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A probabilistic interpretation and stochastic
particle approximations of the 3-dimensional
Navier-Stokes equations

Abstract. We develop a probabilistic interpretation of local mild solutions of the three
dimensional Navier-Stokes equation in the Lp spaces, when the initial vorticity field is inte-
grable. This is done by associating a generalized nonlinear diffusion of the McKean-Vlasov
type with the solution of the corresponding vortex equation. We then construct trajectorial
(chaotic) stochastic particle approximations of this nonlinear process. These results provide
the first complete proof of convergence of a stochastic vortex method for the Navier-Stokes
equation in three dimensions, and rectify the algorithm conjectured by Esposito and Pul-
virenti in 1989. Our techniques rely on a fine regularity study of the vortex equation in the
supercritical Lp spaces, and on an extension of the classic McKean-Vlasov model, which
incorporates the derivative of the stochastic flow of the nonlinear process to explain the
vortex stretching phenomenon proper to dimension three.

1. Introduction

The Navier-Stokes equation for an homogeneous and incompressible fluid in the
whole space or plane, is given by

∂u
∂t

+ (u · ∇)u = ν�u − ∇p;

div u(t, x) = 0; u(t, x) → 0 as |x| → ∞,

(1)

where u is the velocity field, p is the pressure function and ν > 0 is the viscosity
coefficient assumed to be constant.

In this work we develop a probabilistic interpretation of the Navier-Stokes equa-
tion (1) in three dimensions. More precisely, we will consider the vortex equation
satisfied by the vorticity field curlu, and we will show in a general functional
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A probabilistic interpretation and stochastic particle approximations

framework that it can be viewed as a generalized McKean-Vlasov equation asso-
ciated with a nonlinear diffusion process. As a consequence, we will construct and
prove the convergence of a stochastic particle method for the solution of (1) in that
functional setting.

Thirty years ago, Chorin [10] proposed an heuristical probabilistic algorithm to
numerically simulate the solution of the Navier-Stokes equation in two dimensions,
by approximating the (scalar) vorticity function by random interacting “point vorti-
ces”. The convergence of Chorin’s vortex method was first mathematically proved
in 1982 by Marchioro and Pulvirenti [23], who interpreted the vortex equation
in two dimensions with bounded and integrable initial condition as a generalized
McKean-Vlasov equation (with a singular interacting kernel) associated with a
nonlinear diffusion. (For general expositions on the McKean-Vlasov model and
nonlinear processes, we refer the reader to Sznitman [33] or Méléard [25].) Fol-
lowing the pioneering ideas of McKean [22], Marchioro and Pulvirenti defined then
some stochastic systems of particles interacting weakly through cutoffed kernels,
and for which the empirical measure converges at each time (when the number of
particles tends to ∞) to the solution of the vortex equation. The results of [23] were
later improved by Méléard [26], [27], who showed the convergence in the path
space of the empirical measures of the interacting particle systems or, equivalently,
the propagation of chaos for the system of particles. (Propagation of chaos for a
system of particles without cutoff has been proved by Osada [29], but only for large
viscosities and vorticities which indeed are bounded probability densities).

A rigorous probabilistic interpretation and a stochastic vortex method for the
Navier-Stokes equation in three dimensions have been open problems since the
paper [23] appeared. An attempt to extend those results to the three dimensional
case was done by Esposito and Pulvirenti [13], but they did not give rigorous math-
ematical proofs of crucial facts.

In three dimensions, the vorticity field w = curlu is a solution of the nonlinear
equation

∂w
∂t

+ (u · ∇)w = (w · ∇)u + ν�w,

div w0 = 0,
(2)

where, thanks to the condition of incompressibility, divu = 0, and by the Biot-
Savart law, the velocity field u is equal to

u(t, x) = − 1

4π

∫
R3

(x − y)

|x − y|3 ∧ w(t, y)dy. (3)

Here, ∧ stands for the vectorial product in R
3 and, with the notation K(x) :=

− 1
4π

x
|x|3 , the vectorial kernel K(x) ∧ · is the so-called Biot-Savart kernel in three

dimensions. We refer to Chorin and Marsden [11] Ch. 1, Chorin [10] Ch.1, Marchi-
oro and Pulvirenti [24], or the recent book of Bertozzi and Majda [3] for this facts
and for background on vorticity.

The vectorial equation (2) is not conservative due to the vortex stretching term
(w · ∇)u = ∑

j wj ∂u
∂xj

. In fact, vortex stretching lies in the heart of complex three
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dimensional phenomena such as transfer of energy and turbulence (see [10] Ch. 5),
and is also related to the emergence of singularities (see Beale, Kato, Majda [1] or
Bertozzi and Majda [3]).

In this work, we will consider the vortex equation (2) with integrable initial
conditions w0, which belong moreover to a suitable [Lp(R3)]3 space (this will
be 3

2 < p). Define a probability law ρ0 on R
3 and a function h0 : R

3 → R
3 (a

“vectorial weight”) by

ρ0 = |w0(x)|
‖w0‖1

dx, and h0(x) = w0

ρ0
(x).

Let us further denote by M3×3 the space of real 3×3 matrices, and by I the identity
matrix. We consider the following stochastic differential equation with values in
R

3 × M3×3, nonlinear in the sense of McKean:

Xt = X0 + √
2νBt + ∫ t

0 uP (s,Xs)ds,

�t = I + ∫ t
0 ∇uP (s,Xs)�s ds,

t ∈ [0, T ], with (4)

law(X,�) = P, law(X0) = ρ0(x)dx and

uP (s, x) = EP [K(x −Xs) ∧�sh0(X0)] . (5)

Our first goal is to establish an equivalence between weak solutions P of (4)–(5) in
certain class of probability measures on C([0, T ],R3 × M3×3), and “mild” solu-
tions w of equation (2) in the space [Lp(R3)]3 ∩ [L1(R3)]3. This correspondence
will be given by the relation

EP (f(Xt )�th0(X0)) =
∫

R3
f(y)w(t, y)dy (6)

for functions f : R
3 → R

3. According to (6) and to the Biot-Savart law (3), the
function uP (t) = u(t) is the velocity field associated with the vorticity field w(t).
To study well-posedness of the nonlinear martingale problem associated with (4)–
(5), we will first of all prove (local) existence and (global) uniqueness of a mild
solution of (2) in the space [Lp(R3)]3, for 3

2 < p < 3. We adapt to this end tech-
niques developed for the study of equation (1) in the so-called “supercritical” spaces
(see e.g. Cannone [8] Ch.1). Secondly, we shall prove continuity and boundedness
properties of the functions u(t) and ∇u(t) associated with this mild solution. We
point out that, although similar analytical statements could be found elsewhere, it
will be fundamental for our probabilistic results to give proofs and estimates that
explicitly depend on the continuity properties of the Biot-Savart operator.

Our next goal is to construct stochastic particle approximations of the mild
solution w and of u. We will follow a trajectorial approach, in the line of Bossy
and Talay [4], Méléard [26] and [27], or Fontbona [14]. However, the present case
is much harder. A crucial fact will be that the “vortex stretching process” �t asso-
ciated to w turns to be a priori bounded independently of randomness. We will
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define a system of particles (Xi,n,ε,R,�i,n,ε,R)ni=1, n ∈ N, with ε > 0 and R > 0
respectively a mollifying parameter of the kernel K and a cutoff threshold of the
approximating vortex stretching processes �i,n,ε,R , and we will prove a propaga-
tion of chaos result for fixed ε andR. Then, under conditions of smallness ofw0 and
T > 0 that ensure us existence of a solution w of (2) on [0, T ], we will prove that
for R > 0 large enough the system (Xi,n,εn,R,�i,n,εn,R) is chaotic when εn → 0
sufficiently slowly, and has the limit P equal to the solution of (4)–(5). From this
we will deduce the convergence to w of some “weighted empirical process” of
the system (with time dependent vectorial weights), and the convergence of an
“approximate velocity field” to u. This is the first complete mathematical proof of
convergence of a stochastic vortex method for the Navier-Stokes equation in three
dimensions, and rectifies a method conjectured by Esposito and Pulvirenti in [13].

The fact that we only impose integrability conditions onw0 yields singularities
of the functions u and ∇u at t = 0. To overcome this problem, we extend some tech-
niques of Méléard [27] and Fontbona [14] to construct and suitably approximate
nonlinear processes with singular drift terms.As in those works, loss of regularity at
t = 0 prevents us from obtaining an explicit convergence rate. This could be done
under additional assumptions, but the speed we can expect to obtain is certainly not
optimal. (This problem is mainly owed to the probabilistic techniques employed;
even in the 2d case, improvements in that direction have not yet been made).

Under the assumption that w0 ∈ L
p
3 with 3

2 < p < 3, we will also show that
the SDE

ξt (x) = x +
√

2νBt +
∫ t

0
u(s, ξs(x))ds, (7)

with u = uP given (5), will define a C1 stochastic flow ξ : [0, T ] × R
3 → R

3,
and we will have the pointwise identity (X,�) = (ξ(X0),∇xξ(X0)). Formula
(6) is thus the fact that the vorticity is “transported” by the stochastic flow ξ and
“stretched” by its gradient, and generalizes the representation of the vorticity field
in the inviscid case (ν = 0) in terms of the (deterministic) flow of the solution of the
Euler equation (see [11] Ch. 1). A representation formula for mild solutions equiv-
alent to (6) was partially established in [13] (under the more restrictive assumption
that w0 and its Fourier transform are L1 functions). Our interpretation in terms of
the weight function h0 is much simpler, and inspired on the approach of Méléard
[26] and [27] in two dimensions, where vorticity was represented using a scalar
weight being simply “transported” by a nonlinear diffusion process. We also extend
in this way ideas of Jourdain [18] for dealing with signed measures in the McK-
ean-Vlasov context. A representation formula in terms of stochastic flow was also
proved in Esposito, Marra, Pulvirenti and Sciaretta [12], but these authors needed
to restrict themselves to equation (1) on the torus in order to define the underlying
probability space, and also to impose additional regularity.

A different probabilistic interpretation is developed in Giet [17], in the case of
a bounded domain and non-slip boundary condition. This author extends the ideas
of Benachour, Roynette and Vallois [2] in two dimensions, by using a diffusion
process with jumps to interpret the coupled system (2) with zero-order term, and
a branching process to treat the boundary condition. At an advanced stage of this
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work, we also became aware of the work of Busnello, Frandoli and Romito [7],
who also interpret the vorticity in terms of a stochastic flow and its gradient. These
authors use a Bismut-Elworthy formula to recover the velocity field (extending the
approach of Busnello in two dimensions [6]) and provide a local existence state-
ment. All these works present an approach “dual” to ours, by using Feynman-Kac
type formulae for the vorticity (in terms of the linear stochastic flow (7) reversed in
time) and aim to represent classical solutions of (2) by mean of probabilistic objects.
Due to this fact, they need to assume more regularity of the initial conditions. Fur-
thermore, non of the aforementioned works [12], [7] or [17] relate the nonlinearity
to a mean field interaction limit, and they do not lead to implementable stochastic
approximations methods for solutions of the Navier-Stokes or the vortex equation.

Finally, let us point out that a probabilistic interpretation and vortex method for
the 2d-Navier-Stokes equation with an external force field has recently been devel-
oped by the author and Mé léard [15], in terms of particle systems with random
space-time births. The three dimensional model with external force field will be
treated in a forthcoming paper.

1.1. Notation

– By MeasT we denote the space of measurable real valued functions on [0, T ]×
R

3.
– C1,2 is the set of real valued functions on [0, T ]×R

3 with continuous derivatives
up to the first order in t ∈ [0, T ] and up to the second order in x ∈ R

3. C1,2
b is

the subspace of bounded functions in C1,2 with bounded derivatives.
– D is the space of compactly supported functions on R

3 with infinitely many
derivatives.

– For all 1 ≤ p ≤ ∞ we denote by Lp the space Lp(R3) of real valued functions
on R

3. By ‖ · ‖p we denote the corresponding norm and p∗ stands for the Hölder
conjugate of p. We write W 1,p = W 1,p(R3) for the Sobolev space of functions
in Lp with partial derivatives of first order in Lp.

– IfE is a space of real valued functions (defined on R
3 or on [0, T ]×R

3), then the
notationE3 is used for the space of R

3-valued functions with scalar components
in E. If E has a norm, the norm in E3 is denoted in the same way.

– For simplicity, if f, g : R
3 → R

3 are vector fields and Z : R
3 → M3×3

is a matrix function, we will write fg = ∑3
i figi and fZ for the row-vector

(f tZ)i = ∑3
j=1 fjZj,i . By ∇f we denote the gradient of f , that is the matrix

(∇f)i,j = ∂fi
∂xj

. We will simply write (∇f)g for the column-vector (
∑
j
∂fi
∂xj

gj )i
(instead of the usual “(g · ∇)f”).

– C and C(T ) are finite positive constants that may change from line to line.

2. Preliminaries

LetG : R
3\{0} → R be the fundamental solution of the Laplace operator. We will

denote by K its gradient ∇G : R
3\{0} → R

3, that is, the singular kernel

K(x) := − 1

4π

x

|x|3 .



A probabilistic interpretation and stochastic particle approximations

For functions w : R
3 → R

3, we (formally) define the Biot-Savart operator K by

K(w)(x) :=
∫

R3
K(x − y) ∧ w(y)dy = − 1

4π

∫
R3

(x − y)

|x − y|3 ∧ w(y)dy. (8)

A vector field w : R
3 → R

3 with components in D′, and such that

∫
R3

∇f (x)w(x)dx = 0

for all f ∈ D, is said to have null divergence in the distribution sense. We write it
div w = 0.

Remark 2.1. Let u,w : R
3 → R

3 be vector fields and distributions. We have
div(curl u) = 0, and if K(w) is a distribution, then div K(w) = 0.

For each ν > 0, we denote by Gν : R+ × R
3 → R the heat kernel

Gνt (x) = (4πνt)−
3
2 exp

(
−|x|2

4νt

)
. (9)

We will consider Lp-solutions of (2) defined in two different senses. The first will
be useful for analytical purposes. The second will be natural from the probabilistic
point of view.

Definition 2.1. Let w0 ∈ Lp3 with div w0 = 0. We say that w ∈ L∞([0, T ], Lp3 )
is a mild solution of with initial condition w0, (“mild solution” for short) if the
following hold:

mV1: The functions K(w)i(t, x) := K(w(t, ·))i(x), i = 1, 2, 3 are defined a.e.
on [0, T ] × R

3

mV2: For a.e. t ∈ [0, T ] the following identity holds in Lp3 (R
3):

w(t, x) =
∫

R3
Gνt (x − y)w0(y)dy

+
3∑
j=1

∫ t

0

∫
R3

∂Gνt−s
∂yj

(x − y)
[
K(w)j (s, y)w(s, y)

−wj (s, y)K(w)(s, y)
]
dy ds (10)

Definition 2.2. Letw0 ∈ Lp3 and div w0 = 0. A function w ∈ L∞([0, T ], Lp3 ) is a
weak solution on [0, T ] of the vortex equation with initial condition w0 (or “weak
solution”) if

wV1: The functions K(w) and ∇K(w) are defined a.e on [0, T ] × R
3.
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wV2: The products wiK(w)j and wi
∂K(w)j
∂xk

, i, j = 1, 2, 3, belong toL1
loc([0, T ]×

R
3), and for every smooth compactly supported function f : [0, T ]×R

3 →
R

3,∫
R3

f(t, y)w(t, y)dy =
∫

R3
f(0, y)w0(y)dy

+
∫ t

0

∫
R3

[
∂f
∂s
(s, y)+ ν�f(s, y)

+∇f(s, y)K(w)(s, y)+ f(s, y)∇K(w)(s, y)
]

×w(s, y) dy ds. (11)

We respectively refer to (10) and (11) as the mild and the weak equations. The
two forms are not in general equivalent. Going from weak to mild forms will be
important to identify objects of analytic and probabilistic nature. The following
partial argument will be useful.

Lemma 2.1. Let w be a weak solution such that for all i, j = 1, 2, 3 and ψ ∈ D3,
∫ t

0

∫
(R3)2

3∑
i,j=1

∣∣∣∣∂G
ν
t−s

∂yj
(x − y)

∣∣∣∣ |K(w)j (s, y)||ψi(x)||wi (s, y)|dx dy ds<∞ and

∫ t

0

∫
(R3)2

3∑
i,j=1

Gνt−s(x − y)

∣∣∣∣∂K(w)i
∂yj

(s, y)

∣∣∣∣ |ψi(x)||wj (s, y)|dx dy ds < ∞.

Then, w satisfies the “intermediate” form

w(t, x) = Gνt ∗ w0(x)

+
∫ t

0

3∑
j=1

∫
R3

[
∂Gνt−s
∂yj

(x − y)[K(w)j (s, y)w(s, y)]

+Gνt−s(x − y)[wj (s, y)
∂K(w)
∂yj

(s, y)]

]
dy ds. (12)

Proof. Take fixed ψ ∈ D3 and t ∈ [0, T ] and define ft : [0, t] × R
3 → R

3 by
ft (s, y) = Gνt−s ∗ ψ(y); this function is of class (C1,2

b )3 and solves the backward
heat equation on [0, t] × R

3 with final condition f(t, y) = ψ(y). If w satisfies the
hypothesis, by a density argument it also satisfies (11) with the function ft (s, y)
just defined. Using Fubini’s theorem, and sinceψ ∈ D3 is arbitrary, we deduce that
(12) holds. �
Remark 2.2. An inspection of the r.h.s. of (10) shows that, by definition, every mild
solution satisfies div w(t) = 0. To check that a weak solution satisfies this condi-
tion, we need more regularity than what is assumed in its definition. On the other
hand, if a weak solution w(t) as in Lemma 2.1 is known to satisfy div w(t) = 0,
it could be showed to be a mild solution by integrating by parts the last term in the
r.h.s. of (12). However, that argument still requires the knowledge that w and K(w)
belong to suitable functional spaces.
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2.1. Continuity of the Biot-Savart operator

In order to obtain existence and uniqueness results for the vortex equation in Lebes-
gue and Sobolev spaces, as well as regularity estimates for the associated velocity
field, we next establish fundamental continuity properties of the operator K.

