, with $\tilde{e}(c)<e_{1}(c)<e_{2}(c)<e_{c}(c)<1$. We assume that $\operatorname{supp}(\tilde{e})=(\tilde{a}, \tilde{b}) \subset(\bar{a}, \bar{b})$ and $\phi^{\prime}(x)>0$ in $\left[\tilde{a}, a_{1}\right] \cup\left[b_{1}, \tilde{b}\right]$. We also assume that $\operatorname{supp}\left(e_{c}\right)=\left(a_{c}, b_{c}\right)$, with $b_{c}-a_{c}$ suitably small. We define, for $x, y \in[\bar{a}, \bar{b}]$,

$$
\begin{equation*}
d(x, y)=\frac{1}{\varepsilon} \int_{x}^{y} \frac{d s}{T(s, \tilde{e}(s))}, d_{c}(x, y)=\frac{1}{\varepsilon} \int_{x}^{y} \frac{d s}{T\left(s, e_{c}(s)\right)} \tag{5.1}
\end{equation*}
$$

and we introduce the domain in \mathbb{R}^{N}

$$
\begin{gather*}
\Delta_{e}^{\varepsilon}=\left\{\left(x_{1}, x_{2}, \ldots, x_{N_{e}^{\varepsilon}}\right) \mid x_{0}=\bar{a}, x_{N_{e}^{\varepsilon}+1}=\bar{b}, x_{0} \leq x_{1} \leq \cdots \leq x_{N_{e}^{\varepsilon}+1}\right. \\
\left.d\left(x_{i}, x_{i+1}\right) \geq 1, d_{c}\left(x_{i}, x_{i+1}\right) \leq 1, i=0,1, \ldots, N_{e}^{\varepsilon}\right\} \tag{5.2}
\end{gather*}
$$

where N_{e}^{ε} is chosen so that

$$
\begin{equation*}
N_{e}^{\varepsilon}=\left\lfloor\frac{1}{\varepsilon} \int_{\bar{a}}^{\bar{b}} \frac{1}{T(s, e(s))} d s\right\rfloor, \tag{5.3}
\end{equation*}
$$

with $\lfloor s\rfloor$ denoting the closest even integer to s. Next we introduce our finite-dimensional functional g^{ε}. It will be notationally convenient to define an energy density as

$$
\sigma_{\varepsilon}^{ \pm}(x, u)=\varepsilon^{2} \frac{u^{\prime 2}(x)}{2}+F_{ \pm}(x, u(x)) .
$$

We define $g^{\varepsilon}: \Delta_{e}^{\varepsilon} \rightarrow \mathbb{R}$ for $X=\left(x_{1}, x_{2}, \ldots, x_{N_{e}^{\varepsilon}}\right) \in \Delta_{e}^{\varepsilon}$ as

$$
\begin{align*}
g^{\varepsilon}(X)= & \sum_{i=0}^{i_{0}-1} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{+}\left(x, u_{i}\right) d x+\int_{x_{i_{0}}}^{c} \sigma_{\varepsilon}^{+}\left(x, u_{i_{0}}\right) d x \\
& +\int_{c}^{x_{i_{0}+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i_{0}}\right) d x+\sum_{i=i_{0}+1}^{N_{e}^{\varepsilon}} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i}\right) d x \tag{5.4}
\end{align*}
$$

where i_{0} satisfies $x_{1} \leq \cdots \leq x_{i_{0}} \leq c \leq x_{i_{0}+1} \leq \cdots \leq x_{N_{e}^{\varepsilon}}$, and u_{i} is defined as the solution of

$$
\begin{equation*}
\varepsilon^{2} u_{i}^{\prime \prime}-f\left(x, u_{i}\right)=0, \quad u_{i}^{\prime}\left(x_{i}\right)=0=u_{i}^{\prime}\left(x_{i+1}\right) \tag{5.5}
\end{equation*}
$$

with $(-1)^{i} u_{i}^{\prime}>0$. We remark that this equation has a unique solution thanks to Theorem 4.1 and the constraints $d\left(x_{i}, x_{i+1}\right) \geq 1$ and $d_{c}\left(x_{i}, x_{i+1}\right) \leq 1$ in Δ_{e}^{ε}. We can easily check that

$$
\frac{\partial g^{\varepsilon}}{\partial x_{j}}(X)=-F_{+}\left(x_{j}, u_{j}\left(x_{j}\right)\right)+F_{+}\left(x_{j}, u_{j-1}\left(x_{j}\right)\right), \quad 1 \leq j \leq i_{0}
$$

and

$$
\frac{\partial g^{\varepsilon}}{\partial x_{j}}(X)=-F_{-}\left(x_{j}, u_{j}\left(x_{j}\right)\right)+F_{-}\left(x_{j}, u_{j-1}\left(x_{j}\right)\right), \quad i_{0}+1 \leq j \leq N_{e}^{\varepsilon}
$$

Thus, if $\nabla g^{\varepsilon}(X)=0$ then the function u_{ε}, defined as

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{i}(x), \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=0, \ldots, N_{e}^{\varepsilon} \tag{5.6}
\end{equation*}
$$

is a solution of (1.2) with $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$. Consequently, in order to prove Proposition 5.1 we just need to prove that g^{ε} has an interior critical point. Actually we will show that the maximum of g^{ε} is achieved in $\operatorname{int}\left(\Delta_{e}^{\varepsilon}\right)$.
Proof of Proposition 5.1. We prove that there is an $\varepsilon_{0}>0$ such that for all $0<\varepsilon<\varepsilon_{0}$ the finite-dimensional functional g^{ε} achieves its maximum in $\operatorname{int}\left(\Delta_{e}^{\varepsilon}\right)$. Let us consider sequences $\left\{\varepsilon_{n}\right\}, e_{n} \rightarrow e_{\infty}, e_{1} \leq e_{n} \leq e_{2}$, and $\left\{X_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0, X_{n} \in \Delta_{e_{n}}^{\varepsilon_{n}}$ and

$$
g^{\varepsilon_{n}}\left(X_{n}\right) \geq g^{\varepsilon_{n}}(X) \quad \text { for all } X \in \Delta_{e_{n}}^{\varepsilon_{n}} .
$$

It will be enough to prove that, up to a sub-sequence, for n large we have

$$
X_{n} \in \operatorname{int}\left(\Delta_{e_{n}}^{\varepsilon_{n}}\right) \quad \text { and } \quad \nabla g^{\varepsilon_{n}}\left(X_{n}\right)=0
$$

We write $N_{n}=N_{e_{n}}^{\varepsilon_{n}}, g_{n}=g_{e_{n}}^{\varepsilon_{n}}, u_{n}=u_{\varepsilon_{n}}$ and $\Delta_{n}=\Delta_{e_{n}}^{\varepsilon_{n}}$ for simplicity.
It will be convenient to consider another auxiliary envelope \hat{e} between \tilde{e} and e_{1}. Let \hat{e} be a solution of (2.4) such that $\operatorname{supp}(\hat{e})=(\hat{a}, \hat{b})$ and $\bar{a}<\tilde{a}<\hat{a}<a_{1}$ and $b_{1}<\hat{b}<\tilde{b}<\bar{b}$. We define

$$
\begin{aligned}
B_{n} & =\left\{i \mid\left[x_{i}^{n}, x_{i+1}^{n}\right] \cap(\hat{a}, \hat{b}) \neq \emptyset\right\}, \\
B_{n}^{1} & =\left\{i \mid\left[x_{i}^{n}, x_{i+1}^{n}\right] \cap\left(\hat{a}, a_{c}\right) \neq \emptyset\right\}, \\
B_{n}^{2} & =\left\{i \mid\left[x_{i-1}^{n}, x_{i}^{n}\right] \cap\left(b_{c}, \hat{b}\right) \neq \emptyset\right\} .
\end{aligned}
$$

The proof of Proposition 5.1 consists of several steps.

