
ARTICLE IN PRESS
�Correspond
E-mail addr

1First author
Modelling of auxin transport affected by gravity and differential
radial growth

Loı̈c Foresta,�,1, Fernando Padillab,1, Salomé Martı́nezb,c,
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bCentro de Modelamiento Matemático (CMM UMR CNRS 2071), Av. Blanco Encalada 2120 piso 7, Santiago de Chile, Chile
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Abstract

When a tree stem deviates from verticality, as a result of different environmental factors, patterns of differential radial growth appear.

Higher rates of wood production have been observed on the lower side of the tree and lower rates in the opposite side. Biological studies

on plant hormones have shown that the concentration of auxin induces radial growth. They also have demonstrated the redistribution of

auxin transport in response to gravity. Auxin is then designated as a mediator for differential growth.

This paper presents a model for three-dimensional (3-D) auxin transport in conifer trees, which includes gravity dependence. We

obtain realistic heterogeneous patterns of auxin distribution over the tree. Then, we propose a law of growth based on auxin

concentration to simulate successive differential radial growths. The predicted growths are compared with experimental results of

reconstruction of 3-D annual growth of Radiata pine.
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1. Introduction

In woody plants, the radial growth of the stem occurs by
the successive additions of layers of cells, which differ-
entiate from the vascular cambium. Cambium is a
continuous layer of cells called initials, located between
the xylem and phloem, throughout the entire tree. Initials
differentiate into xylem cells inward and into phloem cells
outward of the cambium. As a result of this process,
diameter of stems and roots increases (for a review see,
Han, 2001; Harris, 1991; Larson, 1994). Often, plants
change their pattern of growth rate in response to
environmental stimuli such as light or gravity or in
response to internal signals (Parker and Briggs, 1990).
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There exists much evidence about the influence of plant
hormones on the regulation of cell division and cell
expansion (Clare et al., 2000). As Davies (1995) indicates,
the plant hormones influence physiological processes at low
concentrations, mainly growth, differentiation and devel-
opment.
The auxin indole-3-acetic acid (IAA) has long been

recognized as an important hormone regulating a wide
array of responses in the growth and development of plants
(Goldsmith, 1977, 1993; Little and Savidge, 1987). For
many years, studies on IAA have been carried out to
determine whether or not plants redistribute or regulate the
concentration of IAA to produce growth changes. How-
ever, the contradictory results from these experiments have
not provided a complete understanding of how IAA
regulates growth and the development of the vascular
system. As Uggla et al. (1996) indicate, failure to develop a
unifying concept for the role of IAA in the regulation of
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patterns of vascular tissue in both, primary and secondary
plant bodies, is due to a limited knowledge not only of IAA
perception mechanism, but also of its metabolism, trans-
port and final distribution.

Today, there are some universally accepted propositions
about auxins, such as buds and developing leaves are the
major sources of IAA (Aloni, 2004; Goldsmith, 1977; Little
and Savidge, 1987; Parker and Briggs, 1990), or that IAA is
transported in a basipetal polar fashion (Goldsmith, 1977;
Lomax et al., 1995; Rashotte et al., 2003). Kaldeway
(1984), cited by Uggla et al. (1998), indicates that apically
produced IAA is actively transported in a basipetal polar
transport system which has been localized in the cambial
zone,2 its differentiating derivatives and the phloem region.
Uggla et al. (1996) found high concentration of IAA in the
cambial zone and its immediate derivatives, which suggests
that this region is either a site of biosynthesis, a site of IAA
transport, or both. The velocity of transport of the IAA is
5–20mm per hour in the shoots and coleoptiles of a wide
range of plant species (Lomax et al., 1995).