Lemma 2.2. Let 1 < p < 3 and 1
q

= 1
p

− 1
3 (notice that q ∈] 3

2 ,∞[).

i) For every w ∈ L
p
3 , the integral (8) is absolutely convergent for almost every

x and one has K(w) ∈ Lq3 . There exists further a positive constant C̃p,q such
that

‖K(w)‖q ≤ C̃p,q‖w‖p (13)

for all w ∈ Lp3 .

ii) If moreoverw ∈ W 1,p, then we have K(w) ∈ W 1,q
3 , with ∂

∂xk
K(w) = K

(
∂w
∂xk

)
,

and ∥∥∥∥∂K(w)
∂xk

∥∥∥∥
q

≤ C̃p,q

∥∥∥∥ ∂w∂xk
∥∥∥∥
p

(14)

for all k = 1, 2, 3.

Proof. Denote by Kj(x) the j -th component of the vector K(x), and consider the
operators

f (x) �→ Kj (f )(x) :=
∫

R3
Kj(x − y)f (y)dy

acting on real valued functions f . It is enough to prove the analogue statements for
the operators Kj acting in the spaces Lp(R3) and W 1,p(R3) respectively.

The continuity of Kj : Lp(R3) → Lq(R3), and the absolute convergence of
the integral Kj ∗ f when f ∈ Lp(R3), are easily deduced from the fact that the
Riesz transform

f (x) �→
∫

R3

f (y)

|x − y|2 dy,

satisfies precisely those properties (see Stein [31], Ch. 5.). The fact that Kj :
W 1,p(R3) → W 1,q(R3) is continuous will follow from the latter and a density
argument, if we show that for all f ∈ D the identity

∂

∂xk
Kj (f ) = Kj

(
∂f

∂xk

)

hods. Since the integral Kj

(
∂f
∂xk

)
(x) is absolutely convergent and f has compact

support, this is simply derivation under the integral sign using Lebesgue’s theorem.
�
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Part ii) in previous lemma ensures us that the “velocity” K(w) associated with
w ∈ W

1,p
3 , p ∈]1, 3[, belongs to W 1,q

3 for q = 3p
3−p . One could however expect

that the gradient of the velocity field has similar regularity as vorticity. This will be
consequence of next lemma.

Lemma 2.3. Let 1 < r < ∞.

i) For all w ∈ Lr3, we have ∂
∂xk

K(w) ∈ Lr3 for k = 1, 2, 3. There exists further a

positive constant C̃p depending only on r such that

∥∥∥∥∂K(w)j
∂xk

∥∥∥∥
r

≤ C̃r‖w‖r (15)

for all j = 1, 2, 3, where K(w)j is the j -th component of K(w).
ii) If moreover w ∈ W 1,r

3 , then we have ∂
∂xk

K(w) ∈ W 1,r
3 , and

∥∥∥∥∂
2K(w)j
∂xl∂xk

∥∥∥∥
r

≤ C̃r

∥∥∥∥∂w∂xl
∥∥∥∥
r

(16)

for all l = 1, 2, 3.

Proof. Let Kj (x) be defined as in the previous lemma. Again, it is enough to prove
the analogue results for Kj . We will use the following fact (proved for instance
in Bertozzi and Majda [3] Ch.2): for any r ∈]1,∞[ and f ∈ Lr(R3), each first
order derivative of Kj (f ) is the results of a singular integral operator acting on
the function f . Thus, by classic results of the singular integrals theory (see Stein
[31] Ch. 1.), for each i, j the mapping f �→ ∂

∂xi
Kj (f ) is a continuous operator

Lr → Lr for all r ∈]1,∞[, and there exists moreover a homogeneous function
mi,j : R

3 → R of degree 0, such that for all f ∈ L2(R3)

F
(
∂

∂xi
Kj (f )

)
(ξ) = F(mi,j )F(f )(ξ),

where F(f )(ξ) := ∫
R3 e

−2πiξ ·xg(x)dx is the Fourier transform of f . Observe that
F(mi,j ) is bounded. Using this fact, the previous identity and the inverse transform,
we deduce that

∂

∂xk

(
∂

∂xi
Kj (f )

)
= ∂

∂xi
Kj

(
∂f

∂xk

)

for all f ∈ W 1,2. By continuity of ∂
∂xi

Kj in Lr and a density argument, this also

holds for all f ∈ W 1,r and r ∈]1,∞[. The continuity of ∂
∂xi

Kj : W 1,r (R3) →
W 1,r (R3) follows. �
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3. The vortex equation in the supercritical Lp spaces

In this section, we will prove all analytic results that are needed in the sequel. First,
we will establish an Lp framework where local existence and global uniqueness
for the mild vortex equation (10) will hold. We adapt to this end general techniques
for the mild Navier-Stokes (velocity) equation in the so-called super-critical spaces
(see Cannone [8], Ch.1). To obtain our probabilistic results, we will also need to
prove, both for the velocity field and its gradient, precise Hölder and L∞ estimates
depending only on the Lp norm of the vorticity. Although the solutions we obtain
are in correspondence with those in [8], Ch.1, the regularity estimates we need seem
not to be available in the analytical literature. This is why we will give complete
proofs. Moreover, we will make the role played byK explicit, since our stochastic
particle approximations result will require existence and regularity statements that
hold “uniformly” for (10) and for a family of approximating equations involving
mollified kernels. Let us begin by recalling some well-known facts:

Lemma 3.1. Let Gν the heat kernel (9) and m ∈ [1,∞]. There exist positive
constants c(m) and c′(m) such that for all t > 0,

‖Gνt ‖m ≤ c(m)(νt)−
3
2 + 3

2m and (17)

‖∇Gνt ‖m ≤ c′(m)(νt)−2+ 3
2m . (18)

We shall frequently use Young’s inequality: if f ∈ Lm and g ∈ Lk , with 1 ≤
m, k ≤ ∞ such that 1

r
:= 1

m
+ 1

k
− 1 ≥ 0. Then,

f ∗ g ∈ Lr and ‖f ∗ g‖r ≤ ‖f ‖m‖g‖k. (19)

We easily deduce the following estimates.

Lemma 3.2. Let p ∈ [1,∞], r ≥ p and w0 ∈ Lp3 . There exist positive constants
C1(p), C0(p; r) and C1(p; r) such that for all t > 0,

i) ‖Gνt ∗ w0‖p ≤ ‖w0‖p,

ii) ‖∇Gνt ∗ w0‖p ≤ C1(p)t
− 1

2 ‖w0‖p,

iii) ‖Gνt ∗ w0‖r ≤ C0(p; r)t− 3
2 (

1
p

− 1
r
)‖w0‖p,

iv) ‖∇Gνt ∗ w0‖r ≤ C1(p; r)t− 1
2 − 3

2 (
1
p

− 1
r
)‖w0‖p.

According to Lemma 3.2, we define for w ∈ MeasT3 , p ∈ [1,∞] and r ≥ p the
norms:

• |||w|||0,r,(T ;p) := sup
0≤t≤T

t
3
2 (

1
p

− 1
r
)‖w(t)‖r ,

• |||w|||1,r,(T ;p) := sup
0≤t≤T

{
t

3
2 (

1
p

− 1
r
)‖w(t)‖r + t

1
2 + 3

2 (
1
p

− 1
r
)

3∑
k=1

∥∥∥ ∂w(t)
∂xk

∥∥∥
r

}
,

• |||w|||0,p,T := |||w|||0,p,(T ;p), and
• |||w|||1,p,T := |||w|||1,p,(T ;p).
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The associated (Banach) spaces will be respectively denoted by

F0,r,(T ;p),F1,r,(T ;p),F0,p,T and F1,p,T .

We shall prove existence and uniqueness results for the mild equation in F0,p,T for
p ∈] 3

2 , 3[. We notice that for these values ofp, theLp3 -spaces are in correspondence
(via the operator K) with the so-called “supercritical Lq spaces” for the velocity
field (that is, Lq3 with q = 3p

3−p ∈]3,∞[.) Then, we will show that the solution
belongs to F1,r,(T ;p) for suitable r ∈ [3,∞[, and we will deduce the regularity
properties of K(w) we need using classic embbeding results of Sobolev spaces.

Given functions w, v ∈ MeasT3 , we (formally) define

B(w, v)(t, x) =
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)

[
K(w)j (s, y)v(s, y)− vj (s, y)K(w)(s, y)

]
dy ds. (20)

The continuity of B, in some of the spaces we have previously defined will be
crucial.

Proposition 3.1. The bilinear operator B : F2 → F′ is well defined and continuous
if

i) 3
2 ≤ p < 3, 3p

6−p ≤ p′ < 3p
6−2p , F = F0,p,T and F′ = F0,p′,T

ii) 3
2 ≤ p < 3, p ≤ l < 3, 3l

6−l ≤ l′ < 3l
6−2l , F = F0,l,(T ;p) and F′ =

F0,l′,(T ;p)
iii) 3

2 ≤ p < 3, 3p
6−p ≤ p′ < 3p

6−2p , F = F1,p,T and F′ = F1,p′,T

iv) 3
2 ≤ p < 3, p ≤ l < min{ 6p

6−p , 3}, 3l
6−l ≤ l′ < 3l

6−2l , F = F1,l,(T ;p) and

F′ = F1,l′,(T ;p).

Proof. The following formula will be used: if ε, θ > −1, then for all t > 0
∫ t

0
sε(t − s)θ ds = tε+θ+1β(ε + 1, θ + 1),

where β(α, β) = ∫ 1
0 s

α−1(1 − s)β−1ds < ∞ is the Beta function of parameters
α, β > 0.

i) We take theLp
′
norm to the i−th component of (20), and apply inequality (19),

with r = p′, m = ( 4
3 + 1

p′ − 2
p
)−1 and k = 3p

6−p . (Notice that 1 ≤ m < 3
2 and

1 ≤ k < ∞). We get

‖B(w, v)i(t)‖p′ ≤ C

3∑
j=1

∫ t

0
‖∇Gνt−s‖m

× (‖vj (s) K(w)i(s)‖k + ‖vi (s) K(w)j (s)‖k
)
ds

≤ C

∫ t

0
(t − s)

3
2m−2‖w(s)‖p ‖v(s)‖p ds
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by using also estimate (18), Hölder’s inequality and inequality (13). Therefore,

‖B(w, v)i(t)‖p′ ≤ Ct
1−3( 1

p
− 1

2p′ )|||w|||0,p,T |||v|||0,p,T , ∀t ∈ [0, T ], (21)

and we conclude that |||B(w, v)|||0,p′,T ≤ C0(p, p
′)T 1−3( 1

p
− 1

2p′ )|||w|||0,p,T
|||v|||0,p,T , with a constantC0(p, p

′)>0 independent ofT , and 1−3( 1
p
− 1

2p′ )>0.

ii) We proceed as in i), taking now in Young’s inequality (19) r = l′, m = ( 4
3 +

1
l′ − 2

l
)−1 and k = 3l

6−l (again, we have 1 ≤ m < 3
2 and 1 ≤ k < ∞). By

similar steps we obtain

‖B(w, v)i(t)‖l′ ≤ C

∫ t

0
(t − s)

3
2l′ − 3

l ‖w(s)‖l ‖v(s)‖l ds

≤ C

∫ t

0
(t − s)

3
2l′ − 3

l s
3
l
− 3
p ds|||w|||0,l,(T ;p)|||v|||0,l,(T ;p)

≤ Ct
1+ 3

2l′ − 3
p |||w|||0,l,(T ;p)|||v|||0,l,(T ;p), (22)

since 3
2m−2 = 3

2l′ − 3
l
> −1 and 3

l
− 3
p
> −1 (the latter because 3p

3−p ≥ 3 > l).

We conclude that the norm of B : (F0,l,(T ;p))2 → F0,l′,(T ;p) is bounded by a

constant times T 1− 3
2p .

iii) If w, v ∈ F1,p,T , we have K(w)j (t)v(t)i ∈ W 1, 3p
6−p . Since Gνt ∈ W 1, 3p

4p−6 we
can integrate by parts for each t ∈]0, T ] and see that B(w, v)(t, x) is equal to

−
3∑
j=1

∫ t

0

∫
R3
Gνt−s(x−y) ∂

∂yj

[
K(w)j (s, y)v(s, y)−vj (s, y)K(w)(s, y)

]
dy ds.

Take f ∈ D and write

B
f

i (w, v)(t) :=
∫ t

0

∫ ∫
Gνt−s(x − y)|f (x)|

∣∣∣∣ ∂∂yj
[
K(w)j (s, y)vi (s, y)

]∣∣∣∣ dx dy ds.

By Hölder andYoung’s inequalities applied as in i), we deduce, with 1
q

= 1
p
− 1

3 ,
that

B
f

i (w, v)(t) ≤ C‖f ‖(p′)∗
3∑
j=1

∫ t

0
(t − s)

3
2m− 3

2

[∥∥∥∥∂K(w)j (s)
∂yj

∥∥∥∥
q

‖vi (s)‖p +
∥∥∥∥∂vi (s)
∂yj

∥∥∥∥
p

‖K(w)j‖q
]
ds

≤ C‖f ‖(p′)∗

∫ t

0
(t − s)

3
2m− 3

2 s−
1
2 ds|||w|||1,p,T |||v|||1,p,T

≤ C‖f ‖(p′)∗T
1−3( 1

p
− 1

2p′ )|||w|||1,p,T |||v|||1,p,T < ∞. (23)
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We have used here (17), (13) and the definition of ||| · |||1,p,T . A similar estimate
holds for the term involving the product vj (s)Ki (w)(s). By Fubini and inte-
gration by parts, we get

∫
R3

B(w, v)i(t, x)
∂f (x)

∂xk
dx =

3∑
j=1

∫ t

0

∫
R3

(∫
R3

∂Gνt−s
∂xk

(x − y)f (x)dx

)

× ∂

∂yj

[
K(w)j (s, y)vi (s, y)

−vj (s, y)K(w)i(s, y)
]
dy ds (24)

for all f ∈ D. Proceeding as before in (23), we deduce now from (24) that
∣∣∣∣
∫

R3
B(w, v)i(t, x)

∂f (x)

∂xk
dx

∣∣∣∣

≤ C‖f ‖(p′)∗
3∑
j=1

∫ t

0
(t − s)

3
2m−2s−

1
2 ds|||w|||1,p,T |||v|||1,p,T

≤ C‖f ‖(p′)∗ t
1
2 −3( 1

p
− 1

2p′ )|||w|||1,p,T |||v|||1,p,T < ∞.

From this and (21), we conclude that |||B(w, v)|||1,p′,T ≤ C1(p, p
′)T 1−3( 1

p
− 1

2p′ )

|||w|||1,p,T |||v|||1,p,T .
iv) Consider B

f

i (w, v) defined as in iii). Using Young’s inequality as in ii) we get

B
f

i (w, v)(t)≤C‖f ‖(l′)∗
∫ t

0
(t − s)

3
2l′−3

l
+1

2 s
3
l
− 3
p

− 1
2 ds|||w|||1,l,(T ;p)|||v|||1,l,(T ;p),

where the r.h.s. is finite because 3
l
− 3

p
− 1

2 > −1 (as follows from l <
6p

6−p ).
We deduce that

‖∇B(w, v)i(t)‖l′ ≤ Ct
1
2 + 3

2l′ − 3
p |||w|||1,l,(T ;p)|||v|||1,l,(T ;p),

whence, the asserted continuity of B (the norm depends on T in the same way
as in ii)). �

Remark 3.1. For p ∈] 3
2 , 3[ we have

3p

6 − p
< p <

3p

6 − 2p
,

and so by Lemma 3.2 and Proposition 3.1 i) and iii) the mild equation (10) makes
sense in the spaces F0,p,T and F1,p,T . Writing

w0(t, x) := Gνt ∗ w0(x),

equation (10) in F0,p,T or in F1,p,T is thus equivalent to the abstract equation

w = w0 + B(w,w). (25)
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3.1. Local existence and global uniqueness

Theorem 3.1. Let 3
2 < p < 3 and w0 ∈ Lp3 .

a) For all T > 0, equation (10) has at most one solution in F0,p,T .
b) There is a positive constant 0(p) such that equation (10) has a solution in

F0,p,T , for all T > 0 and w0 ∈ Lp3 satisfying

T
1− 3

2p ‖w0‖p < 0(p).

To prove global uniqueness, we shall proceed in a similar way as in [14] using next
lemma.

Lemma 3.3. Let g : [0, T ] →]0,∞[ be a bounded measurable function, and sup-
pose there exist constantsC ≥ 0 and θ > 0 such that g(t) ≤ C

∫ t
0 (t−s)θ−1g(s) ds

for all t ∈ [0, T ]. Then,

g(t) ≤ C2β(θ, θ)

∫ t

0
(t − s)2θ−1g(s) ds.

The proof of local existence will rely on a standard contraction argument for the
abstract equation (25), based on Banach’s fixed point theorem (see for instance
Cannone [8]):

Lemma 3.4. Let (F, |||·|||)be a Banach space, B : F×F :→ F a bilinear application
and y ∈ F. Suppose there exists a positive constant � such that

|||B(x1, x2)||| ≤ �|||x1||| |||x2|||

for all x1, x2 ∈ F. If 4�|||y||| < 1, then for all γ ∈ [|||y|||, 1
4� [ there exists a unique

solution of

x = y + B(x, x)

in the ball BRγ = {x ∈ F : |||x||| ≤ Rγ }, Rγ = 1−√
1−4�γ
2� . The solution x satisfies

|||x||| ≤ 2γ .