P. Felmer et al

Step 1. There exists $j_{n} \in B_{n}^{1} \cup B_{n}^{2}$ such that, up to a sub-sequence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{j_{n}}^{n}, x_{j_{n}+1}^{n}\right) \geq 1+\kappa, \tag{5.7}
\end{equation*}
$$

with $\kappa>0$.
Assuming the contrary, we see that $d\left(x_{j}^{n}, x_{j+1}^{n}\right)$ approaches 1 uniformly in $j \in B_{n}^{1} \cup B_{n}^{2}$. Then we have

$$
\left|B_{n}^{1} \cup B_{n}^{2}\right|=\frac{\left(1+\gamma_{n}\right)}{\varepsilon_{n}}\left\{\int_{\hat{a}}^{a_{c}} \frac{1}{T(x, \tilde{e}(x))} d x+\int_{b_{c}}^{\hat{b}} \frac{1}{T(x, \tilde{e}(x))} d x\right\}
$$

where $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since $N_{n} \geq\left|B_{n}^{1} \cup B_{n}^{2}\right|$, taking the limit we obtain

$$
\int_{a_{1}}^{b_{1}} \frac{1}{T\left(x, e_{\infty}(x)\right)} d x \geq \int_{\hat{a}}^{a_{c}} \frac{1}{T(x, \tilde{e}(x))} d x+\int_{b_{c}}^{\hat{b}} \frac{1}{T(x, \tilde{e}(x))} d x
$$

which is a contradiction, if we have chosen $b_{c}-a_{c}$ small enough. This proves Step 1.
We may assume without loss of generality that $j_{n} \in B_{n}^{1}$ for all n. We write $B_{n}^{1}=$ $\left\{i_{1}, \ldots, i_{l}\right\}$, with $i_{1}<i_{2}<\cdots<i_{l}$, where we have omitted the index n to simplify notation.

Step 2. For all n, the function $u_{\varepsilon_{n}}$ defined in (5.6) is a solution of (1.2) in $\left(x_{i_{1}}^{n}, x_{i_{l}+1}^{n}\right)$ and satisfies $u_{\varepsilon_{n}}^{\prime}\left(x_{i_{1}}^{n}\right)=u_{\varepsilon_{n}}^{\prime}\left(x_{i_{l}+1}^{n}\right)=0$.

If not, there is a sequence of integers k_{n} so that $i_{1}<k_{n} \leq j_{n}$ for all n (or $j_{n}+1 \leq k_{n}<$ $i_{l}+1$ for all n) so that

$$
\frac{\partial g_{n}\left(X_{n}\right)}{\partial x_{k_{n}}^{n}} \neq 0
$$

and u_{n} is a solution of (1.2) in $\left(x_{k_{n}}^{n}, x_{j_{n}+1}^{n}\right)$ (or in $\left(x_{j_{n}}^{n}, x_{k_{n}}^{n}\right)$).
Assume that we are in the first case (the other case is completely analogous). From (5.7) and Theorem 3.1 we have that for a certain $\tilde{\kappa}>0$ it holds that

$$
\begin{equation*}
d\left(x_{k_{n}}^{n}, x_{k_{n}+1}^{n}\right) \geq 1+\tilde{\kappa} \quad \text { for all } n \tag{5.8}
\end{equation*}
$$

Then we have the following possibilities.
(a) If for a sub-sequence $d\left(x_{k_{n}-1}^{n}, x_{k_{n}}^{n}\right)>1$, then the point $Y_{n}=\left(y_{1}, \ldots, y_{N_{n}}\right)$, such that $y_{i}=x_{i}$ for all $i \neq k_{n}$ and $y_{k_{n}}$ close to $x_{k_{n}}^{n}$, also belongs to Δ_{n}. Choosing $y_{k_{n}}$ so that

$$
\frac{\partial g_{n}}{\partial x_{k_{n}}^{n}}\left(X_{n}\right)\left(y_{k_{n}}-x_{k_{n}}^{n}\right)>0
$$

we contradict the maximality of X_{n}.
(b) For a sub-sequence we have that $d\left(x_{k_{n}-1}^{n}, x_{k_{n}}^{n}\right)=1$ for all n. Then, up to a subsequence, we see that $x_{k_{n}}^{n}$ converges to some point \bar{x}. By (5.8),

$$
\lim _{n \rightarrow \infty} F\left(x_{k_{n}}, u_{k_{n}-1}\left(x_{k_{n}}^{n}\right)\right)>\lim _{n \rightarrow \infty} F\left(x_{k_{n}}, u_{k_{n}}\left(x_{k_{n}}^{n}\right)\right),
$$

from which we conclude that

$$
\frac{\partial g_{n}}{\partial x_{k_{n}}^{n}}\left(X_{n}\right)>0
$$

for large n. If we define Y_{n} as before, with $y_{k_{n}}$ slightly bigger than $x_{k_{n}}^{n}$, we see that $Y_{n} \in \Delta_{n}$ and X_{n} is not a maximum point. This completes the proof of Step 2.

Let $i_{m_{n}}$ be the rightmost index in B_{n}^{2}.

Step 3. The function $u_{\varepsilon_{n}}$ defined in (5.6) is a solution of (1.2) in $\left(x_{i_{1}}^{n}, x_{i_{m_{n}}}^{n}\right)$ and satisfies $u_{\varepsilon_{n}}^{\prime}\left(x_{i_{1}}^{n}\right)=u_{\varepsilon_{n}}^{\prime}\left(x_{i_{m_{n}}+1}^{n}\right)=0$.

We see that $x_{i_{\ell}+1}^{n}>a_{c}$. For $j \geq i_{\ell}+1$ we need to check $d_{c}\left(x_{j}^{n}, x_{j+1}^{n}\right)<1$ as well as $d\left(x_{j}^{n}, x_{j+1}^{n}\right)>1$. Proceeding exactly as in Step 2 we prove Step 3 by the maximality of X_{n}.

Next we prove $i_{1}=0$ and $i_{m_{n}}=N_{n}+1$ to finish the proof. If this is not the case, we may assume without loss of generality that $i_{1} \geq 1$ for all n.

Step 4. The approximate envelope associated to $\left\{u_{n}\right\}$, as defined in $\S 3$, converges, up to a sub-sequence, to an envelope function e_{0}. Moreover $\overline{\operatorname{supp}\left(e_{0}\right)} \subset(\hat{a}, \hat{b})$.