Auxin has been involved as the major signal mediating
tropic stimuli. In late 1920s, the Cholodny–Went hypoth-
esis was formulated to explain the gravitropic response of
plant roots and shoots. This hypothesis proposes that the
differential growth rates during the gravitropic response
are based on auxin redistribution and altered auxin
transport within plant tissue (Evans, 1991). Strong support
for this hypothesis comes from the ability of auxin
transport inhibitors to completely abolish the gravity
response in both roots and shoots (Katekar and Geissler,
1977; Muday and Haworth, 1994 cited by Lomax et al.,
1995). Evidence of a redistribution of IAA due to
gravitropism comes from many experimental works (Dolk,
1936; Friml et al., 2002; Funada et al., 1990; Gillespie and
Thimann, 1963; Goldsmith and Wilkins, 1964; Ottens-
chläger et al., 2003; Parker and Briggs, 1990; Rashotte
et al., 2000). Concerning the transport of auxin, the
chemiosmotic model postulates that polar auxin transport
occurs through the action of cellular auxin influx and efflux
carriers located in the plasma membrane of transporting
cells (Rubery and Sheldrake, 1974). This model proposes
that the efflux carrier is asymmetrically localized at the
basal side of cells determining the polarity of IAA
transport in plant tissues. Several experimental works have
been carried out to identify the protein involved in the
transport of auxin. Friml et al. (2002) showed that
asymmetric growth in Arabidopsis is correlated with an
asymmetric auxin distribution. This follows redistribution
of a protein, PIN3, laterally in the cell membrane. PIN3 is
a likely candidate for an efflux component of the lateral
auxin transport system. Bennett et al. (1996) reported a
protein called AUX1, which could act as an auxin influx
protein. Summarising, Muday et al. (2000) pointed out that
two protein complexes control the auxin movement into
2Cambial zone includes the vascular cambium and the adjacent layers of

daughter cells in differentiating process.
and out of the cells, the auxin uptake carrier (AUX) and
the auxin efflux carrier (PIN), which control the amount
and direction of polar auxin transport.
Goldsmith (1977) points out that the evidence of a

passive diffusion of IAA is provided by the fact that
respiration inhibitors do not completely stop the uptake
and efflux of auxin from individual cells. The specificity
and saturability of the process also confirm mediation by
protein components. This specific active protein-mediated
transport is a critical component of a transport system that
can be differentially regulated during plant growth,
development, and response to the environment (Lomax
et al., 1995). Moreover, these authors support the view that
auxin transport is important in transduction of the gravity
signal, not in its perception.
The results of Uggla et al. (1996) suggest that an

increased basipetal supply of IAA to the vascular cambium
during resumption of shoot growth results in a wider radial
IAA distribution rather than a higher IAA concentration
in the cell division zone. This observation provides further
support for the concept that IAA controls cambial growth
by determining the radial extent of dividing cells in the
cambial zone through positional signalling. Furthermore,
this concept would explain the relationship between IAA
amount and the cambial growth found by these authors
(Sundberg et al., 1991). Although there exist some
evidences of the influence of other hormones on the growth
processes, such as ethylene (Chen et al., 1999; Eklund and
Little, 1998; Eklund and Tiltu, 1999), cytokinins (Chen
et al., 1999) and gibberellins (Kalev and Aloni, 1998; Wang
et al., 1997), IAA is considered to be an important growth
regulator in plants.
Many experimental studies have been carried out to

describe the role of auxin in formation of reaction wood
(Du et al., 2004; Funada et al., 1990; Phelps et al., 1977;
Sundberg et al., 1994; Yamaguchi et al., 1980; Wardrop
and Davies, 1964), involving a redistribution of auxin or
auxin-transport inhibitors. These findings suggest that the
formation of reaction wood is associated with a high level
of auxin to induce compression wood (gymnosperms) and
low level of auxin for tension wood (angiosperms).
However, other authors (Hellgren, 2003, Hellgren et al.,
2004) point out that induction of reaction wood is not
mediated by the IAA level in the cambial tissues, but by
other factors such as auxin perception mechanisms or
additional signals. Despite that the formation of compres-
sion wood is not completely understood, it is generally
accepted that reaction wood is formed in xylem tissue in
response to a non-vertical orientation of the stem (Plomion
et al., 2000) and it is related with the intrinsic growth
direction and hormonal influence (Sundberg et al., 1994).
The reaction wood constitutes an important defect in wood
quality, affecting the mechanical, physical and chemical
properties of the wood, resulting in important losses in the
conversion processes.
We have developed a model to explain a theoretical

redistribution of IAA in the vascular cambium, as a result
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of the natural diffusion and transport processes influenced
by gravity. The model does not attempt to explain the
complex transport system of IAA, which has not been
completely elucidated, but it represents a simplified
mechanism by which IAA is transported inside the tree
and how gravity influences this process. We also present a
simplified model of radial growth based on the predicted
auxin distributions. Three-dimensional (3-D) patterns of
growth are then compared with experimental ones.