Proof of Theorem 3.1: a) Let w, v ∈ F0,p,T be two solutions. Proceeding as in
Proposition 3.1 i) (with r = p) we obtain

‖w(t)− v(t)‖p ≤ C

∫ t

0
(t − s)

− 3
2p ‖w(s)‖p ‖w(s)− v(s)‖p ds

+C
∫ t

0
(t − s)

− 3
2p ‖v(s)‖p ‖w(s)− v(s)‖p ds

≤ C
(|||w|||0,p,T + |||v|||0,p,T

) ∫ t

0
(t − s)

− 3
2p ‖w(s)− v(s)‖p ds.
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Let θN := 2N(1− 3
2p ) > 0 andN(p) be the first integer for which θN −1 > 0.

Then, by applying N(p) times Lemma 3.3 , it follows that

‖w(t)− v(t)‖p ≤ C(T )
(|||w|||0,p,T + |||v|||0,p,T

) ∫ t

0
‖w(s)− v(s)‖p ds,

for some C(T ) > 0. We conclude by Gronwall’s lemma.
b) From Proposition 3.1 i), one has for all T > 0 and w, v ∈ F0,p,T that

|||B(w, v)|||0,p,T ≤ C0(p, p)T
1− 3

2p |||w|||0,p,T |||v|||0,p,T (26)

where C0(p, p) > 0 does not depend on T . On the other hand, by Lemma
3.2 i) we have that |||w0|||0,p,T ≤ ‖w0‖p. Therefore, by Lemma 3.4, a solution
w ∈ F0,p,T to the abstract equation (25) exists if

4C0(p, p)T
1− 3

2p ‖w0‖p < 1. (27)

�

3.2. Regularity estimates

We need two technical facts:

Remark 3.2. Let w ∈ F0,p,T be a solution of (25) with 3
2 < p < 3. If for each

τ ∈]0, T ] we write

w0,τ (t) := Gνt ∗ w(τ ), and wτ (t) := w(τ + t),

then the function wτ is a solution in F0,p,T−τ of the equation

v(t, x) = w0,τ (t, x)+ B(v, v)(t, x). (28)

(This follows from the semigroup property of Gν and Fubini’s theorem, using
similar estimates as in the proof of Proposition 3.1.)

Remark 3.3. We recall that if 1 ≤ r1 ≤ r ≤ r2 < ∞, then Lr1 ∩ Lr2 ⊆ Lr with

‖f ‖rr ≤ ‖f ‖r1r1 + ‖f ‖r2r2 , ∀f ∈ Lr1 ∩ Lr2 . (29)

Thus, if p ≤ r1 ≤ r ≤ r2 < ∞, we have Fi,(p;r1),T ∩ Fi,(p;r2),T ⊆ Fi,(p;r),T for
i = 0, 1, and the following interpolation inequality holds:

|||v|||ri,(p;r),T ≤ |||v|||r1i,(p;r1),T + |||v|||r2i,(p;r2),T ,
for all v ∈ Fi,(p;r1),T ∩ Fi,(p;r2),T . (30)

For i = 0 (resp. i = 1) this follows by taking in (29) the function t
3

2p v(t) (resp.

t
1
2 + 3

2p ∂v(t)
∂xk

), and then multiplying by t−
3
2 .

Theorem 3.2. Let p ∈] 3
2 , 3[, w ∈ F0,p,T be a solution of (10) andA > 0 an upper

bound for |||w|||0,p,T .
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i) One has w ∈ F1,p,T , and |||w|||1,p,T ≤ C(T , p,A), withC(T , p,A) a constant
depending on w only through A.

ii) For all p ≤ r <
3p

3−p one has w ∈ F1,r,(T ;p). There exists moreover µ1,r,p :

R
3+ → R+ a function which does not depend on w, such that

|||w|||1,r,(T ;p) ≤ µ1,r,p(T , ‖w0‖p,A).
iii) For all p ≤ r < ∞ one has w ∈ F0,r,(T ;p). Moreover, there exists µ0,r,p :

R
3+ → R+ as in ii) such that

|||w|||0,r,(T ;p) ≤ µ0,r,p(T , ‖w0‖p,A).
Proof. i) The proof is similar as in Lemma 4.4 in [14]; we repeat it here since it

is an important point for the sequel. Notice that all results for (25) obtained so
far apply also to equations (28) with the same constants for all ε ≥ 0. From
Lemma 3.2 one has |||w0,τ |||1,p,T ′∧(T−τ) ≤ C1(p)|||w|||0,p,T for all 0 < T ′ < T .
If we choose T ′ so that

(T ′)1− 3
2p A < 1(p),

where1(p)
−1 = 4C1(p)·C1(p, p)withC1(p, p) as the proof of Proposition

3.1 iii), then

|||w0,τ |||1,p,T ′∧(T−τ) ≤ C1(p)A <
1

4(T ′)1− 3
2p C1(p, p)

for all τ ∈ [0, T ]. Thus, from Lemma 3.4 we deduce for each τ ∈ [0, T ]
that (28) has a solution in F1,p,T ′ (in the ball of radius Rγ defined in Lemma

3.4, with γ = C1(p)|||w|||0,p,T ). Define τk := k T
′

2 for k = 0 . . . N := [ 2T
T ′ ].

Uniqueness for (28) in the space F0,p,T ′∧(T−τ), for each τ = τk , implies that
the functions w(τk) := w(τk+·) belong to F1,p,T ′∧(T−τk) for all k = 0, . . . , N .

But one has w(τk)(t) = w(τk−1)(
T ′
2 +t) for all t ∈ [0, T

′
2 ∧T ] and k = 1, . . . , N ,

so we conclude that w(τk),
∂w(τk )
∂xj

∈ F0,p,T ′∧(T−τk) for k = 1, . . . , N , implying
that w ∈ F1,p,T . The estimate for the norm follows from the fact that for all

t ∈ [0, T
′

2 ∧ T ] and k = 1...N , one has

(τk + t)
1
2 ‖∂w(τk + t)

∂xj
‖p ≤ C(T ′)−

1
2 (τk + t)

1
2 (t + T ′

2
)

1
2 ‖∂w(τk−1)(t + T ′

2 )

∂xj
‖p

≤ C(T ,A)|||w|||0,p,T .
ii) First we notice that w0 ∈ F1,r,(T ;p) for all r ≥ p, and that w ∈ F1,p,(T ;p) =

F1,p,T by i).
In the proof we will repeatedly apply part iv) of Proposition 3.1. Observe that
at each time we do this we obtain an estimate of the type |||w|||1,l′,(T ;p) ≤
c(l, l′)‖w0‖p + �(T , l, l′)A2

l , for suitable l and l′, and with �(T , l, l′) the
norm of the operator B : (F1,l,(T ;p))2 → F1,l′,(T ;p) and Al any upper bound
of |||w|||1,l,(T ;p).
We shall distinguishing two cases:
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Case a) 2 < p < 3: We have 3 < 6p
6−p <

3p
6−2p <

3p
3−p . Therefore, part

iv) of Proposition 3.1 holds for l = p and any l′ = r ∈ [p, 3p
6−2p [. Since

w ∈ F1,p,(T ;p), we deduce that B(w,w) ∈ F1,r,(T ;p) for all r ∈ [p, 3p
6−2p [

from where w ∈ F1,r,(T ;p) for those r .
Now we show that further, w ∈ F1,r,(T ;p) for all r ∈ [ 3p

6−2p ,∞[. Let g

be the strictly increasing function g(s) := 3s
6−2s defined on the interval

] 3
2 , 3[. We have g([p, 3[) = [ 3p

6−2p ,∞[. Let r ∈ [ 3p
6−2p ,∞[ be given. Then

2r ∈] 3p
6−2p ,∞[ and we have

p < g−1(r) < g−1(2r) <
g−1(2r)+ 3

2
< 3

Notice that if we set l := g−1(2r)+3
2 , then 2r < g(l). We can therefore apply

Proposition 3.1 iv) to this choice of l ∈]p, 3[ and to l′ = 2r , which yields
w ∈ F1,2r,(T ;p), from where w ∈ F1,r,(T ;p) by the interpolation inequality
(30).

Case b) 3
2 < p ≤ 2: Now we have 3p

6−2p ≤ 3 and 2 < 6p
6−p ≤ 3 < 3p

3−p . First

we will show that w ∈ F1,r,(T ;p) for all r ∈]2, 6p
6−p [. Consider the function

g(s) on ] 3
2 , 3[ as before, and define a sequence ln by l0 = p, ln+1 = g(ln).

Since g′(s) > 2, for all 3
2 < s < t < 3 one has g(t)− g(s) > 2(t − s) and

consequently there exists N ∈ N such that lN ≤ 2 and lN+1 > 2. For all
n = 0, . . . , N−1, we haveg([ln, ln+1[) ⊆]ln,

3ln
6−2ln

[.We apply Proposition

3.1 iv) to l = l0 = p and l′ = l0+l1
2 and get that w ∈ F

1, l0+l1
2 ,(T ;p). Taking

then l = l0+l1
2 and l′ = l1 we deduce that w ∈ F1,l1,(T ;p). Applying now

this two-step argument starting from l1 we deduce that w ∈ F1,l2,(T ;p),
and iterating we deduce that w ∈ F1,lN ,(T ;p). Since 2 < lN+1 we can
apply again Proposition 3.1 iv) to l = lN and some l′ = r0 ∈ [2, lN+1[.
If r0 ≥ 6p

6−p we conclude by interpolation that w ∈ F1,r,(T ;p) for all

r ∈]2, 6p
6−p [. Otherwise, we continue the procedure taking l = r0 and

l′ = 6p
6−p ≤ 3 < lN+2, and we conclude the same fact again by interpola-

tion.
Observe now that g([2, 6p

6−p [) = [3, p
2−p [ and that 3 < 3p

3−p <
p

2−p . To con-

clude Case b) we will show that indeed w ∈ F1,r,(T ;p) for all r ∈ [3, p
2−p [.

Take r1 ∈]r, p
2−p [, then

2 < g−1(r) < g−1(r1) <
1

2
(g−1(r1)+ 6p

6 − p
) <

6p

6 − p

Taking l = 1
2 (g

−1(r1)+ 6p
6−p ), we have r1 < g(l) and then for l′ = r1 we have

w ∈ F1,l′,(T ;p). By interpolation we conclude that w ∈ F1,r,(T ;p).
Finally, ifA > 0 is an upper bound for |||w|||0,p,T , it is clear that i) and the proce-
dures used in Cases a) and b) allow us to exhibit an upper bound for |||w|||1,r,(T ;p),
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in terms of A, T , ‖w0‖p, and the norms of the operators B : (F1,l,(T ;p))2 →
F1,l′,(T ;p), for some finite set of indexes (l, l′) such that l ∈ [p,min{3, 6p

6−p }[
and l′ ∈ [l, 3l

6−l [. The statement follows.
iii) This is similar to ii), but the proof is easier now, since we do not have the

restriction “l < 6p
6−p ” owed to part vi) of Proposition 3.1. We just sketch the

proof: for any p ∈] 3
2 , 3[ we consider the sequence ln as in Case b) in ii),

and chose N ∈ N such that lN ≤ 3 and lN > 3. By an inductive argument
(and interpolation) we deduce that ρ ∈ F0,r,(T ;p) for all r ∈ [p, 3[, and since
g([2, 3[) = [3,∞[, we can pass to arbitrary r ∈ [p,∞[ by choosing a suitable
l ∈ [2, 3[ such that r < g(l). �

Denote by Cα the space of functions R
3 → R

3 that are Hölder continuous of index
α ∈]0, 1[. We recall the following standard embbeding of Sobolev spaces (see e.g.
[5]):

Lemma 3.5. For allm > 3, the spaceW 1,m
3 is continuously embedded into L∞

3 ∩
C1− 3

m .

From this and Theorem 3.2 we finally deduce

Corollary 3.1. Let p ∈] 3
2 , 3[ and w ∈ F0,p,T be a solution of the mild equation

(10). Write u(s, x) := K(w)(s, x). Then, the following holds:

i)

sup
t∈[0,T ]

t
1
2

{
‖u(t)‖∞ + ‖u(t)‖

C
2p−3
p

}
< Ĉ(T , p,A) (31)

for a constant Ĉ(T , p,A) > 0 depending on w only through A.
ii) For all r ∈]3, 3p

3−p [, i = 1, 2, 3, and any upper bound A > 0 of |||w|||0,p,T , we
have

sup
t∈[0,T ]

t
1
2 + 3

2 (
1
p

− 1
r
)

{∥∥∥∥∂u(t)
∂xi

∥∥∥∥∞
+
∥∥∥∥∂u(t)
∂xi

∥∥∥∥C1− 3
r

}
< Ĉ(T , p, r, A) (32)

with Ĉ(T , p, r, A) > 0 a constant depending on w only through ‖w0‖p and
A. In particular, the functions

t �→ ‖u(t)‖∞ and t �→ ‖∂u(t)
∂xi

‖∞, i = 1, 2, 3

belong to L1([0, T ],R).

Proof. By Lemma 2.2, one has u ∈ F1,q,T , with q = 3p
3−p , and by Lemma 3.5, we

deduce that for t ∈ [0,min{T , 1}]

t
1
2

(
‖u(t)‖∞ + ‖u(t)‖

C
2p−3
p

)
≤ Ct

1
2 ‖u(t)‖1,q ≤ C‖u(t)‖q + t

1
2 ‖∇u(t)‖q .
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On the other hand, if t ∈ [min{T , 1}, T ], one has

t
1
2

(
‖u(t)‖∞ + ‖u(t)‖

C
2p−3
p

)
≤ Ct

1
2 ‖u(t)‖1,q ≤ CT

1
2

(
‖u(t)‖q + t

1
2 ‖∇u(t)‖q

)
.

Since ‖u(t)‖q + t
1
2 ‖∇u(t)‖q ≤ C|||w(t)|||1,p,T for all t ∈ [0, T ], the statement

i) follows from Theorem 3.2 i). Statement ii) is proved in a similarly way, noting
that ∂u

∂xi
∈ F1,r,(T ;p) by Lemma 2.3 and using Theorem 3.2 ii). The last assertion is

straightforward. �

4. The nonlinear martingale problem

In this section, under the additional probabilistic assumption that w0 is integrable,
we will identify the solution w ∈ F0,p,T of the mild vortex equation with a flow
of R

3-valued vector measures associated with a generalized nonlinear diffusion of
the McKean-Vlasov type. Let us establish some notation required in the sequel:

– We denote by P(CT ) the space of probability measures on CT = C([0, T ],R3 ×
M3×3).

– For any element P ∈ P(CT ), we will write P ◦ for the first marginal P ◦ =
P |C([0,T ],R3), and P ′ for the second marginal P ′ = P |C([0,T ],M3×3).

– The canonical process in C([0, T ],R3 × M3×3) will be denoted by (X,�).
– We use the notation Pb(CT ) for the subspace of P(CT ) of probability mea-

sures Q such that the support of Q′ is bounded. (Equivalently, under each law
Q ∈ Pb(CT ), the process � is bounded independently of t and of the random-
ness.)

– By F0,p,T , F1,p,T , F0,r,(T ;p) and F1,r,(T ;p) we denote the subspaces of MeasT

that are the real-valued analogues of the spaces F defined in Section 3. We use
the same notation as therein for the norms.

We define now a “vectorial weight function” in terms of the initial condition w0,
by setting

h0(x) := w0(x)
‖w0‖1

|w0(x)| (33)

(with the convention “ 0
0 = 0”). Observe that h0 takes values in the sphere ‖w0‖1 ·S2

or 0.
With each Q ∈ Pb(CT ) we associate a family of R

3-valued vector measures
(Q̃t )t∈[0,T ] on R

3, defined by

Q̃t (f) = EQ(f(Xt )�th0(X0)), (34)

for all f ∈ D3. Since� is bounded, Q̃t is absolutely continuous with respect toQ◦
t ,

with

h
Q
t (x) := dQ̃t

dQ◦
t

(x) = EQ(�th0(X0)|Xt = x), (35)
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and its total mass is bounded by ‖w0‖1( sup
φ∈supp(Q′)

sup
t∈[0,T ]

|φt |).

Notice that (t, x) �→ h
Q
t (x) is measurable. With notation (35), we can rewrite

(34) as

Q̃t (f) = EQ(f(Xt )h
Q
t (Xt )). (36)

Thus, we can think of hQt (x) as a bounded vectorial weight found at position x at
time t .

If now P ∈ Pb(CT ) is such that for each t the probability measure P ◦
t is abso-

lutely continuous with respect to Lebesgue’s measure, then the same holds for the
vector measure P̃t . In that case, and if ρ : [0, T ]×R

3 → R is the family of densities
of P ◦

t , we will denote by

ρ̃ : [0, T ] × R
3 → R

3

the family of densities of P̃t (taking always bi-measurable versions of both of them
if they exist). We stress the fact that ρ̃t is defined in terms of the joint law of
(X0, Xt ,�t ).

We will study the following nonlinear martingale problem: to find P ∈ Pb(CT )
such that

• P ◦|t=0(dx) = |w0(x)|
‖w0‖1

dx and for all 0 ≤ t ≤ T , P ◦
t (dx) = ρt (x)dx.

• f (t, Xt )− f (0, X0)− ∫ t
0

[
∂f
∂s
(s, Xs)+ ν�f (s,Xs)ds

+K(ρ̃)(s, Xs)∇f (s,Xs)
]
ds,

0 ≤ t ≤ T , is a continuous P ◦-martingale for all f ∈ C1,2
b ;

• �t = Id + ∫ t
0 ∇K(ρ̃)(s, Xs)�s ds, for all 0 ≤ t ≤ T , P -almost surely.

(37)

To state our main result on the probabilistic interpretation of the vortex equation,
we need

Definition 4.1. PT

b, 3
2

is the space of probability measures P ∈ Pb(CT ) satisfying

the following conditions:

• For each t ∈ [0, T ], the time marginal P ◦
t is absolutely continuous with respect

to Lebesgue’s measure, and the family of densities (t, x) �→ ρ(t, x) is bi-mea-
surable and belongs to F0,p,T for some 3

2 < p.
• div ρ̃t = 0 for all t ∈ [0, T ].