We apply Theorem 3.1 to the sequence $\left\{u_{n}\right\}$. We define $a_{n}=x_{i_{1}}^{n}$ if $x_{i_{1}}^{n}$ is a minimum point of u_{n} or $a_{n}=x_{i_{1}+1}^{n}$ if $x_{i_{1}}^{n}$ is a maximum point of u_{n}. We also take $b_{n}=x_{i_{m n}+1}^{n}$ if $x_{i_{m n}+1}^{n}$ is a maximum point of u_{n}, otherwise $b_{n}=x_{i_{m_{n}}}^{n}$. Then Theorem 3.1 implies that the approximate envelope associated to $\left\{u_{n}\right\}$ converges, up to a sub-sequence, to an envelope function e_{0} in $\left(a_{0}, b_{0}\right)$, where $a_{0}=\lim _{n \rightarrow \infty} a_{n}$ and $b_{0}=\lim _{n \rightarrow \infty} b_{n}$. In view of Remark 3.1 we have that

$$
\int_{a_{0}}^{b_{0}} \frac{d x}{T\left(x, e_{0}(x)\right)} \leq \lim _{n \rightarrow \infty} \varepsilon_{n} N_{n}=\int_{\bar{a}}^{\bar{b}} \frac{d x}{T\left(x, e_{\infty}(x)\right)}
$$

We easily see that

$$
\int_{\hat{a}}^{\hat{b}} \frac{d x}{T\left(x, e_{0}(x)\right)}=\int_{a_{0}}^{b_{0}} \frac{d x}{T\left(x, e_{0}(x)\right)} .
$$

Then, e_{0} and e_{∞} being solutions of (2.4) in $[\hat{a}, \hat{b}]$ we have that $e_{0}(x) \geq e_{\infty}(x)$ for all $x \in[\hat{a}, \hat{b}]$, and this implies that $\overline{\operatorname{supp}\left(e_{0}\right)} \subset(\hat{a}, \hat{b})$. This proves Step 4 .

We observe that this last conclusion implies that $d\left(x_{i_{1}}, x_{i_{1}+1}\right)>1$.
Step 5. $x_{i_{1}}$ is a local minimum of u_{n} and $x_{i_{m_{n}}}$ is a local maximum of u_{n}.
Suppose that $x_{i_{1}}$ is a local maximum of u_{n}.
In order to complete our proof we analyze three possible cases:
(1) for a sub-sequence we have $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)>1$;
(2) for a sub-sequence we have $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)=1$ and $x_{i_{1}-1}^{n} \rightarrow \bar{x}>\tilde{a}$;
(3) for a sub-sequence we have $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)=1$ and $x_{i_{1}-1}^{n} \rightarrow \tilde{a}$.

For case (1) by the argument in Step 2(a) we can conclude that

$$
\frac{\partial g_{n}}{\partial x_{i_{1}}^{n}}\left(X_{n}\right)=0
$$

Therefore, u_{n} defined in (5.6) is a solution of (1.2) in ($x_{i_{1}-1}^{n}, x_{i_{m_{n}}+1}^{n}$) with a maximum in $x_{i_{1}}^{n}$ which contradicts Proposition 3.2. To check that case (2) does not hold, we can use an argument as in Step 2(b).

P. Felmer et al

If case (3) holds, we have that there exists a constant $c>0$ such that $\left|x_{i_{1}}^{n}-x_{i_{1}+1}^{n}\right|>c$. Hence we can define $Y_{n}=\left(y_{1}^{n}, \ldots, y_{N_{n}}^{n}\right) \in \Delta_{n}$ as $y_{i}^{n}=x_{i}^{n}$ if $i \neq i_{1}$ and $y_{i_{1}}=x_{i_{1}}+\zeta$, where $\zeta>0$ small. We have

$$
\begin{align*}
g_{n}\left(Y_{n}\right)-g_{n}\left(X_{n}\right)= & \int_{x_{i_{1}-1}^{n}}^{x_{i_{1}}^{n}+\zeta} \sigma_{\varepsilon_{n}}^{+}\left(x, v_{i_{1}-1}\right) d x+\int_{x_{i_{1}}^{n}+\zeta}^{x_{i_{1}+1}^{n}} \sigma_{\varepsilon_{n}}^{+}\left(x, v_{i_{1}}\right) d x \\
& -\int_{x_{i_{1}-1}^{n}}^{x_{i_{1}}^{n}} \sigma_{\varepsilon_{n}}^{+}\left(x, u_{i_{1}-1}\right) d x-\int_{x_{i_{1}}^{n}}^{x_{i_{1}+1}^{n}} \sigma_{\varepsilon_{n}}^{+}\left(x, u_{i_{1}}\right) d x \tag{5.9}
\end{align*}
$$

where $v_{i_{1}-1}$ and $v_{i_{1}}$ satisfy (5.5) replacing $x_{i_{1}}^{n}$ by $x_{i_{1}}^{n}+\zeta$ in both cases. Rescaling these functions as $z_{i_{1}-1}(t)=v_{i_{1}-1}\left(x_{i_{1}}^{n}+\zeta-\varepsilon_{n} t\right)$ and $z_{i_{1}}(t)=v_{i_{1}}\left(x_{i_{1}}^{n}+\zeta+\varepsilon_{n} t\right), t \geq 0$, we see both converge to the solution z of the equation

$$
\begin{equation*}
z^{\prime \prime}(s)-f(\tilde{a}+\zeta, z(s))=0, \quad z^{\prime}(0)=0, \quad z(\infty)=1, z^{\prime}<0 \tag{5.10}
\end{equation*}
$$

Similarly we define the functions $w_{i_{1}-1}(t)=u_{i_{1}-1}\left(x_{i_{1}}-\varepsilon_{n} t\right)$ and $w_{i_{1}}(t)=u_{i_{1}}\left(x_{i_{1}}^{n}+\varepsilon_{n} t\right)$, for $t \geq 0$, and we see that they converge to the solution w of (5.10), but replacing $\tilde{a}+\zeta$ by \tilde{a}.

Next we rescale the integrals in (5.9) and we obtain

$$
g_{n}\left(Y_{n}\right)-g_{n}\left(X_{n}\right)=\varepsilon_{n} I_{n} \quad \text { where } \quad \lim _{n \rightarrow \infty} I_{n}=I
$$

and I is given by

$$
I=2 \int_{0}^{\infty} \frac{\left(z^{\prime}\right)^{2}}{2}+F_{+}(\tilde{a}+\zeta, z) d s-2 \int_{0}^{\infty} \frac{\left(w^{\prime}\right)^{2}}{2}+F_{+}(\tilde{a}, w) d s
$$

Then we use Lemma 4.3 to get $I>0$ and we conclude that $g_{n}\left(Y_{n}\right)-g_{n}\left(X_{n}\right)>0$, which is a contradiction. Therefore, $x_{i_{1}}$ is a minimum. Similarly we have $x_{i_{m_{n}}}$ is a maximum.