2. Modelling of auxin transport

Mathematical models for auxin transport at least go
back to the MGGM model due to Mitchison (1980) and
Goldsmith et al. (1981). This is a 1-D model in which the
transport of auxin occurs in a column of cells.

Kramer (2001) defines the cambial surface to represent
the cambium as a surface, because cambium thickness is
negligible compared to tree dimensions. Using this concept,
he formulated a more recent model (2002), that considers
auxin transport in a local vertical plane of the cambial

surface.
In both models, the flux ~J of auxin concentration C

consists of two terms: one related to passive diffusion and
one to active transport, i.e.

~J ¼ DrC þ vC~u, (1)

where D is a matrix accounting for the anisotropy of the
diffusion and v is the velocity of the active transport along
the direction defined by the unitary vector ~u. In Kramer
(2002), the direction of active transport is determined
according to the orientation of the cambial cells. The
change in auxin concentration is given by the following
equation of mass conservation:

qC

qt
¼ �r � ~J. (2)

In the model proposed by Kramer, the anisotropy of the
diffusion is due to the fact that cellular membranes are the
main barriers to diffusion and the vertically elongated
shape of cambial cells facilitate the diffusion along the
main axis of the cells. More precisely, Eq. (2) of mass
conservation can be written as

qC

qt
¼ �r � ððvC �DjjðrC �~uÞÞ~u�D?ðrC � ~wÞ~wÞ, (3)

where DJ4D? are the constants for longitudinal and
transversal diffusion, respectively, and ~w is the unitary
vector directly perpendicular to ~u, which defines the
transverse direction.

To be precise, we should remark that ~J and C represent
the average value of their 3-D analogues over cambial
thickness. In this way, Eq. (3) is the conservation of mass
law for averages over the cambial surface.

The auxin flux depends greatly on the vector field ~u,
which is called the grain pattern. Kramer used a second
equation for the variations in the orientation of cambial
cells. In a local vertical plane defined by coordinates
ð~x;~yÞ, ~u can be defined by its angle f with the direction
~x: ~u ¼ cosðfÞ~xþ sinðfÞ~y. The equation for the evolution
of f is

qf
qt
¼ �mrC � ~wþ KDf. (4)

This equation shows that two effects are considered. The
first term reflects that cambial cells tend to orient parallel
to the flux of auxin with m a positive proportionality
constant. The second term is introduced as a smoothing
effect. It can be interpreted as the tendency of cambial cells
to orient parallel with respect to each other.
These equations were used to study the grain pattern

generated in a local plane and not to investigate the
distribution of auxin. This formulation cannot be directly
used to model the gravitropism effect as a pure 3-D
phenomenon. To our knowledge, the only mathematical
model including the gravitropism effect is developed by
Forest and Demongeot (in press) which uses a general-
ization of Eq. (3) to account for diffusion over cambial
thickness. This model was defined in the cambium which is
represented as a thin 3-D Cartesian domain. It stipulates
that directions of auxin flow are the same as those of a
theoretical laminar fluid submitted to gravity. So, it does
not reflect the interaction between cambial cells reorienta-
tion and auxin transport. Moreover, as cambial thickness is
very small compared to the other dimensions involved, the
simulations of this model are limited by computational
capacity.
One of the aims of this paper is to propose a more

general model, which takes into account the effect of
gravity on auxin transport over a 3D cambial surface,
which we denote S. We propose that gravity strength
influences auxin transport in the cambial cells. The changes
from the vertical direction of a tree produce a redistribu-
tion of auxin, increasing the lateral movement of auxin
relative to its longitudinal transport. As a consequence of
auxin redistribution, it is produced a reorientation of
growing cambial derivatives over time and the tree tends to
verticality.
The 3-D system is now written with a new term in the

equation for angle evolution. This term generally can be
written as a function f, which depends on grain pattern
angle and gravity. It states that cambial cells also tend to
orient with respect to gravity as well as to auxin flux. Then,
the new system in Cartesian coordinates is given by

qC
qt
¼ �r � ððvC �DjjðrC �~uÞÞ~u�D?ðrC � ~wÞ~wÞ;

qf
qt
¼ KDf� mrC � ~wþ f ðf;~gÞ;