Theorem 4.1. Assume that w0 ∈ L1
3 ∩ Lp3 for some p ∈] 3

2 , 3[. For every T > 0,
the nonlinear martingale problem (37) has at most one solutionP in the class PT

b, 3
2
.

Further, there exists a solution P in PT

b, 3
2

such that P ◦ has a density family

ρ ∈ F0,p,T , p ∈] 3
2 , 3[, if and only if there exists in F0,p,T a solution w of the mild
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equation (10) with initial condition w0. In that case, for all t ∈ [0, T ] one has the
relations

w(t, x) = ρ̃(t, x), ρ(t, x)

∣∣∣∣EP (�th0(X0)|Xt = x)

∣∣∣∣ = |w(t, x)|,

and for all 1 ≤ p′ ≤ p and p ≤ r <
3p

3−p , it holds that ρ ∈ F0,p′,T ∩ F1,r,(T ;p).

Corollary 4.1. If w0 ∈ L1
3 ∩ Lp3 for some p ∈] 3

2 , 3[ and T 1− 3
2p ‖w0‖p < 0(p)

(the constant of Theorem 3.1), then (37) has a unique solution in PT

b, 3
2
.

The proof of Theorem 4.1 will be done in several steps. First of all, we shall dwell
upon the properties of the evolution equation satisfied by the densities ρ of the
marginal P ◦ of a given solution P . The study of this equation will provide a priori
regularity estimates for the drift term K(ρ̃) in (37).

4.1. A nonlinear Fokker-Planck equation associated with the vortex equation

Assume for a while that (37) has a solution P ∈ Pb(CT ) which satisfies

∫ T

0

∫
R3

|K(ρ̃)(t, x)|ρ(t, x) dxdt < ∞. (38)

(This is a minimal condition ensuring that
∫ t

0 K(ρ̃)(s, Xs)ds has finite variation).

By applying Itô’s formula to f (t, Xt ) for an arbitrary function f ∈ C1,2
b and tak-

ing expectations, we deduce that the couple (ρ, ρ̃) satisfies the following weak
evolution equation:

∫
R3
f (t, y)ρ(t, y)dy

=
∫

R3
f (0, y)ρ0(y)dy

+
∫ t

0

∫
R3

[
∂f

∂s
(s, y)+ ν�f (s, y)+ K(ρ̃)(s, y)∇f (s, y)

]

×ρ(s, y) dy ds, (39)

where ρ0(x) = |w0(x)|
‖w0‖1

dx. Observe that by (36), one has

ρ̃t (x) = hPt (x)ρt (x).

If P is fixed, then hP is also fixed, and then (39) is a nonlinear Fokker-Planck
equation for the unknown ρ. To a large extent, we will be able to treat this equation
as a scalar analogue of vortex equation. Its mild form is obtained as follows. Fix
ψ ∈ D and t ∈ [0, T ] and take in (39) the C1,2

b -function ft : [0, t] × R
3 → R

3

given by ft (s, y) = Gνt−s ∗ ψ(y) (which solves the backward heat equation on
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[0, t] × R
3 with final condition f (t, y) = ψ(y)). By Lemma 3.1 and condition

(38), it is easily checked that

∫ t

0

∫
(R3)2

3∑
j=1

∣∣∣∣∂G
ν
t−s

∂yj
(x − y)

∣∣∣∣ |K(ρ̃)j (s, y)||ψ(x)|ρ(s, y)dx dy ds < ∞,

and by Fubini’s theorem we deduce that

ρ(t, x) = Gνt ∗ ρ0(x)

+
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)K(hρ)j (s, y)ρ(s, y) dy ds (40)

for all t ∈ [0, T ], where h = hP and hρ(t, x) = ht (x)ρ(t, x).
We will now study some of the analytical properties of equation (40) in a more

general situation: assume that h : [0, T ] × R
3 → R

3 is a fixed arbitrary function
of class L∞([0, T ], L∞

3 ), and define for ρ, η ∈ MeasT a function bh(ρ, η) :
[0, T ] × R

3 → R
3 by

bh(ρ, η)(t, x) =
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)K(hη)j (s, y)ρ(s, y)dy ds.

Remark 4.1. For each p ∈ [1,∞] (resp. each p ∈ [1,∞] and r ≥ p), the mapping
η �→ hη is continuous from F0,p,T to F0,p,T (resp. from F0,r,(T ;p) to F0,r,(T ;p)).

Thus, the following continuity properties of bh can be proved in exactly the same
way as Proposition 3.1 i) and ii):

Lemma 4.1. The operator bh : (F, ||| · |||)2 → (F ′, ||| · |||′) is well defined and
continuous if

i) 3
2 ≤ p < 3, 3p

6−p ≤ p′ < 3p
6−2p , F = F0,p,T and F ′ = F0,p′,T .

ii) 3
2 ≤ p < 3, p ≤ r < 3, 3r

6−r ≤ r ′ < 3r
6−2r , F = F0,r,(T ;p) and F ′ =

F0,r ′,(T ;p)

Write now

γ0(t, x) := Gνt ∗ ρ0(x) = Gνt ∗ |w0|
‖w0‖1

(x). (41)

Since w0 ∈ Lp3 , Lemma 3.1 and Young’s inequality imply that γ0 ∈ F1,r,(T ;p) for
all r ≥ p. This and the previous lemma give sense to the abstract equation

ρ = γ0 + bh(ρ, ρ) (42)

in F0,p,T if 3
2 < p < 3, and (40) is equivalent to (42) in that space.

We deduce additional properties of solutions of (40):

Lemma 4.2. Assume that w0 ∈ Lp3 , with 3
2 < p < 3 and let h ∈ L∞([0, T ], L∞

3 )

be fixed.
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i) For all T > 0 the nonlinear Fokker-Planck equation (40) has at most one
solution ρ ∈ F0,p,T .

ii) If ρ ∈ F0,p,T is a solution of (40), then ρ ∈ F0,r,(T ;p) for all p ≤ r < ∞ with
|||ρ|||0,r,(T ;p) ≤ C(T , p, r, |||ρ|||0,p,T ) < ∞.

iii) We deduce that ρ̃ = hρ satisfies ρ̃ ∈ F0,r,(T ;p) and |||ρ̃|||0,r,(T ;p) ≤ C̃(T , h, p, r,

|||ρ̃|||0,p,T ) for all p ≤ r < ∞.

Proof. i) is the same as Theorem 3.1 a). To prove ii), we proceed in a similar way
as in Theorem 3.2 iii), reasoning now in spaces F0,r;(T ,p) instead of F1,r,(T ;p), and
using Lemma 4.1 and Remark 4.1). Part iii) is immediate from ii) and Remark 4.1.
�
Now we obtain a priori regularity estimates for ρ, ρ̃ and the drift term K(ρ̃) in
(37):

Proposition 4.1. Let 3
2 < p < 3 and P ∈ PT

b, 3
2

be solution of (37), with ρ ∈
F0,p,T . Then,

i) ρ̃ ∈ F0,r,(T ;p) for all r ∈ [p,∞[ and K(ρ̃) ∈ F1,l,(T ; 3p
3−p )

for all l ∈ [ 3p
3−p ,∞[.

ii) We deduce that ρ ∈ F1,r,(T ;p) for all r ∈ [p, 3p
3−p [.

Proof. i) First notice that ρ belongs to F0, 3
2 ,T

by inequality (29) since ρ ∈
F0,1,T ∩ F0,p,T . Thus, (38) holds by Remark 4.1 and Lemma 2.2 i). We
deduce that ρ ∈ F0,p,T solves the Fokker-Planck equation (40). Therefore,
ρ̃ ∈ F0,r,(T ;p) for all r ∈ [p,∞[ by Lemma 4.2 iii). Define q := 3p

3−p . If we

take l ≥ q and set r := ( 1
l
+ 1

3 )
−1, then one has r ≥ p, and so Lemma 4.2 iii)

and Lemma 2.2 i) imply that

sup
t∈[0,T ]

t
3
2 (

1
p

− 1
r
)‖K(ρ̃(t))‖l < ∞.

As 1
p

− 1
r

= 1
q

− 1
l
, this means that K(ρ̃) ∈ F0,l,(T ;q).

We next check that K(ρ̃) ∈ F1,l,(T ;q). From the fact that ρ̃ ∈ F0,l,(T ;p) holds

in particular for all l ≥ q, we get from Lemma 2.3 i) that ∂K(ρ̃)
∂xk

∈ F0,l,(T ;p)
for all k = 1, 2, 3. Therefore

sup
t∈[0,T ]

t
3
2 (

1
p

− 1
l
)

∥∥∥∥∂K(ρ̃)
∂xk

∥∥∥∥
l

< ∞.

Since 3
2 (

1
p

− 1
l
) = 1

2 + 3
2 (

1
q

− 1
l
), we conclude that K(ρ̃) ∈ F1,l,(T ;q).

ii) Using the fact that K(ρ̃) ∈ F1,q,T , we prove as in Proposition 3.1 iii) that for
p = p′ the linear operator (with ρ fixed) defined by

η(t, x) �→ bh(η, ρ)(t, x) =
∫ t

0

3∑
j=1

∫
R3

∂Gt−s
∂yj

(x − y)K(ρ̃)j (s, y)η(s, y)dy ds.
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is continuous from (F1,p,T )
2 to F1,p,T , with norm bounded by a multiple of

T to some positive power. Thus, by Banach’s fixed point theorem we have a
local existence result in F1,p,T ′ (for some T ′ > 0 possibly smaller than T ) for
the linear equation

η = γ0 + bh(ρ, η). (43)

Using the latter, uniqueness for (43) in F0,p,T , and the fact that K(ρ̃) ∈ F1,q,T ,
we can adapt the arguments of Theorem 3.2 i) to the linear equation (43) in
order to show that the solution ρ ∈ F0,p,T belongs to F1,p,T .

Using further the fact that K(ρ̃) ∈ F1,r,(T ;q) for all r ≥ q, the operator bh can also be
shown to be continuous from (F1,m,(T ;p))2 toF1,m′,(T ;p), forp ≤ m < min{3, 6p

6−p }
and 3m

6−m ≤ m′ < 3m
6−2m (by the same arguments as in Proposition 3.1 iv)). By mim-

icking the proof of Theorem 3.2 ii) we finally conclude that ρ ∈ F1,r,(T ;p) for all
r ∈ [p, 3p

3−p [. �

Corollary 4.2. Assume that P is a solution of (37) in the class PT

b, 3
2
. Then, under

the law P , the process � is continuous and with finite variation. We deduce that
the associated function ρ̃ is a weak solution of the vortex equation.

Proof. Since condition (38) holds, the process f(t, Xt ) is a semi-martingale under
P for any f ∈ C

1,2
b,3 . On the other hand, ρ̃ ∈ F0, 3

2 ,T
, and so Lemma 4.2 iii) with

r = 3 and Lemma 2.3 i) yield

∫ T

0

∫
R3

|∇K(ρ̃)(t, x)|ρ(t, x) dxdt < ∞. (44)

As� is a bounded process under P , the equation defining� in (37) and (44) imply
that t �→ �t has finite variation. We can thus apply Itô’s formula to f(t, Xt )�t and
see that

f(t, Xt )�t − f(0, X0)−
∫ t

0

[
∂f
∂s
(s,Xs)+ ν�f(s,Xs)+

∇f(s,Xs)K(ρ̃)(s, Xs)+ f(s,Xs)∇K(ρ̃)(s, Xs)
]
�s ds

is a martingale for all f ∈ C
1,2
b,3 . By multiplying the previous equation by h0(X0)

and taking expectations, we conclude from the definition of P̃s and Fubini’s theo-
rem (thanks also to (38) and (44)), that ρ̃ is a solution of the weak vortex equation
(11). �
Remark 4.2. We have not used the assumption divρ̃t = 0 in the previous results.
This condition will be needed later on to prove that ρ̃ is also a mild solution. From
this we will deduce additional regularity of ∇K(ρ̃), necessary prove that (37) is
well posed in PT

b, 3
2
.
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4.2. Existence

We consider now a mild solution w ∈ F0,p,T such that w0 ∈ L1
3. We will construct

a solution P ∈ PT

b, 3
2

of the martingale problem (37), such that ρ̃ defined as in (34)

satisfies ρ̃ = w.
By Corollary 3.1, the drift term K(w)(t) and its gradient ∇K(w)(t) are con-

tinuous and bounded functions on x for each t ∈]0, T ], and with singularities in
L∞ and Hölder norm at time t = 0. To construct the probability measure P , we
will follow a similar strategy as in [14] by an approximation argument by suitable
processes involving regularized kernels instead ofK . The additional difficulty here
is that we have to simultaneously approximate both drift terms K(w)(s,Xs) and
∇K(w)(s,Xs)�s .

Consider ϕε : R
3 → R a regular approximation of the Dirac mass, that is,

ϕε(x) = 1
ε3 for all ε > 0, with ϕ : R

3 → R a positive, smooth, and rapidly
decaying function such that

∫
R3 ϕ(x)dx = 1.

We define regularized kernelsKε = ϕε ∗K , and the associated mollified oper-
ators Kε by

Kε(w)(x) :=
∫

R3
Kε(x − y) ∧ w(y)dy

Remark 4.3. For all r ∈]1, 3[ and m ∈]1,∞[, and functions w ∈ Lr3 and v ∈ Lm3 ,
we have

Kε(w) = K(ϕε ∗ w) = ϕε ∗ K(w) and ∇Kε(v) = ∇K(ϕε ∗ v) = ϕε ∗ ∇K(v).

The identities for K are easily obtained for w ∈ D3, and for general w they follow
by density and Lemma 2.2 i). The identities for ∇K follow for v ∈ D3 by consid-
ering Fourier transform, and for general v we use again density and Lemma 2.3 i).
Consequently, Lemmas 2.2 and 2.3 hold true for all operators Kε with the same
constants as K.

We also deduce that Kε(w) converges in Ll3 to K(w), for all r ∈]1, 3[ and
1
l

= 1
r

− 1
3 , and that ∂Kε(w)

∂xk
converges in Lm3 to ∂K(w)

∂xk
for all m ∈]1,∞[ and

k = 1, 2, 3.

Let (εn) be a sequence converging to 0, and take in a fixed probability space a
standard three dimensional Brownian motion B, and a R

3-valued r.v. X0 indepen-
dent of B with law

ρ0(x)dx := |w0(x)|
‖w0‖1

dx.

Consider the following family of stochastic differential equations indexed by (s, x)

ξ
(n)
s,t (x) = x +

√
2ν(Bt − Bs)

+
∫ t

s

Kεn(w)(θ, ξ (n)s,θ (x))dθ, for all t ∈ [s, T ] (45)
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By Remark 4.3 we have Kε(w(t)) = ϕε ∗ K(w(t)), and so by Young’s inequality

‖Kε(w(t))‖∞ ≤ ‖ϕε‖q∗‖K(w(t))‖q ≤ C‖ϕε‖q∗‖w‖0,p,T

where q = 3p
3−p . In a similar way, ‖∇Kε(w(t))‖∞ ≤ C‖∇ϕε‖q∗‖w‖0,p,T and

similar estimates for all derivatives hold. Thus (s, y) �→ Kε(w)(s, y) is bounded
and continuous in y ∈ R

3, and has infinitely many derivatives in y ∈ R
3 that are

uniformly bounded in [0, T ] × R
3.

Equations (45) have therefore a unique trajectorial solution for each (s, x). Fur-
thermore, by results of Kunita [21] Ch.2, there is a continuous version of the process
(s, t, x) �→ ξ

(n)
s,t (x) which is infinitely many times differentiable in x for all (s, t),

and satisfies ξ (n)s,t (x) → x when (t − s) → 0. The derivative ∇ξ (n)s,t (x) solves the
ordinary differential equation in M3×3

∇ξ (n)s,t (x) = Id +
∫ τ

s

∇Kεn(w)(θ, ξ (n)s,θ (x))∇ξ (n)s,θ (x)dθ. (46)

We will denote by (X(n),�(n)) the couple of processes defined on [0, T ] by

X
(n)
t := ξ

(n)
0,t (X0), and �(n)t = ∇ξ (n)0,t (X0),

so that

X
(n)
t = X0 +

√
2νBt +

∫ t

0
Kεn(w)(s,X(n)s )ds

�
(n)
t = Id +

∫ t

0
∇Kεn(w)(s,X(n)s )�(n)s ds.

(47)

The law of (X(n),�(n)) clearly belongs to Pb(CT ) and will be denoted by Q(n).
Moreover, since the drift term in the first equation in (47) is bounded, (Q(n))◦t
has a density with respect to Lebesgue’s measure. For each n ∈ N, there exists
a bi-measurable version (t, x) �→ ρ(n)(t, x) of the densities of (Q(n))◦t (see [28],
p. 194), and thus, a bi-measurable version (t, x) �→ ρ̃(n)(t, x) of the densities of
Q̃
(n)
t . In what follows we shall prove that the sequenceQ(n) is uniformly tight, with

accumulation points that are solutions of (37). The first step will be to prove the
convergence, in a strong enough sense, of the one dimensional time-marginal laws.

We will need a technical result, namely a precise existence and regularity state-
ment for the Cauchy problem associated with the generator of X(n):

∂
∂s
f (s, y)+ ν�f (s, y)+ Kεn(w)(s, y)∇f (s, y) = 0, (s, y) ∈ [0, τ [×R

3,

f (τ, y) = φ(y).