Step 6. $i_{1}=0$ and $i_{m_{n}}=N_{n}+1$.
Suppose that $i_{1} \geq 2$. Since $x_{i_{1}}^{n}$ is a minimum we have that there exists a constant $c>0$ such that $\left|x_{i_{1}}^{n}-x_{i_{1}+1}^{n}\right|>c$. If $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)>1$ and $d\left(x_{i_{1}-2}^{n}, x_{i_{1}-1}^{n}\right)>1$ then proceeding as in Step 5(1) we obtain a contradiction. If $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)=1$ and $x_{i_{1}-1} \rightarrow \bar{x}>\tilde{a}$, then we proceed as in Step 5(2) to reach a contradiction. When $d\left(x_{i_{1}-1}^{n}, x_{i_{1}}^{n}\right)=1$ and $x_{i_{1}-1} \rightarrow \tilde{a}$, then we define $Y_{n}=\left(y_{1}^{n}, \ldots, y_{N_{n}}^{n}\right) \in \Delta_{n}$ as $y_{i}^{n}=x_{i}^{n}$ if $i \neq i_{1}-1, i_{1}, y_{i_{1}-1}=x_{i_{1}-1}+\zeta$, $y_{i_{1}}=x_{i_{1}}+\zeta$, where $\zeta>0$ small. Then, following the same reasoning as in Step 5(3) we obtain a contradiction. Similarly, we can show that $i_{m_{n}}=N_{n}+1$.

This ends the proof of Proposition 5.1.
Remark 5.1. In view of Remark 4.1 we can show that, when $\phi: \mathbb{R} \rightarrow(-1,1)$ is periodic, the number ε_{δ} in Proposition 5.1 can be chosen independent of \bar{a} and \bar{b}. Indeed, if we consider $\bar{a} \leq a_{0}<a_{1}$ and $\bar{b} \geq b_{0}>b_{1}$ then ε_{δ} depends only on $e_{1}, e_{2}, a_{0}, b_{0}$ and δ.

Remark 5.2. We can generalize Proposition 5.1 to solutions having the following degeneracy in the closed interval I : the boundary of $\operatorname{supp}(e) \cap \operatorname{int}(I)$ contains critical points of ϕ. This occurs if the function e touches a trivial envelope at a critical point of ϕ.

For example let e be a non-trivial envelope with graph in \mathcal{E}_{+}for all $x \in I$ and for which ϕ has a negative minimum at \bar{x} with $e(\bar{x})=\phi_{+}^{*}(\bar{x})$.

To construct $\left\{u_{\varepsilon}\right\}$ corresponding to e, we argue as in [13]. First we approximate e by a sequence of envelopes $\left\{e_{n}\right\}$ such that e_{n} satisfies the assumptions of Proposition 5.1 and $e_{n} \rightarrow e$. We construct solutions $\left\{u_{i}^{n}\right\}_{i=1}^{\infty}$ and use a diagonal argument to conclude.

Remark 5.3. We say that an envelope e on the interval (a, b) is a boundary envelope if $e(a)$ (or $e(b)$) does not belong to a trivial envelope. In a similar way to Proposition 5.1, we can construct a family $\left\{u_{\varepsilon}\right\}$ of solutions to equation (1.2) in (a, b) under the Neumann boundary condition, corresponding to any given boundary envelope.

6. Gluing clusters

In this section we will prove that it is possible to glue an arbitrary finite number of homoclinic or heteroclinic clusters.

THEOREM 6.1. Set $e_{1}, e_{2}: \mathbb{R} \rightarrow \mathcal{E}_{+}$solutions of (2.4) with $\operatorname{supp}\left(e_{i}\right)=\bigcup_{j=1}^{k}\left(a_{i}^{j}, b_{i}^{j}\right)$ where $a_{1}^{j}<a_{2}^{j}<b_{2}^{j}<b_{1}^{j}$ for all $j, b_{1}^{j}<a_{1}^{j+1}$ for $j=1, \ldots, k-1$ and $\phi^{\prime}(x) \neq 0$ in $\bigcup_{j=1}^{k}\left[a_{1}^{j}, a_{2}^{j}\right] \cup\left[b_{2}^{j}, b_{1}^{j}\right]$. Then for $\bar{a}<a_{1}^{1}$ and $\bar{b}>b_{1}^{k}$ there exists $\varepsilon_{0}>0$ such that for $e_{1} \leq e \leq e_{2}$ solution of (2.4) there exists u_{ε} solution of (1.2) satisfying $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$ with the envelope e_{ε} converging uniformly to e in $[\bar{a}, \bar{b}]$.

We notice that from here we directly obtain Theorem 1.2. The proof of Theorem 6.1 is a consequence of the following proposition.

Proposition 6.1. Under the conditions of Theorem 6.1 with $k=2$ assume that either, for $i=1,2$:
(a) $e_{i}:\left(a_{i}^{1}, b_{i}^{1}\right) \rightarrow \mathcal{E}_{+}$are increasing heteroclinic envelopes and $e_{i}:\left(a_{i}^{2}, b_{i}^{2}\right) \rightarrow \mathcal{E}_{+}$ are positive homoclinic envelopes; or
(b) $\quad e_{i}:\left(a_{i}^{1}, b_{i}^{1}\right) \rightarrow \mathcal{E}_{+}$are positive homoclinic envelopes and $e_{i}:\left(a_{i}^{2}, b_{i}^{2}\right) \rightarrow \mathcal{E}_{+}$are increasing heteroclinic envelopes.
Then there exists $\varepsilon_{0}>0$ such that for any $e_{1} \leq e \leq e_{2}$ solution of (2.4) there exists u_{ε} solution of (1.2) satisfying $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$ with envelope e_{ε} converging uniformly to e in $[\bar{a}, \bar{b}]$.

Proof of Proposition 6.1 part (a). We prove Proposition 6.1 part (a) under the extra assumption that there is exactly one $c \in\left(a_{1}^{1}, b_{1}^{1}\right)$ such that $\phi(c)=0$ and $\phi<0$ in $\left(a_{1}^{2}, b_{1}^{2}\right)$. The general case can be treated with minor changes. Following the ideas of $\S 5$, we introduce two auxiliary envelopes $\tilde{e}, e_{c}: \mathbb{R} \rightarrow \mathcal{E}_{+}$solutions of (2.4), satisfying $\tilde{e} \leq e_{1} \leq e_{2} \leq e_{c}$, with $\tilde{e}(c)<e_{1}(c) \leq e_{2}(c)<e_{c}(c)<1$ and $\operatorname{supp}\left(e_{c}\right)=\left(a_{c}, b_{c}\right)$, with $a_{2}^{1}<a_{c}<c<b_{c}<b_{2}^{1}$ and $b_{c}-a_{c}$ suitably small. We also assume that $\operatorname{supp}(\tilde{e})=\left(\tilde{a}^{1}, \tilde{b}^{1}\right) \cup\left(\tilde{a}^{2}, \tilde{b}^{2}\right) \subset(\bar{a}, \bar{b})$ and $\phi^{\prime}(x)>0$ in $\left[\tilde{a}^{1}, a_{1}^{1}\right] \cup\left[b_{1}^{1}, \tilde{b}^{1}\right] \cup\left[\tilde{a}^{2}, a_{1}^{2}\right]$ and $\phi^{\prime}(x)<0$ in $\left[b_{1}^{2}, \tilde{b}^{2}\right]$. As in $\S 5$, for $x, y \in[\bar{a}, \bar{b}]$, we define the distances $d(x, y)$ and $d_{c}(x, y)$ as in (5.1). Set $c_{*} \in\left(b_{1}^{1}, a_{1}^{2}\right)$ such that $\phi\left(c_{*}\right)=0$ and $\phi^{\prime}\left(c_{*}\right)<0$.