(

in S; t40: (5)

We refer the reader to the Appendix for the deduction of
the mass-transport equation.
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Note that Eqs. (5) do not include a production or
consumption term, mainly because the metabolism of
auxin is poorly understood. Also, we should point out that
the differential operators in Eqs. (5) are superficial.

The most simple equation that we can choose for f is

f ðf;~gÞ ¼ a ~w �
~g

jj~gjj

� �
, (6)

where a is a positive proportionality constant for gravity
effect.

The boundary conditions for this problem are going to
be expressed using the notation of Fig. 1. On the top
frontier ST, which is taken orthogonal to~g, the auxin flux is
vertical and constant. That is, on ST

fjST
¼ �

p
2
and ~J jST

¼ �J0~z,

where ~z is the vector (0,0,1) in Cartesian coordinates, and
~g ¼ �g~z.

On the bottom frontier SB the flux and the grain pattern
are free.

The geometry considered for system (5) is the cambial
surface S. S is a smooth surface parameterized by a
function ~rðs; yÞ such that q~r=qs � q~r=qy ¼ 0 and ~rðs;dÞ
periodic. We define two tangent vectors to the surface S:

~t1 ¼
q~r
qy

q~r
qy

����
����
�1

; ~t2 ¼
q~r
qs

q~r
qs

����
����
�1

and one normal vector

~n ¼~t1 ^~t2,

defining a local orthonormal basis ð~t1;~t2;~nÞ. The vector ~u of
cambial cells orientation is now defined by ~u ¼ cosðfÞ~t1 þ
sinðfÞ~t2 in the local basis. The transversal direction w! is
Fig. 1. Example of cambial surface geometry.
defined so as ~u ^ ~w ¼ ~n and ð~u; ~w;~nÞ is an other local
orthonormal basis, adapted to the grain pattern.

3. Results of auxin distribution in simple geometries

The solutions of PDE system defined above were
determined using finite-element method. We used the
software FEMLABs 3.0 used in interaction with MA-
TLABs 6.5, which permits to solve PDE on surfaces. For
our applications we consider the parameterization
~r : ½0;L� � ½0; 2p� ! R3, of the form:

~rðs; yÞ ¼ ~pðsÞ þ R cosðyþ yðsÞÞ~npðsÞ

þ R sinðyþ yðsÞÞ~bpðsÞ, ð7Þ

where R is the radius of the tree taken constant.~p : ½0;L� !
R3 represents the pith of the tree, parameterized using arc
length. ~np and ~bp are the normal and binormal vectors
associated to ~p, and y0ðsÞ ¼ �tðsÞ, t(s) being the torsion of
~p. According to this parameterization, ~t2 is chosen parallel
to the pith and normal cross-sections to the surface are
circles. ~p and R are chosen so as~r defines a smooth surface,
using the condition Rk(s)o1, where k(s) is the curvature
(as a reference see Do Carmo, 1976).
We used real order of magnitude for physical parameters

of Eq. (5). For all the simulations, unless it is precised
to other values, these parameters values are the following:
J0 ¼ 50 ng=cm=h, v ¼ 1 cm=h, Dk ¼ 0:05 cm2=h, D? ¼

Dk=5, g ¼ 9:81m=s2. Value of velocity is taken from
(Goldsmith et al., 1981), those of diffusion and flux from
Kramer (2001). Reference parameters values for the angle
equation are K ¼ 100 cm2=h, m ¼ 2 cm3 rad/ng/h and
a ¼ 5 rad=h. We use f as defined by (6) and we also assume
that the curve is planar, i.e. t ¼ 0. The unit length used in
the figures is centimetre.
We start by presenting results obtained for the equili-

brium problem. We find the solutions with qC=qt ¼ 0 and
qf=qt ¼ 0. These are the equilibrium states for auxin
transport and grain pattern orientation.