(48)

Lemma 4.3. Let φ ∈ D and τ ∈]0, T ]. The backward Cauchy problem (48) has
a unique solution f ∈ C

1,2
b ([0, τ [×R

3) ∩ Cb([0, τ ] × R
3). Moreover, we have

f ∈ C1,3
b ([0, τ ] × R

3).
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Proof. Observe that, since for each (s, x) the coefficients in equation (45) are
Lipschitz continuous, trajectorial uniqueness (and thus in law) holds for (ξ (n)s,t (x), t ∈
[s, τ ]). Then, if a solution g of (48) exists, it must satisfy g(s, x) = E(φ(ξs,τ (x))

by the Feynmann-Kac formula, and thus uniqueness for the Cauchy problem holds.
The previous argument does not provide existence nor regularity. Since stan-

dard existence and regularity results for (48) require additional assumptions (e.g.
[16]), and do not provide the regularity we need here up to the final time τ , we will
give a probabilistic proof of these facts, using regularity properties of the stochastic
flow (45) (we are inspired in Theorem 7.1, Ch. 3 in [21]).

From equation (46), it comes that ∇ξs,t (x) is bounded and then ∇ξs,t (x) → Id

when s ↗ t for each t ∈ [0, τ ]. Considering the equations satisfied by the higher
order derivatives, one can also show thatDαξs,t is bounded, and thatDαξs,t (x) →
Dαx when s ↗ t , for any multi-index |α| ≤ 3. It follows that the function
f (s, x) := E(φ(ξs,τ (x)) has derivatives in x up to the third order, and f and
its derivatives are bounded and continuous on [0, τ ] × R

3.
The proof will be achieved by showing that f solves (48). Write Lθφ(x) :=

ν�φ(x)+Kεn(w)(θ, x)∇φ(x). By the backward Itô formula (Theorem 1.1 in [21],
Ch. 3), one has

φ(ξs,t (x)) = φ(x)+
√

2ν
∫ t

s

∇(φ ◦ ξθ,t )(x)d̂Bθ

+
∫ t

s

Lθ (φ ◦ ξθ,t )(x)dθ (49)

where
∫ t
s

· d̂Bθ is the backward stochastic integral with respect to B on [s, t]

(i.e. the stochastic integral with respect to the standard Brownian motion (B̂ts =
Bt−s − Bt , s ∈ [0, t]) and its natural filtration). Using (49), we check that

Lθφ(y) = lim
θ ′→θ−

1

θ − θ ′
[
E(φ ◦ ξθ ′,θ (y))− φ(y)

]
,

and then the commutation relation E[Lθ(φ ◦ ξθ,t )(x)] = LθE[(φ ◦ ξθ,t )(x)] is
obtained, thanks also to the independence of ξs′,s(x) and ξs,t (y) for s′ < s < t . It
follows then from (49) that

f (s, x)− f (s′, x) = −
∫ s

s′
Lθf (θ, x)dθ

for all s, s′ ∈ [0, τ ], which ends the proof. �
Lemma 4.4. For all t ∈ [0, T ] and n ∈ N, we have ρ̃(n)(t) ∈ Lp3 , ρ(n)(t) ∈ Lp ,
and

sup
n∈N

|||ρ̃(n)|||0,p,T < ∞, sup
n∈N

|||ρ(n)|||0,p,T < ∞. (50)

Moreover, ρ̃(n)(t) converges in Lp3 for each t ∈ [0, T ] and in L1([0, T ], Lp3 ) to
w(t). Similarly, ρ(n)(t) converges in Lp for each t ∈ [0, T ] and in L1([0, T ], Lp),
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to the unique solution ρ ∈ F0,p,T of the linear mild equation

ρ(t, x) = Gν
t ∗ ρ0(x)

+
∫ t

0

3∑
j=1

∫
R3

∂Gν
t−s

∂yj
(x − y)K(w)j (s, y)ρ(s, y) dy ds, t ∈ [0, T ]. (51)

Proof. By writing It’s formula for the product f(t, X(n)t )�
(n)
t and an arbitrary func-

tion f ∈ (C1,2
b )3([0, T ],R3), and taking expectations after multiplying by h0(X0),

we see that ρ̃(n)(t) is a solution of the following weak equation∫
R3

f(t, y)ρ̃(n)(t, y)dy =
∫

R3
f(0, y)w0(y)dy

+
∫ t

0

∫
R3

[
∂f
∂s
(s, y)+ ν�f(s, y)

+∇f(s, y)Kεn(w)(s, y)+ f(s, y)∇Kεn(w)(s, y)
]

×ρ̃(n)(s, y) dy ds. (52)

We will prove that ρ̃(n) solves equation

ρ̃(n)(t, x) =
∫

R3
Gνt (x − y)w0(y)dy

+
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)
[
Kεn(w)j (s, y)ρ̃(n)(s, y)

−ρ̃(n)j (s, y)Kεn(w)(s, y)
]
dy ds. (53)

By similar arguments as in Lemma 2.1, the function ρ̃(n) is seen to solve the linear
equation

ρ̃(n)(t, x) = Gνt ∗ w0(x)+
∫ t

0

3∑
j=1

∫
R3

[
∂Gνt−s
∂yj

(x − y)[Kεn(w)j (s, y)ρ̃(n)(s, y)]

+Gνt−s(x − y)[ρ̃(n)j (s, y)
∂Kεn(w)
∂yj

(s, y)]

]
dy ds. (54)

To obtain (53) we must first check that ρ̃(n)(s) has null divergence in the distribution
sense. By the previous lemma, for each φ ∈ D and t ∈]0, T ], if f is the solution of
the Cauchy problem (48), then ∇f ∈ (C

1,2
b )3([0, T ],R3). We can therefore plug

the function f = ∇f in (52), and obtain after simple computations that∫
R3

∇φ(y)ρ̃(n)(t, y)dy

=
∫ t

0

∫
R3

∇
[
∂f

∂s
(s, y)+ ν�f (s, y)+ Kεn(w)(s, y)∇f (s, y)

]
ρ̃(n)(s, y) dy ds.

for all φ ∈ D. Thus, div ρ̃(n)(t) = 0.
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Next, we check that ρ̃(n)(t) belongs to Lp3 for all t ∈ [0, T ]. This is enough
to conclude that ρ̃(n) solves (53) since then,

∫
R3 ∇φ(y)ρ̃(n)(t, y)dy = 0 for all

φ ∈ W 1,p∗
, and then we just have to take φ = Gνt−s(x − ·)Kεn(w)(s, ·) ∈ W 1,p∗

3 .
Fixm ∈ [1, 3

2 [. Notice that ‖Gνt−s‖m, ‖∇Gνt−s‖m ∈ L1([0, t], ds), that Kεn(w)
and ∇Kεn(w) are bounded, and that w0 ∈ F0,m,T . With these facts and Young’s
inequality we deduce that w ∈ F0,m,T . We can chosem ∈ [1, 3

2 [ such thatp < 3m
3−m ,

which ensures that r given by r−1 = p−1 +1−m−1 belongs to ]1, 3
2 [. Using again

Young’s inequality and that w ∈ F0,m,T , we conclude that w ∈ F0,p,T .
We next derive an upper bound for |||ρ̃(n)|||0,p,T independent of n. By standard

arguments (cf. Proposition 3.1 i)), Lemma 2.2 and Remark 4.3, we obtain

‖ρ̃(n)(t)‖p ≤ |||w0|||0,p,T + C|||w|||0,p,T
∫ t

0
(t − s)

− 3
2p ‖ρ̃(n)(s)‖p ds.

Iterating this inequalityN(p) times, withN(p) the first integerN such that 2N(1−
3

2p ) > 0, we deduce that

‖ρ̃(n)(t)‖p ≤ C + C′
∫ t

0
‖ρ̃(n)(s)‖p ds,

with constants that are independent of n, and we conclude by Gronwall’s lemma.
Starting now from the fact that ρ(n) solves the linear equation

ρ(n)(t, x) = Gνt ∗ ρ0(x)

+
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)Kεn(w)j (s, y)ρ(n)(s, y) dy ds, (55)

(which is seen as in Section 4.1) we establish a uniform Lp bound for ρ(n)(t).
Now we prove the asserted convergence for ρ̃(n). By taking the Lp3 norm to the

difference w(t)− ρ̃(n)(t) and proceeding as above, we check that

‖ρ̃(n)(t)− w(t)‖p ≤ C

∫ t

0
(t − s)

− 3
2p ‖Kεn(w)(s)− K(w)(s)‖q ds

+C
∫ t

0
(t − s)

− 3
2p ‖ρ̃(n)(s)− w(s)‖p ds.

We have also used here the estimates (50). Writing θ0 = 1− 3
2p and using induction,

we get

‖ρ̃(n)(t)− w(t)‖p ≤ C

∫ t

0

N∑
k=1

(t − s)kθ0−1 ‖Kεn(w)(s)− K(w)(s)‖q ds

+C
∫ t

0
(t − s)Nθ0−1 ‖ρ̃(n)(s)− w(s)‖p ds
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Thus, taking a fixed N = Ñ(p) such that = Ñ(p) > θ−1
0 , yields

‖ρ̃(n)(t)− w(t)‖p ≤ C

∫ t

0
α(t − s) ‖Kεn(w)(s)− K(w)(s)‖q ds

+C(T )
∫ t

0
‖ρ̃(n)(s)− w(s)‖p ds, (56)

with α(s) = ∑Ñ(p)
k=1 skθ0−1. Integrating now between 0 and τ ∈ [0, T ] gives

∫ τ

0
‖ρ̃(n)(t)− w(t)‖pdt ≤ C

∫ T

0

∫ t

0
α(t − s) ‖Kεn(w)(s)− K(w)(s)‖q ds dt

+C
∫ τ

0

∫ t

0
‖ρ̃(n)(s)− w(s)‖p ds dt,

and by Gronwall’s lemma,
∫ τ

0
‖ρ̃(n)(t)− w(t)‖pdt ≤ C

∫ T

0

∫ t

0
α(t − s) ‖Kεn(w)(s)− K(w)(s)‖q ds dt.

Thanks to Remark 4.3, the right hand side converges to 0 by a double application
of Lebesgue’s theorem. Taking τ = T gives us convergence in L1([0, T ], Lp3 ).
Convergence in Lp3 for all t ∈ [0, T ] follows then from (56).

Repeating this reasoning with the difference ρ(m)(t) − ρ(n)(t), n,m ∈ N,
shows us that ρ(n) is Cauchy in L1([0, T ], Lp), and that ρ(n)(t) is also Cauchy
in Lp, ∀t ∈ [0, T ]. Consequently, there is point-wise convergence of ρ(n) in Lp

on the interval [0, T ] to a limit ρ ∈ L1([0, T ], Lp). Estimate (50) implies that
ρ ∈ F0,p,T , and using the fact that
∥∥∥∥∥∥
∫ t

0

3∑
j=1

∫
∂Gν

t−s
∂yj

(x − y)
(
ρ(n)(s, y) Kεn (w)(s, y)− ρ(s, y) K(w)(s, y)

)
dy ds

∥∥∥∥∥∥
p

is bounded above by C
∫ t

0 (t − s)
− 3

2p
[‖ρ(n)(s) − ρ(s)‖p + ‖Kεn(w)(s) −

K(w)(s)‖q
]
ds (which goes to 0 as n → ∞), we pass to the limit on n in equation

(55) to conclude that ρ solves (51). �
To prove tightness of the sequenceQ(n) we will use next version of Gronwall’s

lemma.

Lemma 4.5. Let g and k be positive functions on [0, T ], such that
∫ T

0 k(s)ds < ∞,
g is bounded, and

g(t) ≤ C +
∫ t

0
g(s)k(s)ds for all t ∈ [0, T ].

Then, we have

g(t) ≤ C exp
∫ T

0
k(s)ds for all t ∈ [0, T ].
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Lemma 4.6. The sequence (Q(n), n ∈ N) is tight.

Proof. It is enough to prove that each of the two sequences of process X(n) and
�(n) have laws that are uniformly tight in n. We will use Aldous’ criterion for both
of them.

LetRn, Sn be stopping times in the filtration of (X(n),�(n)) such that 0 ≤ Rn ≤
Sn ≤ T and Sn −Rn ≤ �. Thanks to Remark 4.3, Lemma 2.2 ii), Lemma 3.5, and
the arguments of Corollary 3.1, we have

∫ Sn

Rn

|K(εn)(w)(t, X(n)t )|dt ≤ C

∫ Sn

Rn

t−
1
2 |||K(εn)(w)|||1,q,T dt

≤ C

(
S

1
2
n − R

1
2
n

)
|||w|||1,p,T ≤ C�

1
2 ,

and the criterion applies toX(n). Consider now the processes�(n). Since∇Kεn(w)(t)
is bounded, each process �(n) is bounded on [0, T ] (by a constant depending on
εn). On the other hand, by Remark 4.3, Lemmas 2.3 ii) and Lemma 3.5, we have

∥∥∥∥∥
∂K(εn)(w)(t)

∂xk

∥∥∥∥∥∞
≤ Ct

− 1
2 − 3

2 (
1
p

− 1
r
)|||w|||1,r,(T ;p) (57)

for each r ∈]3, 3p
3−p [ and k = 1, 2, 3. From this and Lemma 4.5 we deduce that

|�(n)t | ≤ exp
(
CT

1
2 − 3

2 (
1
p

− 1
r
)|||w|||1,r,(T ;p)

)
(58)

for all t ∈ [0, T ] and a constant C > 0 which does not depend on n. Let now
Rn, Sn be stopping times as before, and fix r ∈]3, 3p

3−p [. By using (57) and (58) we
establish that

∫ Sn

Rn

|∇K(εn)(w)(t, X(n)t )||�(n)t |dt ≤ C

(
R

1
2 − 3

2 (
1
p

− 1
r
)

n − S
1
2 − 3

2 (
1
p

− 1
r
)

n

)

≤ C�
1
2 − 3

2 (
1
p

− 1
r
)

for a constantC > 0 not depending onn, and the result follows since 1
2 − 3

2 (
1
p
− 1
r
) >

0. �
Remark 4.4. If ρ ∈ F0,p,T is the unique solution of (51) and P denotes the
limit of a convergent subsequence of Q(n), we deduce from Lemma 4.4 that∫
R3 ψ(x)P

◦
t (dx) = ∫

R3 ψ(x)ρ(t, x)dx for all ψ ∈ D. Consequently, ρ(t) is a
probability density.

We can now prove

Proposition 4.2. Every accumulation point of the sequence Q(n) is a solution of
the martingale problem (37) in the class PT

b, 3
2
.
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Proof. Let P denote the limit of a convergent subsequence renamedQ(n). We take
f ∈ C

1,2
b , 0 ≤ s1 ≤ · · · ≤ sm ≤ s < t ≤ T and λ : R

m → R a continuous
bounded function. We will first show that

EP
[(∫ t

s

{
∂f

∂τ
(τ,Xτ )+ ν�f (τ,Xτ )+ K(w)(τ,Xτ )∇f (τ,Xτ )

}
dτ

+f (t, Xt )− f (s,Xs))× λ(Xs1 , . . . , Xsm)

]
= 0, (59)

and that

EP
[∣∣∣∣�t − Id −

∫ t

0
∇K(w)(τ,Xτ )�τdτ

∣∣∣∣
]

= 0, (60)

with (X,�) the canonical process and w ∈ F0,p,T the solution of (10) we are given.
Notice that the result will follow from (59) and (60) by proving that the density
family ρ̃ of P̃ is equal to w.

Define a function κ : C([0, T ],R) → R by

κ(ξ) =
(∫ t

s

{
∂f

∂τ
(τ, ξ(τ ))+ ν�f (τ, ξ(τ ))+ K(w)(τ, ξ(τ ))∇f (τ, ξ(τ ))

}
dτ

+f (t, ξ(t))− f (s, ξ(s))

)
× λ(ξ(s1), . . . , ξ(sm)) (61)

We now check that it is continuous and bounded. From Corollary 3.1 i) we see that
∫ t

s

|K(w)(τ, ξ(τ ))∇f (τ, ξ(τ ))| dτ ≤ C(T )‖∇f ‖∞|||w|||0,p,T and

|K(w)(τ, x)− K(w)(τ, y)| ≤ Cτ− 1
2 |x − y| 2p−3

p |||w|||0,p,T , ∀x, y ∈ R
3.

Thus, ∫ t

s

|K(w)(τ, ξ1(τ ))∇f (τ, ξ1(τ ))− K(w)(τ, ξ2(τ ))∇f (τ, ξ2(τ ))| dτ

≤ C(T )‖∇f ‖∞‖ξ1 − ξ2‖
2p−3
p∞ |||w|||0,p,T

+C′(T )‖∇(∇f )‖∞‖ξ1 − ξ2‖∞|||w|||0,p,T ,
for all ξ1, ξ2 ∈ C([0, T ],R). It follows that the mapping ξ �→ ∫ t

s
K(w)(τ, ξ(τ ))∇

f (τ, ξ(τ )) dτ is continuous and bounded onC([0, T ],R), and then the same holds
for κ .

Therefore, we have EQ
(n)
(κ(X)) → EP (κ(X)) as n → ∞. Now, from (47)

and the definition of Q(n), it follows that

EQ
(n)

[(∫ t

s

{
∂f

∂τ
(τ,Xτ )+ ν�f (τ,Xτ )+ Kεn(w)(τ,Xτ )∇f (τ,Xτ )

}
dτ

+f (t, Xt )− f (s,Xs)

)
× λ(Xs1 , . . . , Xsm)

]
= 0,
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and then

EQ
(n)

(κ(X)) = EQ
(n)

[ ∫ t

s

(K(w)(τ,Xτ )∇f (τ,Xτ )

−K(εn)(w)(τ,Xτ )∇f (τ,Xτ )
)
dτ × λ(Xs1 , . . . , Xsm)

]
.

We prove that the latter goes to 0 with n. If q = 3p
3−p then we have q∗ = 3p

4p−3 <
3
2 < p and

sup
k∈N

|||ρ(k)|||0,q∗,T < ∞

from estimate (50) and since ρ(n)(t) is a probability density. It follows that

∣∣∣EQ(n)(κ(X))
∣∣∣ ≤ CEQ

(n)

[ ∫ t

s

∣∣∣K(εn)(w)(τ,Xτ )− K(w)(τ,Xτ )
∣∣∣ dτ

]

≤ C sup
k∈N

|||ρ(k)|||0,q∗,T
∫ T

0

∥∥∥K(εn)(w)(τ )− K(w)(τ )
∥∥∥
q
dτ,

and by Remark 4.3, we conclude that EQ
(n)
(κ(X)) → 0. This proves (59).