P. Felmer et al

We let N_{1}^{ε} and N_{2}^{ε} be the even integers defined by

$$
\begin{equation*}
N_{i}^{\varepsilon}=\left\lfloor\frac{1}{\varepsilon} \int_{a_{1}^{i}}^{b_{1}^{i}} \frac{1}{T(s, e(s))} d s\right\rfloor \quad \text { for } i=1,2 \tag{6.1}
\end{equation*}
$$

and $N^{\varepsilon}=N_{1}^{\varepsilon}+N_{2}^{\varepsilon}+2$, where we have omitted the dependence on e to keep the notation simpler. Then we introduce the domain in $\mathbb{R}^{N^{\varepsilon}}$

$$
\begin{align*}
\Delta_{e}^{\varepsilon}= & \left\{\left(x_{1}, x_{2}, \ldots, x_{N^{\varepsilon}}\right) \mid \bar{a}=x_{0} \leq x_{1} \leq \cdots \leq x_{N^{\varepsilon}+1}=\bar{b},\right. \\
& c_{*}-\delta \leq x_{N_{1}^{\varepsilon}+2} \leq c_{*}+\delta,\left|x_{N_{1}^{\varepsilon}+j+1}-x_{N_{1}^{\varepsilon}+j}\right| \geq l \varepsilon, \text { for } j=1,2, \\
& d\left(x_{i}, x_{i+1}\right) \geq 1, \quad d_{c}\left(x_{i}, x_{i+1}\right) \leq 1, \text { for } 0 \leq i \leq N_{1}^{\varepsilon}, \\
& \left.N_{1}^{\varepsilon}+3 \leq i \leq N^{\varepsilon}\right\}, \tag{6.2}
\end{align*}
$$

where $l>0$ and $\delta>0$ are constants to be suitably chosen. In order to define our finitedimensional functional we consider the function u_{i} defined by (5.5) with (-1$)^{i} u_{i}^{\prime} \geq 0$ for $i=0, \ldots, N_{1}^{\varepsilon}$ and $(-1)^{i} u_{i}^{\prime} \leq 0$ for $i=N_{1}^{\varepsilon}+3, \ldots, N^{\varepsilon}$. We notice that these solutions are well defined thanks to our constraints $d \geq 1$ and $d_{c} \leq 1$ and Theorem 4.1. For $i=N_{1}^{\varepsilon}+1$ we define u_{i} to be the solution of

$$
\begin{equation*}
\varepsilon^{2} u^{\prime \prime}-f(x, u)=0, \tag{6.3}
\end{equation*}
$$

with $u_{i}^{\prime}\left(x_{i}\right)=0, u_{i}\left(x_{i+1}\right)=0, u_{i}^{\prime} \leq 0$. In addition, for $i=N_{1}^{\varepsilon}+2$ the function u_{i} satisfies (6.3) with $u_{i}\left(x_{i}\right)=0, u_{i}^{\prime}\left(x_{i+1}\right)=0, u_{i}^{\prime} \geq 0$. If δ is chosen small and l is large, we can properly define these solutions using Theorem 4.2.

Now we define $g^{\varepsilon}: \Delta_{e}^{\varepsilon} \rightarrow \mathbb{R}$ for $X \in \Delta_{e}^{\varepsilon}$ as

$$
\begin{align*}
g^{\varepsilon}(X)= & \sum_{i=0}^{i_{0}-1} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{+}\left(x, u_{i}\right) d x+\int_{x_{i_{0}}}^{c} \sigma_{\varepsilon}^{+}\left(x, u_{i_{0}}\right) d x \\
& +\int_{c}^{x_{i_{0}+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i_{0}}\right) d x+\sum_{i=i_{0}+1}^{j_{0}-1} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i}\right) d x+\int_{x_{j_{0}}}^{c_{*}} \sigma_{\varepsilon}^{-}\left(x, u_{j_{0}}\right) d x \\
& +\int_{c_{*}}^{x_{j_{0}+1}} \sigma_{\varepsilon}^{-}\left(x, u_{j_{0}}\right) d x+\sum_{i=j_{0}+1}^{N^{\varepsilon}} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{+}\left(x, u_{i}\right) d x, \tag{6.4}
\end{align*}
$$

where i_{0}, j_{0} satisfy $x_{1} \leq \cdots \leq x_{i_{0}} \leq c \leq x_{i_{0}+1} \leq \cdots \leq x_{j_{0}} \leq c_{*} \leq x_{j_{0}+1} \leq \cdots \leq x_{N_{e}^{\varepsilon}}$. We observe that by the constraint $d_{c}\left(x_{i}, x_{i+1}\right) \leq 1$ we certainly have $i_{0}+1 \leq j_{0}$.

We can easily check that for $j=N_{1}^{\varepsilon}+2$

$$
\frac{\partial g^{\varepsilon}}{\partial x_{j}}(X)=\frac{\varepsilon^{2}}{2}\left(u_{j}^{\prime 2}\left(x_{j}\right)-u_{j-1}^{\prime}{ }^{2}\left(x_{j}\right)\right)
$$

and for $j \neq N_{1}^{\varepsilon}+2$ we have

$$
\begin{gathered}
\frac{\partial g^{\varepsilon}}{\partial x_{j}}(X)=F_{+}\left(x_{j}, u_{j-1}\left(x_{j}\right)\right)-F_{+}\left(x_{j}, u_{j}\left(x_{j}\right)\right), \quad j \leq i_{0} \text { or } j \geq j_{0}+1, \\
\frac{\partial g^{\varepsilon}}{\partial x_{j}}(X)=F_{-}\left(x_{j}, u_{j-1}\left(x_{j}\right)\right)-F_{-}\left(x_{j}, u_{j}\left(x_{j}\right)\right), \quad i_{0}+1 \leq j \leq j_{0} .
\end{gathered}
$$

Thus, if $\nabla g^{\varepsilon}(X)=0$ then the function u_{ε}, defined as

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{i}(x), \quad x \in\left[x_{i}, x_{i+1}\right], \quad i=0, \ldots, N^{\varepsilon}, \tag{6.5}
\end{equation*}
$$

is a solution of (1.2) with $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$.
Hence, to complete the proof of the proposition, it suffices to show that the maximum of g^{ε} is achieved on $\operatorname{int}\left(\Delta_{e}^{\varepsilon}\right)$. We proceed by contradiction. Suppose that there exist sequences $\varepsilon_{n} \rightarrow 0, e_{1} \leq e_{n} \leq e_{2}$ and $X_{n}=\left(x_{1}^{n}, \ldots, x_{N^{\varepsilon_{n}}}^{n}\right) \in \partial \Delta_{e_{n}}^{\varepsilon_{n}}$ such that $g^{\varepsilon_{n}}\left(X_{n}\right) \geq g^{\varepsilon_{n}}(X)$ for all $X \in \Delta_{e_{n}}^{\varepsilon_{n}}$. For simplicity we denote $x_{i}=x_{i}^{n}, \Delta_{n}=\Delta_{e_{n}}^{\varepsilon_{n}}, g_{n}=g^{\varepsilon_{n}}$ and $N_{i}^{n}=N_{i}^{\varepsilon_{n}}$, for $i=1,2$.