3.1. Straight cylinder

In this case, cambial surface is described by a cylinder
parameterized with ~pðsÞ ¼ s~z. It is easy to verify that
C ¼ J0=v, f ¼ �p=2 is solution of the PDE system. Auxin
distribution is homogeneous along the cambium and
cambial cells point in the direction of gravity. For a
cylinder of radius of 10 cm and height of 100 cm, the
relative errors between numerical and theoretical solutions
are less than 10�4 for C and f. More precisely, if fnum and
Cnum are the numeric solutions, jðfnum þ ðp=2ÞÞ=ðp=2Þjp
6� 10�5 and jðCnum � ðJ0=vÞÞ=ðJ0=vÞjp2� 10�4.
We now study perturbations of the precedent problem

with trees presenting deformations. Geometries are con-
structed using cylinders and torii. For our geometries, if the
gravity effect is not included (i.e. a ¼ 0): C ¼ J0=v, f ¼
�p=2 is solution of the problem.
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Fig. 3. Distribution of normalized auxin concentration.
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3.2. Slightly deformed tree

In this section, the deformations from the straight
cylinder are quite low. Figs. 2 and 3 show two examples
of results of auxin concentration distribution. Values are
normalized by the mean concentration of auxin, i.e. J0/v.
Simulations (Fig. 2) permit to observe zones of accumula-
tion of auxin on the lower side of the tree with respect of
gravity and depletion zones on the upper side. Fig. 3
presents two distinct zones of accumulation (and two of
depletion) as a consequence of the double deformation of
the tree.

Fig. 4 shows an example of result for the value of
orientation angle f corresponding to the case of Fig. 2.
Cambial cells are predicted to orient specifically in the zone
where curvature changes. In the first deformed zone,
defined by the upper torus, cells orientations are digressing
from the direction (f ¼ �p=2) done by the pith. This
means that directions of auxin flowing lines digress at
the gravity upper side, which produces a depletion zone.
Conversely, they converge in the gravity lower zone,
producing accumulation. Phenomenon is reverted in the
lower torus that enables auxin to redistribute and recover a
homogeneous pattern in the lower zone of the tree.

Figs. 5–7 show results of normalized auxin distribution
in the cross-section SI of the tree of Fig. 2. Surfaces present
the evolution of the solution according to the variation of
one parameter of the model: a (which measures the
intensity of gravity term) in Fig. 5, m in Fig. 6, DJ (with
Dk=D? ¼ 5, constant) in Fig. 7. Model is robust toward
changes in all parameters values (all data not shown). As
expected, for a ¼ 0, distribution is homogeneous and the
importance of the heterogeneity in auxin distribution
increases progressively with a (Fig. 5). Small values of m
trigger intensive heterogeneity in the solution, whereas high
values tend to homogenize it (Fig. 6). The graph shown in
Fig. 7 presents the different concentrations that result upon
Fig. 2. Distribution of normalized auxin concentration. SI is a particular c
varying the diffusion coefficient DJ. These results exhibit
only slight variations even if DJ is taken equal to zero. We
should mention that the results also depend poorly on the
value of K (data not shown). Studies on the dependence of
solution according to geometric parameters show that
heterogeneity increases with the radius of the surface R and
with the angle of the torus, which defines the importance of
the inclination of the tree (data not shown).

3.3. Highly deformed tree

Model can also be used in a highly deformed tree.
Because this model considers active transport, auxin can be
transported even in a horizontal or ascending trunk (Figs. 8
and 9). Patterns always contain accumulation and deple-
tion zones according to gravity.
ross-section defined for this geometry, which is used in the following.
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Fig. 5. Distribution of auxin in SI, varying the gravity coefficient a.

Fig. 4. Pattern of cambial cells’ angle in degrees measured relative to value

901: ((180/p)f+90).

Fig. 6. Distribution of auxin in SI, varying the coefficient m.