We next prove (60). Consider an arbitrary continuous truncation function on
matrices χR : M3×3 → M3×3, with R > 0, such that |χR(z)| ≤ R for all
z ∈ M3×3.

By (58) there exists a constant R = Rw independent of n such that supt∈[0,T ]

|�(n)| ≤ Rw for all n ∈ N. We will check that the function ζ : C([0, T ],R3) ×
C([0, T ],M3×3) → R given by

ζ(ξ, z) :=
∣∣∣∣χRw(zt )− Id −

∫ t

0
∇K(w)(τ, ξ(τ ))χRw(zτ )dτ

∣∣∣∣ (62)

is bounded and continuous. To that end, it is enough to state that the mapping
(ξ, z) �→ ∫ t

0 ∇K(w) (τ, ξ(τ ))χRw(z(τ ))dτ is bounded and continuous. Bounded-
ness is consequence of (57). Continuity follows easily from the estimate

|∇K(w)(τ, x)−∇K(w)(τ, y)|≤C|||w|||1,r,(T ;p)τ− 1
2−3

2 (
1
p

− 1
r
)|x−y|1− 3

r ,∀x, y ∈ R
3.

for any fixed r ∈]3, 3p
3−p [ (see the proof of Corollary 3.1). Thus, proving (60)

amounts to check that

EQ
(n)

(ζ(ξ, z)) → 0 (63)

when n → ∞. Since

EQ
(n)

∣∣∣∣χRw(zt )− Id −
∫ t

0
∇Kεn(w)(τ, ξ(τ ))χRw(zτ )dτ

∣∣∣∣ = 0
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by (47), we have

EQ
(n)

(ζ(X,�)) ≤ RwE
Q(n)

[ ∫ t

s

∣∣∣∇K(εn)(w)(τ,Xτ )− ∇K(w)(τ,Xτ )
∣∣∣ dτ

]
.

(64)

If p ≥ 2, the r.h.s. of (64) is bounded above by

C sup
k∈N

|||ρ(k)|||0,p∗,T
∫ T

0

∥∥∥∇K(εn)(w)(τ )− ∇K(w)(τ )
∥∥∥
p
dτ.

The supremum is finite from (50) since p∗ ≤ 2. (63) follows then from Remark
4.3.

If 3
2 < p < 2 we bound the r.h.s. of (64) above by

C sup
k∈N

|||ρ(k)|||0,p∗,(T ;p)
∫ T

0
t
− 3

2 (
1
p

− 1
p∗ )
∥∥∥∇K(εn)(w)(τ )− ∇K(w)(τ )

∥∥∥
p
dτ.

Since − 3
2 (

1
p

− 1
p∗ ) > −1, using Remark 4.3 we just have to establish that

sup
k∈N

|||ρ(k)|||0,p∗,(T ;p) < ∞

to conclude (63). Recall that by Theorem 3.2 iii) we have w ∈ F0,r,(T ;p) for all
r ≥ p. We deduce that the the norm of the linear functional

η(t, x) �→
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)Kεn(w)j (s, y)η(s, y) dy ds,

defined from F0,r,(T ;p) to F0,r ′,(T ;p) for p ≤ r < 3 and r ≤ r ′ < 3p
6−2p , can

be estimated in terms of |||Kεn(w)|||0,l,(T ;q) with l = 3r
3−r , and thus in terms of

|||w|||0,r,(T ;p) only (by Lemma 2.2 and Remark 4.3). In particular, there is no depen-
dence on n. Therefore, by an iterative argument as in Theorem 3.2 iii), we obtain
an upper bound for |||ρ̃(n)|||0,p∗,(T ;p) not depending on n. We conclude (60).

To finish the proof, we just have to check that for each t ∈ [0, T ], the function
ρ̃(t) given by

∫
R3

f(x)ρ̃(t, x)dx := EP (f(Xt )�th0(X0)),

for all f ∈ D3, is equal to w(t). Thanks to the convergence ρ̃(n) → w stated in
Lemma 4.4, this will hold as soon as the convergence

EQ
(n)

(f(Xt )�th0(X0)) → EP (f(Xt )�th0(X0))

is proved. The function h0 is not necessarily continuous. We will use fact (proved in
[18]) that for every k ∈ N, one can find a continuous bounded function hk0 such that
|w0|

‖w0‖1
({hk0 �= h0}) ≤ 1

k
, and |hk0| ≤ |h0|. We also notice that under P , the process
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� is bounded by the same constant Rw as it is under each lawQ(n). Hence, for any
k ∈ N,

|EQ(n)(f(Xt )�th0(X0))− EP (f(Xt )�th0(X0))|
≤ C(EQ

(n) |hk0(X0)− h0(X0)| + EP |hk0(X0)− h0(X0)|)
+|EQ(n)(f(Xt )χRw(�t )h

k
0(X0))− EP (f(Xt )χRw(�t )h

k
0(X0))|.

We conclude by taking lim sup as n → ∞ and then limit as k → ∞. �

4.3. Uniqueness

Proposition 4.3. i) If P ∈PT

b, 3
2

is a solution of (37) with ρ∈F0,p,T and p∈] 3
2 , 3[,

then w := ρ̃ is a solution of the mild vortex equation (10) in the space F0,p,T .
ii) We deduce that uniqueness holds for (37) in the class PT

b, 3
2
.

Proof. i) Let P ∈ PT

b, 3
2

be a solution of (37). By Proposition 4.1 and Corollary

4.2, ρ̃ is a weak solution in the spaces F0,p,T ∩ F0,r,(T ;p) for all r ∈ [p,∞[.
As in Corollary 4.2, conditions (38) and (44) can be seen to hold, and then it
is not hard to check that ρ̃ satisfies the assumptions of Lemma 2.1. Thus, it
solves the intermediate mild equation (12). To conclude we need to verify that

3∑
j=1

∫
R3
Gνt−s(x − y)[ρ̃j (s, y)

∂K(ρ̃)
∂yj

(s, y)]

+∂G
ν
t−s

∂yj
(x − y)[ρ̃j (s, y)K(ρ̃)(s, y)]dy = 0

for all s ∈ [0, T ]. Since 1 < q∗ < 3
2 (where q = 3p

3−p ), the function ρ̃ = hP ρ

belongs to F0,q∗,T . From the fact that div ρ̃(s) = 0 by hypothesis, and that

Gνt−s(x − ·)K(ρ̃)(s, ·) ∈ W
1,q
3 thanks to Proposition 4.1 i), we obtain the

required identity and this proves i).
ii) Assume that P 1 and P 2 are two solutions of (37) in PT

b, 3
2
, with density families

ρ1 ∈ F0,p1,T and ρ2 ∈ F0,p2,T respectively, and such that p1, p2 > 3
2 . Then,

ρ̃1, ρ̃2 belong to F0,p,T and are mild solutions of the vortex equation, from
where ρ̃1 = ρ̃2 by Theorem 3.1. We write w = ρ̃1 = ρ̃2.
By arguments in the proof of Proposition 4.1, ρ1 and ρ2 solve equation (40)

with h = hP
1

and h = hP
2

respectively. By i) we have hP
1
ρ1 = hP

2
ρ2 = w and

so ρ1 and ρ2 solve the linear equation

ρ(t, x) = Gνt ∗ ρ0(x)

+
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)K(w)j (s, y)ρ(s, y) dy ds, (65)

in F0,p,T . Thus, they are equal, and we write ρ = ρ1 = ρ2.
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We have established that P 1 and P 2 solve a linear martingale problem in PT

b, 3
2
:

• Q◦|t=0(dx) = |w0(x)|
‖w0‖1

dx and for all 0 ≤ t ≤ T and Q◦
t (dx) = ρt (x)dx.

is known

• f (t, Xt )− f (0, X0)− ∫ t
0

[
∂f
∂s
(s, Xs)+ ν�f (s,Xs)

+K(w)(s,Xs)∇f (s,Xs)
]
ds,

0 ≤ t ≤ T , is a continuous Q◦-martingale for all f ∈ C1,2
b ;

• �t = Id + ∫ t
0 ∇K(w)(s,Xs)�s ds, for all 0 ≤ t ≤ T , Q almost surely.

(66)

We can now follow arguments of [27] or [14] to prove the fact that (P 1)◦ = (P 2)◦.

Indeed, by Corollary 3.1 i), the coefficient K(w) in (66) satisfies |K(w)(t)| ≤ Ct−
1
2 .

Consequently, if Q is a solution of (66), and if Dn with n ∈ N denotes the shift
operator on C([0, T ],R3) defined byDn(ξ) = ξ( 1

n
+ ·), then the probability mea-

sure Q◦ ◦ D−1
n solves a martingale problem with bounded coefficients, and with

a fixed initial law given by ρ( 1
n
, x)dx. By classic results of Stroock and Varadhan

[32], Q◦ ◦D−1
n is uniquely determined, and thus (P 1)◦ ◦D−1

n = (P 2)◦ ◦D−1
n for

all n ∈ N. By letting n → ∞ we conclude that (P 1)◦ = (P 2)◦
It remains to prove that (P 1)′ = (P 2)′. In virtue of the L∞ estimates in Corol-

lary 3.1 ii), it is an elementary fact that for each ξ ∈ C([0, T ],R3) the O.D.E.

z(t) = Id +
∫ t

0
∇K(w)(s, ξ(s))z(s)ds

has a unique continuous solution t ∈ [0, T ] �→ z(t) ∈ M3×3. Furthermore, using
the estimate in Hölder norm of Corollary 3.1 ii), and Gronwall’s lemma, it is easily
seen that the mapping ξ �→ z is continuous. This clearly implies that (P 1)′ = (P 2)′,
and the proof is finished. �

4.4. Strong statements and stochastic flow

Corollary 4.3. Let p ∈] 3
2 , 3[ and w ∈ F0,p,T be a solution of equation (10) with

w0 ∈ L1
3.

a) There is strong existence and uniqueness for the stochastic differential equation

Xt = X0 +
√

2νBt +
∫ t

0
K(w)(s,Xs)ds

�t = Id +
∫ t

0
∇K(w)(s,Xs)�sds

t ∈ [0, T ] (67)

law(X0) = |w0(x)|
‖w0‖1

dx

(linear in the sense of McKean), and one has

law((X,�)) = P,
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the unique solution in PT

b, 3
2

of the nonlinear martingale problem (37) such that

ρ̃ = w.
b) The family of SDE’s

ξs,t (x) = x +
√

2νBt +
∫ t

s

K(w)(t, ξs,r (x))dr, t ∈ [s, T ] (68)

with x ∈ R
3 and s ∈ [0, T ], defines a C1−stochastic flow ξ , and one has

(X,�) = (ξ0,·(X0),∇ξ0,·(X0)).

Proof. a) By Theorem 4.1 and Proposition 5.4.11 in [20], there exists in some
probability space a weak solution (X,�) of the SDE (67). Now, if two solutions
(X,�) and (Y ,�) of (67) are given in some fixed probability space, then

|Xt − Y t | ≤ C

∫ t

0
s

−1
2 − 3

2 (
1
p

− 1
r
)|Xs − Y s |ds

for some r ∈]3, 3p
3−p [ and all t ∈ [0, T ] by Corollary 3.1 ii), and we conclude

that X = Y by Lemma 4.5. The fact that � = � follows as in the last part of
Proposition 4.3. Thus, trajectorial uniqueness holds for (67) which yields the
result.

b) By Corollary 3.1 and the results in [21], the stochastic flow (68) is well defined
for s ∈ [0, T ] and is of class C1 in x for all s, t ∈]0, T ], s < t . We just
have to check that ξ0,t : R

3 → R
3 is also C1. By Lemma 4.5 and similar

arguments as in a), the function ξ0,t is globally Lipschitz continuous (inde-
pendently of the randomness and of t ∈ [0, T ]), and the quotients δt (x, y) :=

1
|x−y| |ξ0,t (x)− ξ0,t (y)| are bounded. With this and the relation

ξ0,t (y)− ξ0,t (x) = y − x +
∫ t

0

∫ 1

0

[
∇u
(
s, ξ0,s(x)+ θ(ξ0,s(y)− ξ0,s(x))

)

−∇u
(
s, ξ0,s(x)

)]
dθ · (ξ0,s(y)− ξ0,s(x)

)
ds

+
∫ t

0
∇u
(
s, ξ0,s(x)

)(
ξ0,s(y)− ξ0,s(x)

)
ds

we deduce for a fixed r ∈]3, 3p
3−p [ that

|δt (x, y)− δt (x, y
′)| ≤ C

∫ t

0
s
− 1

2 − 3
2 (

1
p

− 1
r
)

[
|y − y′|1− 3

r + |δs(x, y)− δs(x, y
′)|
]
ds

for all x, y, y′ ∈ R
3 thanks also to Corollary 3.1 ii). By Lemma 4.5,

|δt (x, y)− δt (x, y
′)| ≤ C(T )|y − y′|1− 3

r
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for an absolute constant C(T ) > 0, and therefore

|δt (x, y)− δt (x
′, y′)| ≤ C

[
|x − x′|1− 3

r + |y − y′|1− 3
r

]

for all x, x′, y, y′, which easily yields the conclusion. �

5. A cutoffed and mollified mean field model for the vortex equation

This section provides the theoretical framework to construct pathwise stochastic
approximations of the vortex equation (2).

5.1. A generalized McKean-Vlasov equation

Consider a filtered probability space endowed with an adapted standard 3-dimen-
sional Brownian motion B and with a R

3-valued random variable X0 independent
of B. Let R > 0 and χR : M3×3 → M3×3 be a Lipschitz continuous truncation
function such that |χR(φ)| ≤ R, and let Kε be the function defined in Section 4.2.
We will study the following system of nonlinear stochastic differential equations
of the McKean-Vlasov type:

X
ε,R
t = X0 +

√
2νBt +

∫ t

0
uε,R(s,Xε,Rs )ds

�
ε,R
t = Id +

∫ t

0
∇uε,R(s,Xε,Rs )χR(�

ε,R
s )ds

(69)

with

uε,R(s, x) = E
[
Kε(x −Xε,Rs ) ∧ χR(�ε,Rs )h0(X0)

]
(70)

Theorem 5.1. There is existence and uniqueness (trajectorial and in law) for (69),
(70).

Proof. The proof is adapted from Theorem 1.1 in [33], so we will skip details.
Consider the closed subspace P(C0

T ) of P(CT ) of probability measuresQ such that
Q|t=0 = law(X0)⊗ δId . We define a mapping � : P(C0

T ) → P(C0
T ) associating

to Q the law �(Q) of the solution of

X
Q
t = X0 + √

2νBt + ∫ t
0 uQ(s,X

Q
s )ds

�
Q
t = Id + ∫ t

0 ∇uQ(s,X
Q
s )χR(�

Q
s )ds,

(71)

where

uQ(s, x) = EQ [Kε(x −Xs) ∧ χR(�s)h0(X0)] (72)

The coefficients in equation (71) are Lipschitz continuous and bounded functions,
and so � is well defined (path-wise). Also by Lipschitz continuity, we just have to
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prove existence and uniqueness in law for (69), (70), which is equivalent to existence
of a unique fixed point for�. The Kantorovitch-Rubinstein (or Vaserstein) distance

DT (Q
1,Q2) := inf

{∫
C2
T

sup
0≤t≤T

[
min{|x(t)− y(t)|, 1} + min{|φ(t)− ψ(t)|, 1}]

�(dx, dφ, dy, dψ), � has marginals Q1 and Q2
}
, (73)

induces on P(C0
T ) the usual weak topology. The required fixed point result can

be deduced in a standard way from the following inequality: for all t ≤ T and
Q1,Q2 ∈ P(C0

T ),

Dt(�(Q
1),�(Q2)) ≤ CT

∫ t

0
Ds(Q

1,Q2)ds, (74)

with CT a positive constant, and Dt(Q1,Q2) the distance between the projec-
tions of Q1 and Q2 on C([0, t],R3 × M3×3). To prove (74), consider for each
i = 1, 2 processes (Xi,�i) defined in terms ofQi as in (71),(72). Take on a differ-
ent probability space (�′, P ′) a coupling (Y i, �i)i=1,2 of two processes such that
law(Y i,�i) = Qi . Then,

|X1
t −X2

t | ≤
∫ t

0
|uQ1(s,X1

s )− uQ1(s,X2
s )| + |uQ1(s,X2

s )− uQ2(s,X2
s )|ds

≤
∫ t

0

∣∣∣E′
[(
Kε(X

1
s − Y 1

s )−Kε(X
2
s − Y 1

s )
)

∧ χR(�1
s )h0(X0)

]∣∣∣ ds

+
∫ t

0

∣∣∣E′
[
Kε(X

2
s − Y 1

s ) ∧
(
χR(�

1
s )− χR(�

2
s )
)
h0(X0)

]∣∣∣ ds

+
∫ t

0

∣∣∣E′
[(
Kε(X

2
s − Y 1

s )−Kε(X
2
s − Y 2

s )
)

∧ χR(�2
s )h0(X0)

]∣∣∣ ds

≤ C

∫ t

0
min{|X1

s −X2
s |, 1}ds

+C
∫ t

0
E′
[
min{|Y 1

s − Y 2
s |, 1} + min{

∣∣∣�1
s −�2

s

∣∣∣ , 1}
]
ds.