Since $X_{n} \in \partial \Delta_{n}$ we have three possible cases:
(1) Case 1. Except possibly for a sub-sequence, we have

$$
\left|x_{N_{1}^{n}+2}-x_{N_{1}^{n}+1}\right|=\varepsilon_{n} l \quad \text { or } \quad\left|x_{N_{1}^{n}+3}-x_{N_{1}^{n}+2}\right|=\varepsilon_{n} l .
$$

(2) Case 2. Except for a sub-sequence we have that

$$
x_{N_{1}^{n}+2}=c_{*}-\delta \quad \text { or } \quad x_{N_{1}^{n}+2}=c_{*}+\delta
$$

(3) Case 3. Except for a sub-sequence,

$$
d\left(x_{i_{n}}, x_{i_{n}+1}\right)=1 \quad \text { or } \quad d_{c}\left(x_{i_{n}}, x_{i_{n}+1}\right)=1
$$

for some $0 \leq i_{n} \leq N_{1}^{n}$ or $N_{1}^{n}+3 \leq i_{n} \leq N^{n}$.
Case 1. We may assume that $\left|x_{N_{1}^{n}+2}-x_{N_{1}^{n}+1}\right|=\varepsilon_{n} l$, for a sub-sequence. Then, after scaling, we see that $u_{N_{1}^{n}+1}$ converges to a limiting solution defined in $[0, l]$, while $u_{N_{1}^{n}}$ converges to a heteroclinic solution. Then we find that

$$
\frac{\partial g_{n}\left(X_{n}\right)}{\partial x_{N_{1}^{n}+1}}=F_{ \pm}\left(x_{N_{1}^{n}+1}, u_{N_{1}^{n}}\left(x_{N_{1}^{n}+1}\right)\right)-F_{ \pm}\left(x_{N_{1}^{n}+1}, u_{N_{1}^{n}+1}\left(x_{N_{1}^{n}+1}\right)\right)<0
$$

Therefore we can find $Y_{n} \in \Delta_{n}$ such that $g_{n}\left(Y_{n}\right)>g_{n}\left(X_{n}\right)$, which contradicts our assumption.

Case 2. Since Case 1 does not hold, we may assume that $\left|x_{N_{1}^{n}+2}-x_{N_{1}^{n}+1}\right|>\varepsilon_{n} l$ and $\left|x_{N_{1}^{n}+3}-x_{N_{1}^{n}+2}\right|>\varepsilon_{n} l$. We may also assume that $x_{N_{1}^{n}+2}=c_{*}-\delta$. Then, using an argument like in Step 5 in the proof of Proposition 5.1, we can prove that

$$
\frac{\partial g_{n}\left(X_{n}\right)}{\partial x_{N_{1}^{n}+2}}=\frac{\varepsilon_{n}^{2}}{2}\left(\left(u_{N_{1}^{n}+2}^{\prime}\right)^{2}\left(x_{N_{1}^{n}+2}\right)-\left(u_{N_{1}^{n}+1}^{\prime}\right)^{2}\left(x_{N_{1}^{n}+2}\right)\right)>0 .
$$

Hence increasing the value of $x_{N_{1}^{n}+2}$ yields a point $Y_{n} \in \Delta_{n}$ such that $g_{n}\left(Y_{n}\right)>g_{n}\left(X_{n}\right)$, contradicting our assumption again.

Case 3. Here we are in a position of repeating the arguments given in Proposition 5.1, completing the proof of part (a) of Proposition 6.1.

Proof of Proposition 6.1 part (b). We prove the proposition assuming additionally that there exists a unique $c \in\left(a_{1}^{2}, b_{1}^{2}\right)$ such that $\phi(c)=0$ and that $\phi<0$ in $\left[a_{1}^{1}, b_{1}^{1}\right]$. Keeping the notation of part (a), we introduce \tilde{e} and e_{c}. We notice that now $a_{2}^{2}<a_{c}<$ $c<b_{c}<b_{2}^{2}$ and $\phi^{\prime}(x)>0$ in $\left[\tilde{a}^{1}, a_{1}^{1}\right] \cup\left[\tilde{a}^{2}, a_{1}^{2}\right] \cup\left[b_{1}^{2}, \tilde{b}^{2}\right]$ and $\phi^{\prime}(x)<0$ in $\left[b_{1}^{1}, \tilde{b}^{1}\right]$. We define the distances d and d_{c} as before.

P. Felmer et al

With $N_{i}^{\varepsilon}, i=1,2$, as in (6.1), we define $N^{\varepsilon}=N_{1}^{\varepsilon}+N_{2}^{\varepsilon}+1$. Next we introduce the domain

$$
\begin{align*}
\Delta_{e}^{\varepsilon}=\{ & \left(x_{1}, x_{2}, \ldots, x_{N^{\varepsilon}}\right) \mid \bar{a}=x_{0} \leq x_{1} \leq \cdots \leq x_{N^{\varepsilon}+1}=\bar{b} \\
& x_{N_{1}^{\varepsilon}} \leq \tilde{b}^{1}+\delta, x_{N_{1}^{\varepsilon}+2} \geq \tilde{a}^{2}-\delta, \\
& \left.d\left(x_{i}, x_{i+1}\right) \geq 1, \quad d_{c}\left(x_{i}, x_{i+1}\right) \leq 1, \text { for } 0 \leq i \leq N^{\varepsilon}\right\} \tag{6.6}
\end{align*}
$$

where $\delta>0$ is small and fixed. We set the functional $g^{\varepsilon}: \Delta_{\varepsilon} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
g^{\varepsilon}(X)= & \sum_{i=0}^{i_{0}-1} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{+}\left(x, u_{i}\right) d x+\sum_{i=i_{0}+1}^{N^{\varepsilon}} \int_{x_{i}}^{x_{i+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i}\right) d x \\
& +\int_{x_{i_{0}}}^{c} \sigma_{\varepsilon}^{+}\left(x, u_{i_{0}}\right) d x+\int_{c}^{x_{i_{0}+1}} \sigma_{\varepsilon}^{-}\left(x, u_{i_{0}}\right) d x,
\end{aligned}
$$

where $x_{1} \leq \cdots \leq x_{i_{0}} \leq c<x_{i_{0}+1} \leq \cdots \leq x_{N^{\varepsilon}+1}$. The function u_{i} is defined by (5.5).
As before, to complete the proof we just need to show that g^{ε} achieves its maximum in $\operatorname{int}\left(\Delta_{\varepsilon}\right)$. Assuming the contrary, and with the notational convention of the previous proof, there exist sequences $\left\{\varepsilon_{n}\right\}, e_{1} \leq e_{n} \leq e_{2},\left\{X_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $X_{n} \in \partial \Delta_{n}$ satisfies $g_{n}\left(X_{n}\right) \geq g_{n}(X)$ for all $X \in \Delta_{n}$. We have three possible cases:
(1) Case 1. Except possibly for a sub-sequence, we have

$$
X_{n}=\left(x_{1}, \ldots, x_{N_{1}^{n}-1}, \tilde{b}_{1}+\delta, x_{N_{1}^{n}+1}, \ldots, x_{N_{1}^{n}+N_{2}^{n}+1}\right) .
$$