Fig. 7. Distribution of auxin in SI, according to a variation of DJ from 0

to 1.

L. Forest et al.
3.4. Time-dependent results

The model can also be run with its time-dependent term.
It corresponds to the case of a straight tree deformed
‘‘instantaneously’’ to a curved one. At the time of the
occurrence of the deformation, let suppose that the grain
pattern follows the deformation. That is we use the initial
condition fðt0Þ ¼ �p=2 and Cðt0Þ ¼ J0=v. The model
reflects the progressive formation of accumulation and
depletion zones as a result of the change in auxin flowing
directions (data not shown).

4. Radial growth

In this section, we are interested in the differential radial
growth of the tree mediated by auxin. Our aim is not to
quantify how much the tree grows but how growth is
distributed over the trunk.
Simulating radial growth presents difficulties both from

the mathematical and computational points of view. The
basic idea is that the surface, which represents the trunk,
mainly grows in its normal direction. The radial increment
is taken as a function of the auxin concentration C. The
simplest law, proposed by Kramer (2001), is that the radial
growth is proportional to the concentration of auxin.
In our simulations, to each point M in the cambial

surface S we associate a new point M 0 ¼M þ GðCÞ~nðMÞ.
The function G(C) is the auxin-dependent law of growth
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Fig. 8. Distribution of auxin in a highly deformed tree, which presents a horizontal portion.

Fig. 9. Distribution of auxin in a highly deformed tree, which presents an

ascending slope.

Fig. 10. Local description of discrete model elements.

L. Forest et al.
and ~nðMÞ denotes the unit outer normal vector to S at the
point M. As a simple law, we set GðCÞ ¼ a1 þ a2C. The
constant a1 accounts for residual growth whereas a2 is a
proportionality constant for auxin-dependent growth.

The main mathematical problem here is whether or not,
the set of points M0 represents a new smooth surface.
Indeed, if the initial surface has a highly curved portion
then this law of growth would present a problem due to the
crossing of the new set of points. If we consider the simple
geometries given by Eq. (7), then this iteration produces a
new smooth surface, if growth rates and curvature are
suitably chosen.

From the computational point of view there are also
important problems to be solved. Assume that the initial
surface is discretized with a regular mesh (Fig. 10). Assume
also that the differential problem (5) is solved using this
mesh. We can apply the law of growth to each point of the
mesh in order to get a new one that should represent an
approximation of the iterated surface and then start the
problem again. The computational problem is that this new
mesh is not necessarily regular which induces errors in the
solution of (5).
One way to get an approximation of this law of growth is

to consider a discrete approximation of (5), replacing the
curve by a polygonal line and the circles by finite regular
polygons on a plane whose normal is tangent to the line.
Then we use a non-homogeneous random walk on this
finite set which is an approximation of a diffusion-
transport equation. Each point on this mesh has four
neighbours and the transition probabilities between them
depend on two factors: the direction of the movement
(transversal or longitudinal) and the projection of the
gravity in these two directions.
Denoting p(k, lji, j) the transition probability from Mij to

Mkl (which are two points of the mesh), we set:

pði; j þ 1ji; jÞ ¼ a0ð1þ F ijÞ; pði; j � 1ji; jÞ ¼ a0ð1� FijÞ;

pði � 1; jji; jÞ ¼ b0ð1�HijÞ; pði þ 1; jji; jÞ ¼ b0ð1þHijÞ

with b04a0, 2a0 þ 2b0 ¼ 1. Fij depends on the projection of
the gravity in the transversal direction. Hij depends on two
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factors: the projection of the gravity on longitudinal
direction and another term that privileges the transport
in the downward longitudinal direction.
Fig. 11. Comparisons between discrete and continuous models: (a) the

solution of auxin distribution obtained with the random walk model and

(b) the solution from the continuous model.