On the other hand, the processes �i , with i = 1, 2, are bounded on [0, T ]:

sup
t∈[0,T ]

∣∣∣�it
∣∣∣ ≤ 1 + LεR‖h0‖∞T , (75)
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with Lε a Lipschitz constant of Kε. Thus,

∣∣�1
t −�2

t

∣∣ ≤
∫ t

0

∣∣(∇uQ1(s,X1
s )− ∇uQ1(s,X2

s )
)
�1
s

∣∣+ ∣∣∇uQ2 (s,X2
s )
(
�1
s −�2

s

)∣∣ ds

≤ C

[∫ t

0

∣∣∇uQ1(s,X
1
s )− ∇uQ1(s,X

2
s )
∣∣ ds +

∫ t

0
min{∣∣�1

s −�2
s

∣∣ , 1}ds
]

≤ C

[ ∫ t

0
min{|X1

s −X2
s |, 1} + min{∣∣�1

s −�2
s

∣∣ , 1}ds

+
∫ t

0
E′ [min{|Y 1

s − Y 2
s |, 1} + min{∣∣�1

s −�2
s

∣∣ , 1}] ds
]
.

The conclusion follows with help of Gronwall’s lemma. �

5.2. Propagation of chaos

Consider now a probability space endowed with a sequence (Bi)i∈N of independent
3-dimensional Brownian motions, and a sequence of independent random variables
(Xi0)i∈N with same law as X0 and independent of the Brownian motions. For each
n ∈ N and R, ε > 0, we define the following system of interacting particles:

X
i,ε,R,n
t = Xi0 + √

2νBit

+ ∫ t0 1
n

∑
j �=i Kε(X

i,ε,R,n
s −X

j,ε,R,n
s ) ∧ χR(�j,ε,R,ns )h0(X

j
0)ds

�
i,ε,R,n
t = Id + ∫ t

0
1
n

∑
j �=i

[
∇Kε(Xi,ε,R,ns −X

j,ε,R,n
s ) ∧ χR(�j,ε,R,ns )h0(X

j
0)
]

χR(�
i,ε,R,n
s )ds,

(76)

for i = 1 . . . n, and with ∇K(y)∧ z = ∇y(K(y)∧ z) for y, z ∈ R
3, y �= 0. Notice

that the coefficients in the system of SDE’s (76) are globally Lipschitz continuous
and bounded, so that there is a unique strong solution. We also consider in the same
probability space the sequence

X
i,ε,R
t = Xi0 +

√
2νBit +

∫ t

0
uε,R(s,Xi,ε,Rs )ds

�
i,ε,R
t = Id +

∫ t

0
∇uε,R(s,Xi,ε,Rs )χR(�

i,ε,R
s )ds

, i ∈ N (77)

of independent copies of (69). Their common law is denoted byP ε,R , and h̄,Mε, Lε
and Jε denote positive constants such that for all x, y ∈ R,

• |h0(x)| ≤ h̄, and
• |Kε(x)| ≤ Mε, |Kε(x)−Kε(y)| ≤ Lε|x−y|, |∇Kε(x)−∇Kε(y)| ≤ Jε|x−y|.
Recall that |χR(φ)| ≤ R for all φ ∈ M3×3, and that . We may and shall assume
that χR is a Lipschitz-continuous function, with Lipschitz constant equal to 1:

|χR(φ)− χR(ψ)| ≤ |φ − ψ | for all φ,ψ ∈ M3×3.
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Theorem 5.2. For ε > 0 sufficiently small and all R > 0, we have

E

[
sup
t∈[0,T ]

{
|Xi,ε,R,nt −X

i,ε,R
t | + |�i,ε,R,nt −�

i,ε,R
t |

}]
≤ 1√

n
C(ε, R, h̄, T )

(78)

for all i ≤ n, where

C(ε, R, h̄, T ) = C1ε(1 + Rh̄T )(Rh̄T ) exp{C2ε
−9h̄T (R + 1)(h̄+ RT )}

for some positive constants C1, C2 independent of R, ε,T and h̄. We deduce that
the system (76) is chaotic with limiting law P ε,R ∈ P(CT ). That is, for all k ∈ N,

law
(
(X1,ε,R,n,�1,ε,R,n), (X2,ε,R,n,�2,ε,R,n), . . . , (Xk,ε,R,n,�k,ε,R,n)

)

�⇒ (P ε,R)⊗k (79)

when n → ∞ in the space P((CT )k).
Proof. Convergence (79) is a simple consequence of (78), which we now prove.
The proof is an extension of the arguments of Theorem 1.4 in [33], but we shall
make the computations explicit in order to keep trace of the constants. Superscripts
ε, R on processes will be dropped to simplify notation. We have

|Xi,n
t −Xi

t | ≤
∫ t

0

∣∣ 1
n

n∑
j=1

(
Kε(X

i,n
s −Xj,n

s )−Kε(X
i
s −Xj,n

s )
) ∧ χR(�j,n

s )h0(X
j

0 )
∣∣ds

+
∫ t

0

∣∣ 1
n

n∑
j=1

(
Kε(X

i
s −Xj,n)−Kε(X

i
s −Xj

s )
) ∧ χR(�j,n

s )h0(X
j

0 )
∣∣ds

+
∫ t

0

∣∣ 1
n

n∑
j=1

Kε(X
i
s −Xj

s ) ∧ (χR(�j,n
s )− χR(�

j
s )
)
h0(X

j

0 )
∣∣ds

+
∫ t

0

∣∣ 1
n

n∑
j=1

Kε(X
i
s −Xj

s ) ∧ χR(�j
s )h0(X

j

0 )

−
∫
Kε(X

i
s − x(s)) ∧ χR(φ(s))h0(x(0))P

ε,R(dx, dφ)
∣∣ds

Hence,

|Xi,nt −Xit | ≤ LεRh̄

∫ t

0

{|Xi,ns −Xis | + 1

n

n∑
j=1

|Xj,ns −X
j
s |
}
ds

+LRMεh̄

∫ t

0

1

n

n∑
j=1

|�j,ns −�
j
s |ds +

∫ t

0
I (n, R, ε, s)ds,
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with I (n, R, ε, s) = ∣∣ 1
n

∑n
j=1 G((Xi,�i), (Xj ,�j ))| and

G((Xi,�i), (Xj ,�j )) = [
Kε(X

i
s −X

j
s ) ∧ χR(�js )h0(X

j
0)

−
∫
Kε(X

i
s − x(s)) ∧ χR(φ(s))h0(x(0))P

ε,R(dx, dφ)
]
.

Thanks to the exchangeability of the system (76), we obtain

E{sup
r≤t

|Xi,nr −Xir |} ≤ 2LεRh̄
∫ t

0
E{sup

r≤s
|Xi,nr −Xir |}ds

+LRMεh̄

∫ t

0
E{sup

r≤s
|�i,nr −�ir |}ds

+
∫ t

0
E(I (n, R, ε, s))ds.

Now, each of the n squared terms in the sum I (n, R, ε, s)2 is bounded by
1
n2 (2MεRh̄)

2. On the other hand, for j �= k we have, thanks to independence,

E
(
G((Xi,�i), (Xj ,�j ))|(Xi,�i), (Xk,�k)

)

=
∫

G((Xi,�i), (x, φ))P ε,R(dx, dφ) = 0

which means that the “crossed terms” in the squared sum I (n, R, ε, s)2 have null
expectation. We deduce that

E(I (n, R, ε, s)2) ≤ 1

n
(2MεRh̄)

2.

Then,

E{sup
r≤t

|Xi,nr −Xir |} ≤ 2LεRh̄
∫ t

0
E{sup

r≤s
|Xi,nr −Xir |}ds

+LRMεh̄

∫ t

0
E{sup

r≤s
|�i,nr −�ir |}ds

+ 1√
n
(2MεRh̄)t. (80)

On the other hand, we have

|�i,nt −�it | ≤
∫ t

0

∣∣[1

n

n∑
j=1

(
∇Kε(Xi,ns −X

j,n
s )− ∇Kε(Xis −X

j,n
s )

)

∧χR(�j,ns )h0(X
j
0)
]
χR(�

i,n
s )
∣∣ds

+
∫ t

0

∣∣[1

n

n∑
j=1

(
∇Kε(Xis −Xj,n)− ∇Kε(Xis −X

j
s )
)

∧χR(�j,ns )h0(X
j
0)
]
χR(�

i,n
s )
∣∣ds
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+
∫ t

0

∣∣[1

n

n∑
j=1

∇Kε(Xis −X
j
s ) ∧

(
χR(�

j,n
s )− χR(�

j
s )
)
h0(X

j
0)
]

χR(�
i,n
s )
∣∣ds

+
∫ t

0

∣∣[1

n

n∑
j=1

∇Kε(Xis −X
j
s ) ∧ χR(�js )h0(X

j
0)
]

(
χR(�

i,n
s )− χR(�

i
s)
)∣∣ds

+
∫ t

0

∣∣[1

n

n∑
j=1

∇Kε(Xis −X
j
s ) ∧ χR(�js )h0(X

j
0)
]
χR(�

i
s)

−[
∫

∇Kε(Xis − x(s)) ∧ χR(φ(s))h0(x(0))P
ε,R(dx, dφ)

]

χR(�
i
s)
∣∣ds.

Notice that

sup
t∈[0,T ]

|�i,nt |, sup
t∈[0,T ]

|�it | ≤ Cε,R,T := (1 + LεRh̄T ) (81)

for all n ∈ N. Thus,

|�i,nt −�it | ≤ JεRh̄Cε,R,T

∫ t

0

{|Xi,ns −Xis | + 1

n

n∑
j=1

|Xj,ns −X
j
s |
}
ds

+LεLRh̄Cε,R,T
∫ t

0

1

n

n∑
j=1

|�j,ns −�
j
s | ds

+LεRh̄
∫ t

0
|�i,ns −�is | ds +

∫ t

0
I ′(n, R, ε, s) ds,

with

I ′(n, R, ε, s) =
∣∣∣∣ 1n

n∑
j=1

[(∇Kε(X
i
s −Xj

s ) ∧ χR(�j
s )h0(X

j

0 )
)
χR(�

i,n
s )

−
∫

∇Kε(X
i
s − x(s)) ∧ χR(φ(s))h0(x(0))P

ε,R(dx, dφ)χR(�
i
s)

]∣∣∣∣.
We conclude in a similar way as before that

E{sup
r≤t

|�i,nr −�ir |} ≤ 2JεRh̄Cε,R,T

∫ t

0
E{sup

r≤s
|Xi,nr −Xir |ds

+ (LεLRh̄Cε,R,T + LεRh̄
) ∫ t

0
E{sup

r≤s
|�i,nr −�ir |} ds

+ 1√
n
(2LεRh̄Cε,R,T )t. (82)
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Bringing together (80) and (82), we get

E{sup
r≤t

|Xi,nr −Xir | + |�i,nt −�it |}

≤ 2Rh̄
(
Lε + JεCε,R,T

) ∫ t

0
E{sup

r≤s
|Xi,ns −Xis |}ds

+h̄ (LRMε + LεLRCε,R,T + LεR
) ∫ t

0
E{sup

r≤s
|�i,nr −�ir |}ds

+2Rh̄√
n
(MεCε,R,T + Lε)t. (83)

Finally, we notice that

|K ∗ ϕε(x)| ≤ C sup
z∈R3

{ϕε(z)}
∫

|x−y|≤1
|x − y|−2dy

+C
∫

|x−y|≥1
ϕε(y)dy ≤ C

ε3 + C

and then,Mε ≤ Cε−3 for all ε small enough. We deduce in a similar way thatLε ≤
Cε−4 and Jε ≤ Cε−5. As observed in Jourdain and Méléard [19], if g : R

+ → R
+

is a bounded function such that g(t) ≤ c1
∫ t

0 g(s)ds + c2t for all t ∈ [0, T ], then
g(t) ≤ c2

c1
exp(c1T ). This and (83) provide an upper bound for the l.h.s. of (78) by

the constant c2
c1

exp(c1T ), where

c1 = 2Rh̄
(
Lε + Jε(1 + RLεh̄T )

)+ h̄(Mε + Lε(1 + RLεh̄T )+ LεR)

and c2 = 2Rh̄√
n
(Mε(1 + RLεh̄T )+ Lε). The statement follows by noting the exis-

tence of universal positive constants C,C′,C′′ and ε0 (in particular independent of
R, h̄ and T ) such that

CJεLε(Rh̄)2T ≤ c1 ≤ C′JεLεh̄(R + 1)(h̄+ RT )

and that, for all ε ∈]0, ε0[,

c2 ≤ C′′ L2
ε√
n
Rh̄(1 + Rh̄T ).

�

We can take for instance χR defined by

χR(φ) =
{
φ if |φ| ≤ R,
R
|φ| φ if |φ| ≥ R.

(which is the truncation function proposed in [13]).
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Remark 5.1. In [13], Esposito and Pulvirenti claimed (without proving) the
existence of a nonlinear process satisfying analogous conditions as (69),(70), but
without the truncation χR on the process� inside the expectation that we imposed
in (70). Indeed, truncating “outside the expectation” in (69) is not strictly necessary:
the two previous theorems can also be proved in that case, by bounding |�| and
|�i | above by exp{LεRh̄T } (thanks to Gronwall’s lemma), instead of the bounds
(75) and (81). In turn, it seems not possible to obtain these results in the way con-
jectured in [13] (truncating � only outside the expectation). In fact, one cannot
then provide a bound for the process � by absolute constants as in (75), which is
crucial for estimate (74) to hold (or for an analogous to it with a different metric),
and therefore to ensure that an iteration (fixed point) procedure will converge.

6. The 3 dimensional stochastic vortex method

We will now state and prove our main result. Recall that w ∈ F0,p,T (withp ∈] 3
2 , 3[)

is the solution of the mild vortex equation (10) with initial conditionw0 ∈ Lp3 ∩L1
3

given by Theorem 3.1. We have T 1− 3
2p ‖w0‖p < 0(p) for the constant 0(p) > 0

given therein, and |||w|||0,p,T ≤ 2‖w0‖p. Let us write

u(t, x) = K(w)(t, x)

for all (t, x) ∈ [0, T ] × R
3, and fix a real number

r◦ ∈]3,
3p

3 − p
[.

Remark 6.1. By taking in Corollary 3.1 ii) A = 2‖w0‖p and r = r◦ , we deduce
the existence of a constant Ĉ(‖w0‖p, T , p), depending on w only through ‖w0‖p,
such that

‖∇u(t)‖∞ ≤ t
− 1

2 − 3
2 (

1
p

− 1
r◦ )Ĉ(‖w0‖p, T , p) for all t ∈ [0, T ],

Consequently, if P ∈ PT

b, 3
2

is the solution of (37) associated with w, under P we

have

R(w0, T ) := exp

{
Ĉ(‖w0‖p, T , p)

∫ T

0
t
− 1

2 − 3
2 (

1
p

− 1
r◦ )dt

}
≥ sup
t∈[0,T ]

|�t | a.e.

(84)

Theorem 6.1. Assume that w0 ∈ L
p
3 ∩ L1

3 with p ∈] 3
2 , 3[ and T 1− 3

2p ‖w0‖p <
0(p). Fix R ≥ R(w0, T ) (defined in (84)) and let (εn) be a sequence converging
to 0 in such way that

1√
n

exp
{
C2ε

−9
n ‖w0‖1T (R + 1) (‖w0‖1 + T R)

}
→ 0,

where C2 is the absolute constant provided by Theorem 5.2. Furthermore, define
for each n ∈ N a system of interacting particles on R

3 × M3×3 by

Zi,n := (Xi,εn,R,n,�i,εn,R,n),
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and let P be the unique solution in PT

b, 3
2

of the nonlinear martingale problem (37).

Then, for all k ∈ N, when n → ∞, we have

law(Z1,n, Z2,n, ..., Zk,n) �⇒ P⊗k

in the space P(CkT ).
Remark 6.2. Theorem 6.1 will hold if for instance εn = (c ln n)−9, with

0 < c < C−1
2 ((R + 1)(‖w0‖1 + 1)(T + 1))−2 .

The proof of Theorem 6.1 will use similar techniques as those in [27] or [14] for the
equations considered therein. First we will prove that under the conditions ensuring
existence of the solution w, P can be approximated by a family of solutions Pn

of some nonlinear martingale problems with regular interactions, associated with
the solutions wεn ∈ F0,p,T of mollified vortex equations (involving the smoothed
kernel Kεn ).

6.1. The mollified equations

Consider the operator Kε defined as in Section 4.3, and for each ε > 0 define

Bε(v′, v)(t, x) =
∫ t

0

3∑
j=1

∫
R3

∂Gt−s
∂yj

(x − y)

[
Kε(v′)j (s, y)v(s, y)− vj (s, y)Kε(v′)(s, y)

]
dy ds. (85)

Remark 6.3. In virtue of Remark 4.3, the operator Bε : F2 → F′ satisfies the same
continuity properties as the operator B in the spaces F,F′ considered in Proposition
3.1. Moreover, for each such pair (F,F′), the norm of Bε is bounded by the norm
of B.

Therefore, the same existence and regularity results of Theorem 3.1, Theorem
3.2 and Corollary 3.1 hold true with the same constants, for the family of mollified
equations

v(t, x) = w0 + Bε(v, v) (86)

We denote by wε ∈ F0,p,T the unique solution of the mollified equation (86). By
the previous remark, as in Section 4.3, for each ε > 0 the stochastic differential
equations

ξεs,t (x) = x +
√

2ν(Bt − Bs)+
∫ t

s

Kε(wε)(θ, ξεs,θ (x))dθ, for all t ∈ [s, T ]

define a process (s, t, x) �→ ξεs,t (x) which is continuously differentiable in x for
all (s, t).

Let (εn) be a sequence converging to 0 and define

Xnt := ξ
εn
0,t (X0), and �nt = ∇ξεn0,t (X0) with t ∈ [0, T ].
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The law of (Xn,�n) is denoted by Pn, and we write

ρn(t, x) and ρ̃n(t, x)

for bi-measurable versions of the densities of (P n)◦t and P̃ nt respectively. By similar
arguments as in the proof of Lemma 4.4, it is checked that ρ̃n ∈ F0,p,T , and that

ρ̃n(t, x) =
∫

R3
Gνt (x − y)w0(y)dy

∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)
[
Kεn(wεn)j (s, y)ρ̃

n(s, y)− ρ̃nj (s, y)K
εn(wεn)(s, y)

]
dy ds.