Case 2. Except for a sub-sequence we have that

$$
\begin{equation*}
X_{n}=\left(x_{1}, \ldots, x_{N_{1}^{n}}, x_{N_{1}^{n}+1}, \tilde{a}_{2}-\delta, \ldots, x_{N_{1}^{n}+N_{2}^{n}+1}\right) \tag{2}
\end{equation*}
$$

(3) Case 3. Except for a sub-sequence,

$$
X_{n}=\left(x_{1}, \ldots ., x_{N_{1}^{n}+N_{2}^{n}+1}\right), x_{N_{1}^{n}}^{1}<\tilde{b}_{1}+\delta, x_{N_{1}^{n}+2}>\tilde{a}_{2}-\delta
$$

and there is i_{n} such that $d\left(x_{i_{n}}, x_{i_{n}+1}\right)=1$ for all $n \in \mathbb{N}$.
Case 1. We assume that $x_{N_{1}^{n}-1}>c$. The case $x_{N_{1}^{n}-1}^{n} \leq c$ can be handled in a similar way. We consider

$$
Y_{n}=\left(x_{1}, \ldots, x_{N_{1}^{n}-1}, \tilde{b}_{1}+\delta / 2, x_{N_{1}^{n}+1}, \ldots, x_{N_{1}^{n}+N_{2}^{n}+1}\right),
$$

which belongs to $\partial \Delta_{n}$ if δ is small. The difference $g_{n}\left(Y_{n}\right)-g_{n}\left(X_{n}\right)$ can be written by an expression similar to (5.9). Then, proceeding as in Step 5 in the proof of Proposition 5.1, we can show that

$$
g_{n}\left(Y_{n}\right)-g_{n}\left(X_{n}\right)=\varepsilon_{n} J_{n}, \quad \text { where } \lim _{n \rightarrow \infty} J_{n}=J
$$

and J is given by

$$
J=2\left\{E_{+}\left(\tilde{b}_{1}+\delta / 2\right)-E_{+}\left(\tilde{b}_{1}+\delta\right)\right\},
$$

with

$$
E_{+}(x)=\int_{0}^{\infty} \frac{\left(y^{\prime}\right)^{2}}{2}+F_{+}(x, y) d s \quad x \in(c, b+\delta]
$$

for y satisfying a suitable limiting equation. Then, in view of Lemma 4.3 we obtain $J>0$, which leads to a contradiction.

Case 2. This can be handled in a similar way.
Case 3. We proceed following the proof of Proposition 5.1 with minor modifications.

Proof of Theorem 6.1. In order to glue any pair of clusters, we can proceed as in part (a) or part (b) of Proposition 6.1. The case of a general k can be handled as in Proposition 6.1, with obvious changes of notation, but by means of the same ideas.

Remark 6.1. Suppose that $\phi: \mathbb{R} \rightarrow(-1,1)$ is 1-periodic and there exist solutions e_{1}, $e_{2}: \mathbb{R} \rightarrow[-1,1]$ of (2.4) with $\operatorname{supp}\left(e_{i}\right)=\left(a_{i}, b_{i}\right)$ for $i=1,2$ with $0<a_{1}<a_{2}<b_{2}<$ $b_{1}<1$. From the argument given above, for any $\delta>0$ we can find $\varepsilon_{\delta}>0$ such that for a given $k \in \mathbb{N}$ and $\left\{j_{1}, j_{2}, \ldots j_{k}\right\} \subset \mathbb{Z}$ and for any solution e of (2.4) satisfying

$$
e_{1}\left(x-j_{i}\right) \leq e(x) \leq e_{2}\left(x-j_{i}\right) \text { in }\left[j_{i}, j_{i}+1\right],
$$

for $i=1,2, \ldots, k, e(x)=\phi_{+}^{*}(x)$ in $\mathbb{R} \backslash \bigcup_{i=1}^{k}\left[j_{i}, j_{i}+1\right]$ and $\bar{a}<j_{1}<j_{k}+1<\bar{b}$, there exists $u_{\varepsilon}\left(0<\varepsilon<\varepsilon_{\delta}\right)$ solution of (1.2) with $u_{\varepsilon}^{\prime}(\bar{a})=u_{\varepsilon}^{\prime}(\bar{b})=0$ satisfying $\left\|e_{\varepsilon}(x)-e(x)\right\|_{L^{\infty}(\bar{a}, \bar{b})}<\delta$.

We remark that ε_{δ} is independent of k, as can be proved by a contradiction argument in combination with Propositions 3.3 and 3.4.

7. Existence of chaotic solutions

In this section we will construct solutions of (1.2) in \mathbb{R} whose envelope will be characterized in terms of a sequence of real numbers.

We assume that $\phi: \mathbb{R} \rightarrow(-1,1)$ is 1-periodic. We fix solutions $e_{1}, e_{2}: \mathbb{R} \rightarrow \mathcal{E}_{+}$of (2.4), with $\operatorname{supp}\left(e_{i}\right)=\left(a_{i}, b_{i}\right)$ for $i=1,2$ and $0<a_{1}<a_{2}<b_{2}<b_{1}<1$. Moreover, we suppose that $\phi^{\prime} \neq 0$ in $\left[a_{1}, a_{2}\right] \cup\left[b_{2}, b_{1}\right]$. Set

$$
c_{i}=\int_{a_{1}}^{b_{1}} \frac{1}{T\left(x, e_{i}(x)\right)} d x \quad \text { for } i=1,2
$$

Then, for any $\gamma \in\left[c_{1}, c_{2}\right]$ there exists a unique envelope $e_{1} \leq e_{\gamma} \leq e_{2}$ such that

$$
\gamma=\int_{a_{1}}^{b_{1}} \frac{1}{T\left(x, e_{\gamma}(x)\right)} d x
$$

For notational convenience we set $e_{0}(x)=\phi_{+}^{*}(x)$.
We will consider sequences $\left(\gamma_{n}\right)_{n \in \mathbb{Z}} \in\left(\left[c_{1}, c_{2}\right] \cup\{0\}\right)^{\mathbb{Z}}$.
Theorem 7.1. For any $\delta>0$ there exists $\varepsilon_{\delta}>0$ such that for any prescribed sequence $\left(\gamma_{n}\right)_{n \in \mathbb{Z}} \in\left(\left[c_{1}, c_{2}\right] \cup\{0\}\right)^{\mathbb{Z}}$ there exists a solution $u_{\varepsilon}: \mathbb{R} \rightarrow[-1,1]$ of (1.2) such that

$$
\sup _{n \in \mathbb{Z}}\left\|e_{\varepsilon}(x+n)-e_{\gamma_{n}}(x)\right\|_{L^{\infty}(0,1)}<\delta,
$$

where e_{ε} is the approximate envelope of u_{ε}.
Proof. Fix $\delta>0$ and $\left(\gamma_{n}\right)_{n \in \mathbb{Z}} \in\left(\left[c_{1}, c_{2}\right] \cup\{0\}\right)^{\mathbb{Z}}$. By Remark 6.1 there exists $\varepsilon_{\delta}>0$ independent of k such that for any $k \in \mathbb{N}$ and $0<\varepsilon<\varepsilon_{\delta}$ there exists a solution $u_{k, \varepsilon}:[-k-1, k+2] \rightarrow[-1,1]$ of (1.2) with $u_{k, \varepsilon^{\prime}}(-k-1)=u_{k, \varepsilon}{ }^{\prime}(k+2)=0$ satisfying

$$
\sup _{|n| \leq k}\left\|e_{k, \varepsilon}(x+n)-e_{\gamma_{n}}(x)\right\|_{L^{\infty}(0,1)}<\delta .
$$

Here $e_{k, \varepsilon}$ is the approximate envelope of $u_{k, \varepsilon}$.