Fig. 12. (a) Photograph of a tree which presents a deformed portion (blue

longitudinal section of the marked zone shown in (a). The reconstruction show

over this tree for every year of growth.
In this simplified discrete approach, the dynamics of
cambial cells orientation is not considered. However,
lateral reallocation of auxin flux triggering accumulation
is included because the principal direction of transport is
longitudinal with a drift in the direction of gravity.
This model produces patterns of concentration similar to

the ones of the continuous model (5). Fig. 11 shows a
graphical comparison between them.
Using the law of radial growth each polygon is

transformed into a new one in the same plane. This new
polygon is approximated by a circle and the circle centres
define a new polygonal line to start again. This method
permits to iterate several steps of growth.
Fig. 12a shows a Radiata pine tree, which presents a

deformation at a height of 2m due to damage caused by
European Pine Shoot Moth (Rhyacionia buoliana). Fig 12b
is a computational reconstruction of the marked zone
shown in Fig. 12a, using the methodology developed by
Cominetti et al. (2002). From this reconstruction, yearly
annual volume increments are calculated. Fig. 12c is the
simulation obtained by our approach. The initial condition
for the simulation is the geometry of the tree at the first
year, approximated by a conical tubular surface. The
pattern of growth is determined according to our model
and the annual volume increments are adjusted to fit the
real ones. Thus the values of a1 and a2 are determined for
each iteration in terms of the yearly volume increment.
The external appearance of the tree does not reveal the

magnitude of the initial deformation. Indeed, the tree
reshapes progressively by means of differential radial
growth. The model is able to reflect the evolution of the
underlying pattern of differential radial growth.
frame). (b) Represents the computational reconstruction made from a

s the annual growth rings for 8 years and (c) the result of the simulation
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5. Discussion and conclusions

In the first part, a model is developed for auxin
transport. This new framework permits to obtain auxin
concentration in a smooth surface, taking into account
the influence of gravity in the transport process. In the
last part, a law of growth based on auxin concentra-
tion is proposed to simulate differential radial growth over
a tree.

The evolutions of patterns according to parameters
variations are always coherent. For example, heterogeneity
of auxin distribution increases with the weight of gravity
term and diffusion terms are shown to be of minor
importance with respect to active transport. We also show
that the equation accounting for grain pattern dynamic
used in Kramer (2002) can be extended to reflect the 3-D
redistribution of auxin flux following the stimulus of
gravity. However, these results need more precise experi-
mental data in order to investigate if variables K, m and
function f can be estimated.

The proposed law of growth only depends on IAA
concentration because the aim of this paper was to explain
differential growth and not growth in general. Our paper
supports the idea that IAA mediates the differential growth
in a conifer tree. The model can predict the allocation of
the growth over the tree but does not calculate the
volumetric rate of growth of the whole tree per unit of
time. Obtaining a law for calculating volumetric growth
requires considering many variables, which is out of the
scope of this paper.

An improvement should also include mechanical con-
siderations to deal with physical constraints of non-
interpenetration during theoretical growth. The mechanical
properties of tree can differ: it is well known that
compression wood is denser that normal wood. This
variation in mechanical properties can have an importance
in the distribution of differential growth because compres-
sion wood is usually located in highly curved zones of
trees. In such zones, the competition between cells for
spreading is particularly intense, as they tend to grow in the
same space (normal directions are converging). Thus,
higher rates of cellular elimination from the cambium
and some redirections of the growth normal direction
appear (Forest et al., 2004; Forest and Demongeot, in
press). A more realistic law of growth should be entirely
3-D as the normal growth direction can be largely
disturbed: in concavities for example, some digressive
component is clearly needed.

Another point to consider would be the inclusion of a
regulation system of auxin metabolism, which may
consider synergy with other plant hormones.
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Appendix

In this section, we will explain the deduction of mass
conservation Eq. (3). We assume for simplicity that the
cambial surface S is parameterized by a smooth function
r : ½�L; l� � ½0; 2p� ! R3, where Lbl40, and rðs; 0Þ ¼
rðs; 2pÞ for all sA[�L, l]. The tangent plane of S at r(s,y)
is generated by the vectors qr/qs and qr/qy. We suppose
that for s close to l and sp0, the surface S is a straight
cylinder, with radius R1 and R2, respectively, and axis
parallel to ~z ¼ ð0; 0; 1Þ, where �~z gives the direction of the
gravity. We are interested in the profile of auxin distribu-
tion in the portion of the cambial surface given by 0osol,
thus the condition l5L represents the fact that dimensions
of the tree are much larger than the portion considered. It
is well known that for e40 sufficiently small we can define
a volume Ve in R3, representing a cambial region,
parameterized by C : ½�L; l� � ½0; 2p� � ½�e; e� ! R3.