(87)

Since uniqueness in F0,p,T holds for equation (87), we deduce that

ρ̃n = wεn (88)

for all n ∈ N. Thus, (Xn,�n) solves the nonlinear stochastic differential equation

Xnt = X0 +
√

2νBt +
∫ t

0
uεn(s, Xns )ds

�nt = Id +
∫ t

0
∇uεn(s, Xns )�

n
s ds

(89)

with

uεn(s, x) = E
[
Kεn(x −Xns ) ∧�ns h0(X0)

]
. (90)

The reader should compare this process without truncation χR with that in (69)–
(70).

Proposition 6.1. i) For all t ∈ [0, T ] and n ∈ N, one has ρ̃n(t) ∈ Lp3 , ρn(t) ∈
Lp , and

sup
n∈N

|||ρ̃n|||0,p,T < ∞, sup
n∈N

|||ρn|||0,p,T < ∞. (91)

Moreover, ρ̃n(t) converges in Lp3 for each t ∈ [0, T ] and in L1([0, T ], Lp3 ) to
w(t). Similarly,ρn(t) converges inLp for each t ∈ [0, T ] and inL1([0, T ], Lp)
to ρ(t) (the unique solution of the linear equation (51)).

ii) The sequence (P n, n ∈ N) is uniformly tight.
iii) When n → ∞, one has Pn �⇒ P .

Proof. i) The uniform bound for |||ρ̃n|||0,p,T is clear from (88) and Remark 6.3,
and the bound for |||ρn|||0,p,T follows as in Lemma 4.4. The proof of the con-
vergence ρ̃n → w is also similar as therein, using the estimate

‖ρ̃n(t)− w(t)‖p ≤ C

∫ t

0
(t − s)

− 3
2p ‖Kεn(w)(s)− K(w)(s)‖q ds

+C
∫ t

0
(t − s)

− 3
2p ‖ρ̃n(s)− w(s)‖p ds



A probabilistic interpretation and stochastic particle approximations

which can be deduce with Remark 4.3. The convergence of ρn is obtained in
a similar way.

ii) In virtue of the uniform bounds for |||wεn |||1,p,T and |||wεn |||1,r,(T ;p) pointed out
in Remark 6.3, the proof is done exactly in the same way as Lemma 4.6.

iii) We just have to identify the limiting points in a similar way as in Proposition
4.2. IfQ is the limit of a convergent subsequence renamed Pn, we only need to
check thatEQ(κ(X)) = 0 andEQ(ζ(X,�)) = 0, where κ : C([0, T ],R3) →
R and ζ : C([0, T ],R3) × C([0, T ],M3×3) → R are the functions defined
in (61) and (62). We know that

EP
n

[(∫ t

s

{
∂f

∂τ
(τ,Xτ )+ ν�f (τ,Xτ )+ Kεn(wεn)(τ,Xτ )∇f (τ,Xτ )

}
dτ

+f (t, Xt )− f (s,Xs)

)
× λ(Xs1 , . . . , Xsm)

]
= 0,

and therefore

EP
n

(κ(X)) = EP
n

[ ∫ t

s

(
K(w)(τ,Xτ )∇f (τ,Xτ )

−K(εn)(w(εn))(τ,Xτ )∇f (τ,Xτ )
)
dτ

×λ(Xs1 , . . . , Xsm)
]
.

We deduce that

∣∣∣EPn(κ(X))
∣∣∣ ≤ C sup

k∈N

|||ρk|||0,q∗,T
∫ T

0

∥∥Kεn(wεn)(τ )− K(w)(τ )
∥∥
q
dτ

≤ C

∫ T

0

( ∥∥wεn(τ )− w(τ )
∥∥
p

+ ∥∥Kεn(w)(τ )− K(w)(τ )
∥∥
q

)
dτ

thanks to Remark 4.3 (and with C a finite constant), and we conclude with
Remark 4.3 thatEQ(κ(X)) = 0. In a similar way, one can adapt the arguments
of Proposition 4.2 to prove that EQ(ζ(X,�)) = 0. The only point that needs
special attention is to establish the uniform bound

sup
k∈N

|||ρk|||0,p∗,(T ;p) < ∞,

when p < 2. This can be justified by similar arguments as in Proposition 4.2
using the fact that the norm of the linear functional

η(t, x) �→
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂yj

(x − y)Kεn(wεn)j (s, y)η(s, y) dy ds,

defined fromF0,r,(T ;p) toF0,r ′,(T ;p), can be estimated in terms of |||wεn |||0,r,(T ;p)
by Remark 4.3, and the latter is bounded independently of n as asserted in
Remark 6.3. �
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6.2. Convergence of the particle approximations

By (90), (88) and the definition of ρ̃n, the drift term uεn of the nonlinear process
(Xn,�n) is given by

uεn(t, x) = Kεn(wεn)(t, x).

The following fact is crucial (a similar remark was done by Esposito and Pulvirenti
[13] in a more restrictive functional setting):

Remark 6.4. Since |||wεn |||0,p,T ≤ 2‖w0‖p , we have

‖∇uεn(t)‖∞ ≤ t
− 1

2 − 3
2 (

1
p

− 1
r
)
Ĉ(‖w0‖p, T , p)

for all t ∈ [0, T ], n ∈ N, with Ĉ(‖w0‖p, T , p) the same constant of Remark 6.1.
Thus, from (89) and Lemma 4.5 it follows that for all n ∈ N, almost surely

sup
t∈[0,T ]

|�nt | ≤ R(w0, T ). (92)

Consequently, we have the identity χR(�n) = �n for all R ≥ R(w0, T ), and then,
the nonlinear process (89)–(90) is a weak solution of the nonlinear McKean-Vlasov
equation (69)–(70) on the interval [0, T ]. Uniqueness in law for (69)–(70) implies
the following result.

Proposition 6.2. Let R ≥ R(w0, T ) and let the processes (Xεn,R,�εn,R) and
(Xn,�n) be defined on [0, T ] respectively by (69)–(70) and (89)–(90). Then, for
all n ∈ N we have

Pn = law(Xεn,R,�εn,R),

Proof of Theorem 6.1: Let k ∈ N be fixed. Consider the set P(CkT ) of probability
measures on the space

CkT := C([0, T ], (R3)k × (M3×3)
k),

and denote byDkT the Kantorovich-Rubinstein distance on P(CkT ), associated to the
following distance on CkT :

∑k
j=1

{
sup0≤t≤T

[
min{|xj (t) − yj (t)|, 1}

+ min{|φj (t)− ψj (t)|, 1}]}.
Denote by Z

i,n
:= (Xi,εn,R,�i,εn,R) the nonlinear processes (77) and ε = εn.

If P is the solution in PT

b, 3
2

of the nonlinear martingale problem (37), we have

DkT

(
(law(Z1,n, . . . , Zk,n), P⊗k

)

≤ DkT

(
(law(Z1,n, . . . , Zk,n), law(Z

1,n
. . . , Z

k,n
)
)

+DkT
(
law(Z

1,n
. . . , Z

k,n
), P⊗k)

≤ C

k∑
i=1

E

[
sup
t∈[0,T ]

{
|Xi,εn,R,nt −X

i,εn,R
t | + |�i,εn,R,nt −�

i,εn,R
t |

}]

+DkT
(
(P n)⊗k, P⊗k),
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thanks also to Proposition 6.2. The term involving the sum is bounded by

k
Cεn√
n

exp
{
C2ε

−9
n ‖w0‖1T (R + 1) (‖w0‖1 + RT )

}

by Theorem 5.2, and goes to 0 by the choice of εn. The last term goes to 0 thanks
Proposition 6.1 iii). �

Remark 6.5 The distance betweenPn andP could estimated in terms of ‖Kεn(wεn)

− K(w)‖∞ and ‖∇Kεn(wεn) − ∇K(w)‖∞, but an explicit dependence on εn of
these quantities seems hard to obtain without additional regularity assumption. On
the other hand, an attempt to improve the propagation of chaos estimates in Section
5 should take into account specific properties of the interaction kernel, which we
have not been able to do here.

A first consequence is convergence at the level of empirical processes. Con-
sider the space M3(R

3) of finite R
3-valued measures on R

3, endowed with the
weak topology, and the space C([0, T ],M3(R

3)) with the topology of uniform
convergence.

Corollary 6.1 The family (µ̃n,εn,Rt )0≤t≤T of R
3-weighted empirical measures on

R
3

µ̃
n,εn,R
t = 1

n

n∑
i=1

δ
X
i,εn,R,n
t

·
(
χR(�

i,εn,R,n
t )h0(X

i
0)
)

converges in law and in probability to (w(t, x)dx)0≤t≤T in the space C([0, T ],
M3(R

3)).

Proof Since law(Z1,n, ..., Zn,n) is exchangeable, propagation of chaos in Theo-
rem 6.1 is equivalent to the convergence in law (and in probability) of the empirical
measure of the system to P , as a probability measure in the path space (see [33]).
This implies that

E

(
1

n

n∑
i=1

f(Xi,εn,R,nt )χ(�
i,εn,R,n
t )f0(X

i
0)

)
→ EP (f(Xt )χ(�t )f0(X0)) ,

for all continuous bounded functions f0, f : R
3 → R

3 and χ : M3×3 → M3×3.
Let k ∈ N and hk0 be a continuous bounded function approximating h0 as in Prop-
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osition 4.2. Since under P we have χR(�t) = �t , it follows that∣∣∣∣E〈µ̃n,εn,Rt , f〉 −
∫

R3
f(x)w(t, x)dx

∣∣∣∣
≤ E

∣∣∣∣1n
n∑
i=1

f(Xi,εn,R,nt )χR(�
i,εn,R,n
t )h0(X

i
0)− EP (f(Xt )χR(�t )h0(X0)))

∣∣∣∣

≤ E

∣∣∣∣1n
n∑
i=1

f(Xi,εn,R,nt )χR(�
i,εn,R,n
t )(h0(X

i
0)− hk0(X

i
0))

∣∣∣∣

+E
∣∣∣∣∣
1

n

n∑
i=1

f(Xi,εn,R,nt )χR(�
i,εn,R,n
t )hk0(X

i
0)− EP (f(Xt )χR(�t )hk0(X0)

∣∣∣∣∣
+EP |f(Xt )χR(�t )(hk0(X0)− h0(X0))|.

By similar arguments as in the proof of Proposition 4.2 we conclude that

lim sup
n→∞

∣∣∣∣E〈µ̃n,εn,Rt , f〉 −
∫

R3
f(x)w(t, x)dx

∣∣∣∣ = 0.

�

6.3. Stochastic approximations of the velocity field

Finally, we prove the convergence of the “approximated velocity field”, defined by

Kεn(µ̃n,εn,R)(t, x) :=
∫

R3
Kεn(x − y) ∧ µ̃n,εn,Rt (dy),

to the local solution u(t) = K(w)(t) of the Navier-Stokes equation in F0,q,T . We
need a technical lemma:

Lemma 6.1 Under the assumptions of Theorem 6.3, we have

‖∇wε(t)− ∇w(t)‖p → 0 for all t ∈]0, T ], and
∫ T

0
‖∇wε(t)− ∇w(t)‖pdt→0

when ε → 0.

Proof It is not hard to check (by similar reasons as in Lemma 4.4) that div wε(t) =
0. Let us write wε;τ := wε(τ + ·) and w0;τ = w(τ + ·). For each ε ≥ 0 and
τ ∈ [0, T ], wτ,ε ∈ F1,p,T−τ solves the “shifted” equation wε;τ = Gνt ∗ wε(τ ) +
Bε(wε;τ ,wε;τ ). Taking derivatives in this equation yields, for k = 1, 2, 3,

∂(wε;τ )k
∂xi

(t, x) =
∫

R3

∂Gνt

∂xi
(x − y)(wε)k(τ, y)dy

−
∫ t

0

3∑
j=1

∫
R3

∂Gνt−s
∂xi

(x − y)

[
Kε;τ (wε;τ )j (s, y)

∂wε;τ
k (s, y)

∂yj

−wε;τ
j (s, y)

∂Kε(wε;τ )k(s, y)
∂yj

]
dy ds.
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From this and the uniform bounds for |||wε|||0,p,T we deduce (with similar arguments
as in Theorem 3.1 a)) that

‖∇wε;τ (t)− ∇w0;τ (t)‖p ≤ Ct−
1
2 ‖wε(τ )− w(τ )‖p

+C
∫ t

0
(t − s)

− 3
2p (τ + s)−

1
2
[‖wε;τ (s)− w0;τ (s)‖p

+‖Kε(w0,τ )(s)− K(w0,τ )(s)‖q
]
ds

+C
∫ t

0
(t − s)

− 3
2p
[‖∇wε;τ (s)+ ∇w0;τ (s)‖p

+‖∇Kε(w0;τ )(s)− ∇K(w0;τ )(s)‖q
]
ds.

Now define δε,τ (t) := ‖∇wε;τ (t)− ∇w0;τ (t)‖p, and

�ε,τ (t) := τ− 1
2

(
‖wε;τ (t)− w0;τ (t)‖p + ‖Kε(w0,τ )(t)− K(w0,τ )(t)‖q

)

+‖∇Kε(w0,τ )(t)− ∇K(w0,τ )(t)‖q,
so that for all t ∈]0, T − τ ] we have

δε,τ (t) ≤ Ct−
1
2 ‖wε(τ )− w(τ )‖p +

∫ t

0
(t − s)

− 3
2p (�ε,τ (s)+ δε,τ (s))ds.

Observe that since w0,τ ∈ F0,p,T−τ ∩ F0,q,T−τ , the convergence �ε,τ (t) → 0
holds for each t ∈]0, T − τ [ when ε → 0 (cf. Remark 4.3).

As in the proof of Lemma 4.4 (and with the same notation), it follows by induc-
tion that

δε,τ (t) ≤ C‖wε(τ )− w(τ )‖p
Ñ(p)∑
k=1

t (k−1)θ0− 1
2

+C
∫ t

0
α(t − s)�ε,τ (s)ds + C(T )

∫ t

0
δε,τ (s)ds. (93)

Thus, integrating and using Gronwall’s lemma yield, for all λ ∈ [0, T − τ ],
∫ λ

0
δε,τ (t)dt ≤ C(T )‖wε(τ )− w(τ )‖p + C′(T )

∫ T−τ

0

∫ t

0
α(t − s)�ε,τ (s)ds dt.

Therefore,
∫ λ

0 δ
ε,τ (t)dt → 0 and from this and (93) we deduce that δε,τ (t) → 0

for all t ∈]0, T − τ [. Consequently, ∇wε(t) → ∇w(t) in (Lp3 )
3 for all t ∈]0, T ].

Since wε is bounded in F1,p,T uniformly in ε, the convergence takes also place in
L1([0, T ], (Lp3 )

3). �

Corollary 6.2 Let T 1− 3
2p ‖w0‖p < 0(p) and denote u = K(w). Let εn =

(c ln n)−9 be a sequence satisfying the condition of Theorem 6.1. Then, when
n → ∞, we have

sup
x∈R3

E
(∣∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)

∣∣∣
)

→ 0



J. Fontbona

for each t ∈]0, T ], and

sup
x∈R3

E

(∫ T

0

∣∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)
∣∣∣ dt

)
→ 0.

Proof For all (t, x) ∈ [0, T ] × R
3, it holds that

∣∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)
∣∣∣

≤
∣∣∣∣Kεn(µ̃n,εn,R)(t, x)

−1

n

n∑
i=1

Kεn(x −X
i,εn,R
t ) ∧ (χR(�i,εn,Rt )h0(X

i
0))

∣∣∣∣

+
∣∣∣∣1n

n∑
i=1

Kεn(x −X
i,εn,R
t ) ∧ (χR(�i,εn,Rt )h0(X

i
0))

−
∫
CT
Kεn(x − y(s)) ∧ χR(φ(s))h0(x(0))P

εn,R(dy, dφ)

∣∣∣∣
+|Kεn(wεn)(t, x)− u(t, x)|

(94)

with P εn,R = P εn = law(Xi,εn,R,�i,εn,R). The independence of the processes
(Xi,εn,R,�i,εn,R), i ∈ N, imply that the expectation of the second term is bounded
by 1√

n
(2MεnR‖w0‖1). Thus,

E

∣∣∣Kεn(µ̃
n,εn,R)(t, x)−u(t, x)

∣∣∣ ≤ (LεnR‖w0‖1+Mεn‖w0‖1)
Cε(1+R‖w0‖1T )√

n(R‖w0‖1T )

× exp{C2ε
−9
n ‖w0‖1T (R + 1)(‖w0‖1 + RT )}

+ 1√
n
(2MεnR‖w0‖1)

+‖Kεn(wεn)(t)− Kεn(w)(t)‖∞
+‖Kεn(w)(t)+ u(t)‖∞. (95)

The first term is bounded byC (ln n)α1

nα2 for some constantsC, α1, α2 > 0 and goes to
0 when n → ∞. The same holds for the second term for some other constants. The
third is bounded by C‖wεn(t)− w(t)‖W 1,p by Remark 4.3, and goes to 0 for each
t ∈]0, T ] and in L1([0, T ],R), thanks to Proposition 6.1 i) and Lemma 6.1. The
convergence of the last term for each t ∈]0, T ] and in L1([0, T ],R) is obtained by
standard arguments. �
Remark 6.6 An improvement of the estimate of the first term in the r.h.s. of (94)
(by avoiding the dependence on the divergent constants Lεn and Mεn used in the
l.h.s. of (95)), could be envisaged by adapting argument of Méléard [27] for the two
dimensional vortex equation, relying on uniform Lp-estimates for the densities of
the particles. These estimates are based on the results on generators in generalized
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divergence form of Osada [30], and on a representation formula for the Biot-Sav-
art kernel in 2 dimensions given therein. We have not been able to generalize that
formula (and the consequent argument) to the three dimensional case.
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