P. Felmer et al

For fixed ε we consider the sequence $u_{k, \varepsilon}$. Since the $u_{k, \varepsilon}^{\prime}$ are bounded independent of k, we can use the Arzela-Ascoli theorem to show that, except for a sub-sequence, $u_{k, \varepsilon} \rightarrow u_{\varepsilon}$ locally uniformly in \mathbb{R} as $k \rightarrow \infty$. It can be checked that u_{ε} is the desired solution.

Remark 7.1. We can generalize Theorem 7.1 to a more general situation. We assume that $\phi: \mathbb{R} \rightarrow(-1,1)$ is 1-periodic and there exist solutions $e_{1}^{j}<e_{2}^{j}: \mathbb{R} \rightarrow \mathcal{E}_{+}$ $(j=1,2, \ldots, k)$ of (2.4), with $\operatorname{supp}\left(e_{i}^{j}\right)=\left(a_{i}^{j}, b_{i}^{j}\right)$ for $i=1,2, j=1,2, \ldots, k$ and $0<a_{1}^{1}<a_{2}^{1}<b_{2}^{1}<b_{1}^{1}<a_{1}^{2}<a_{2}^{2}<b_{2}^{2}<b_{1}^{2}<\cdots<a_{1}^{k}<a_{2}^{k}<b_{2}^{k}<b_{1}^{k}<1$. Set

$$
c_{i}^{j}=\int_{a_{i}^{j}}^{b_{i}^{j}} \frac{1}{T\left(x, e_{i}^{j}(x)\right)} d x \quad \text { for } i=1,2 \text { and } j=1,2, \ldots, k .
$$

Then for any given sequence

$$
\left(\left(\gamma_{n}^{1}, \gamma_{n}^{2}, \ldots, \gamma_{n}^{k}\right)\right)_{n \in \mathbb{N}} \in\left(\left(\left[c_{1}^{1}, c_{2}^{1}\right] \cup\{0\}\right) \times\left(\left[c_{1}^{2}, c_{2}^{2}\right] \cup\{0\}\right) \times \cdots \times\left(\left[c_{1}^{k}, c_{2}^{k}\right] \cup\{0\}\right)\right)^{\mathbb{Z}}
$$

we can construct the corresponding solutions u_{ε} and envelope e_{ε} as in Theorem 7.1.

Acknowledgements. The authors would like to thank the anonymous referee for suggesting the use of adiabatic invariants to describe our results in a more elegant way.

Part of this work was developed while the first author was visiting Waseda University and the third author was visiting Universidad de Chile with support of the CONICYT-JSPS cooperation program. The first author was partially supported by Fondecyt Grant 1030929 and Fondap Matemáticas Aplicadas. The second author was partially supported by Fondecyt Grant 1020126 and Fondap Matemáticas Aplicadas.

References

[1] S. Ai. Multi-pulse like orbits for a singularly perturbed nearly integrable system. J. Differential Equations 179 (2002), 384-432.
[2] S. Ai. Multi-bump solutions to Carrier's problem. J. Math. Anal. Appl. 277 (2003), 405-422.
[3] S. Ai and S. Hastings. A shooting approach to layers and chaos in a forced Duffing equation. J. Differential Equations 185(2) (2002), 389-436.
[4] S. Ai, X. Chen and S. Hastings. Layers and spikes in non homogeneous bistable reaction-diffusion equations. Trans. Amer. Math. Soc. to appear.
[5] N. Alikakos, P. W. Bates and G. Fusco. Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence. Trans. Amer. Math. Soc. 340(2) (1993) 614-654.
[6] V. I. Arnold. Mathematical Methods of Classical Mechanics (Graduate Text in Mathematics, 60). Springer, New York, 1978.
[7] F. Alessio and P. Montecchiari. Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 107-135.
[8] S. Angenent, J. Mallet-Paret and L. Peletier. Stable transition layer in a semilinear boundary value problem. J. Differential Equations 67 (1987), 212-242.
[9] V. Coti-Zelati and P. Rabinowitz. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1992), 693-727.
[10] M. del Pino, P. Felmer and K. Tanaka. An elementary construction of complex patterns in nonlinear Schrödinger equations. Nonlinearity 15(5) (2002), 1653-1671.
[11] P. Felmer and J. J. Torres. Semi classical limits for the nonlinear Schrödinger equation. Commun. Contemp. Math. 4(3) (2002), 481-512.

High-frequency chaotic solutions

[12] P. Felmer and S. Martínez. High energy solutions for a phase transition problem. J. Differential Equations 194 (2003), 198-220.
[13] P. Felmer, S. Martínez and K. Tanaka. Multi-clustered high energy solutions for a phase transition problem. Proc. R. Soc. Edinburgh 135(4) (2005), 731-765.
[14] T. Gedeon, H. Kokubu, K. Mischaikow and H. Oka. Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing. J. Dynam. Differential Equations 14(1) (2002), 63-84.
[15] S. Hastings and K. McLeod. On the periodic solutions of a forced second order equation. J. Nonlinear Sci. 1 (1991), 225-245.
[16] J. Hale and K. Sakamoto. Existence and stability of transition layers. Japan J. Appl. Math. 5(3) (1988), 287-303.
[17] X. Kang and J. Wei. On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5 (2000), 899-928.
[18] H. Kurland. Monotone and oscillating equilibrium solutions of a problem arising in population genetics. Nonlinear Partial Differential Equations (Durham, NH, 1982) (Contemporary Mathematics, 17). American Mathematical Society, Providence, RI, 1983, pp. 323-342.
[19] K. Nakashima. Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation. J. Differential Equations 191(1) (2003), 234-276.
[20] K. Nakashima. Stable transition layers in a balanced bistable equation. Differential Integral Equations 13(7-9) (2000), 1025-1038.
[21] K. Nakashima and K. Tanaka. Clustering layers and boundary layers in spatially in-homogeneous phase transition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1) (2003), 107-143.
[22] Z. Nehari. Characteristic values associated with a class of nonlinear second-order differential equations. Acta Math. 105 (1961), 141-175.
[23] E. Séré. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209 (1991), 27-42.
[24] J. Smoller and A. Wasserman. Global bifurcation of steady-state solutions. J. Differential Equations 39 (1981), 269-290.