Cðs; y; rÞ ¼ rðs; yÞ þ r
Nðs; yÞ
jjNðs; yÞjj

; Nðs; yÞ ¼
qr

qs
^
qr

qy
.

It is easy to check that we can define smooth vector fields
t1e, t2e, ne such that kt1ek ¼ kt2ek ¼ knek ¼ 1, t1e?t2e, tie?ne
for i ¼ 1; 2 with t1e( � , � ,r), t2e( � , � ,r) tangent to the surface
Sr parameterized by C( � , � ,r), and the vector ne( � , � ,r)
orthogonal to Sr. Let Ce : V e! R and ~Je : V e! R3

denote the auxin concentration and flux, respectively. The
change in auxin concentration is given by the following
mass conservation equation:

qCe

qt
¼ �r � ~Je in V e; t40: (8)

Set ~ue, ~we unitary vector fields defined in Ve, with ~ue ? ~we

and linear combination of t1e, t2e. The vector ~ue represents
the direction of active transport of auxin in the cambial
region and satisfies ~ue ¼ �~z at s close to l and sp0.
Following Fick’s law, we suppose that the auxin flux ~Je can
be written as

~Je ¼ ðvCe �DjjðrCe �~ueÞÞ~ue

�D?ðrCe � ~weÞ~we �D�ðrCe �~neÞ~ne, ð9Þ

where v40 denotes the transport velocity, DJ and D? are
the longitudinal and transversal diffusion coefficients,
respectively, and D* is a diffusion coefficient in the normal
direction.
These coefficients satisfy 0oD� � D?oDk. We suppose

that the flux satisfies the following boundary conditions:

~Je ¼ �J0~z when s ¼ l;�L; y 2 ½0; 2p�; r 2 ½�e; e�,

~Je �~ne ¼ 0 when r ¼ �e; y 2 ½0; 2p�; s 2 ½�L; l�.
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Integrating Eq. (8) in a small volume described by
fCðs; y; rÞ=r 2 ½�e; e�; s 2 ½l1; l2�; y 2 ½y1; y2�g.

2

e

Z e

�e

Z l2

l1

Z y2

y1

q
qt

CeðCðs; y; rÞ; tÞds

¼ �
2

e

Z e

�e

Z l2

l1

Z y2

y1
r~JeðCðs; y; rÞ; tÞds, ð10Þ

where

ds ¼ j det DCðs; y; rÞjdyds�
qr

qy
^
qr

qs
ðs; yÞ

����
����dyds.

Suppose that rCe �~ne! 0 as e-0, and that there exists
a smooth function C defined in S, such that when e-0 the
functions Ce, qCe/qt, rCe �~ue, rCe � ~we at (C(s,y,r),t)
converge to C, qC/qt, rC �~u, rC � ~w at (j(s,y),t),
respectively, for ~u ¼ ~ueðjðs; yÞ; tÞ, ~w ¼ ~weðjðs; yÞ; tÞ. Inte-
grating by parts we obtain that

2

e

Z e

�e

Z l2

l1

Z y2

y1
r � ½ðrCe � neÞne�dsdr�!

e!0
0,

hence taking the limit as e-0 in (10) we get that for
arbitrary y1, y2 and l1, l2Z l2

l1

Z y2

y1

q
qt

Cðjðs; yÞ; tÞds ¼ �
Z l2

l1

Z y2

y1
r � ~Jðjðs; yÞ; tÞds,

where ~J ¼ ðvC �DjjðrC �~uÞÞ~u�D?ðrC � ~wÞ~w. Therefore
we have that

qC

qt
¼ �r � ~J in S; t40,

~J ¼ �J0~z when s ¼ l;�L,

where the gradient r and the divergence r � are taken in
Cartesian coordinates.
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