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Abstract. We design a succinct full-text index based on the idea of Huffman-
compressing the text and then applying the Burrows-Wheeler transform over
it. The resulting structure can be searched as an FM-index, with the benefit
of removing the sharp dependence on the alphabet size, σ, present in that
structure. On a text of length n with zero-order entropy H0, our index needs
O(n(H0 + 1)) bits of space, without any dependence on σ. The average search
time for a pattern of length m is O(m(H0 + 1)), under reasonable assumptions.
Each position of a text occurrence can be reported in worst case time O((H0 +
1) log n), while any text substring of length L can be retrieved in O((H0 + 1)L)
average time in addition to the previous worst case time. Our index provides
a relevant space/time tradeoff between existing succinct data structures, with
the additional interest of being easy to implement. Our experimental results
show that, although not among the most succinct, our index is faster than the
others in many aspects, even letting them use significatively more space.

1 Introduction

A full-text index is a data structure that enables to determine the occ occurrences
of a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn without a need of
scanning over the whole text T . Text and pattern are sequences of characters over
an alphabet Σ of size σ. In practice one wants to know not only the value occ, i.e.,
how many times the pattern appears in the text (counting query) but also the text
positions of those occ occurrences (reporting query), and usually also a text context
around them (display query).

A classic example of a full-text index is the suffix tree [20] reaching O(m + occ)
time complexity for counting and reporting queries. Unfortunately, it takes O(n log n)
bits,1 and also the constant factor is large. A smaller space complexity factor is
achieved by the suffix array [13], reaching O(m log n + occ) or O(m + log n + occ) in

∗Funded by the Deutsche Forschungsgemeinschaft (BO 1910/1-3) within the Computer Science
Action Program.

†Funded in part by Fondecyt Grant 1-050493 (Chile).
1By log we mean log2 in this paper.
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time (depending on a variant), but still the space usage may rule out this structure
from some applications, e.g. in computational biology.

The large space requirement of traditional full-text indexes has raised a natural
interest in succinct full-text indexes that achieve good tradeoffs between search time
and space complexity [12, 3, 10, 19, 8, 15, 18, 16, 9]. A truly exciting perspective
has been originated in the work of Ferragina and Manzini [3]; they showed a full-text
index may discard the original text, as it contains enough information to recover the
text. We denote a structure with such a property with the term self-index.

The FM-index of Ferragina and Manzini [3] was the first self-index with space
complexity expressed in terms of kth order (empirical) entropy and pattern search
time linear only in the pattern length. Its space complexity, however, contains an
exponential dependence on the alphabet size; a weakness eliminated in a practical
implementation [4] for the price of not achieving the optimal search time anymore.
Therefore, it has been interesting both from the point of theory and practice to
construct an index with nice bounds both in space and time complexities, preferably
with no (or mild) dependence on the alphabet size.

In this paper we concentrate on improving the FM-index, in particular its large
alphabet dependence. This dependence shows up not only in the space usage, but
also in the time to show an occurrence position and display text substrings. The
FM-index needs up to 5Hkn + O

(

(σ log σ + log log n) n
log n

+ nγσσ+1
)

bits of space,
where 0 < γ < 1. The time to search for a pattern and obtain the number of its
occurrences in the text is the optimal O(m). The text position of each occurrence

can be found in O
(

σ log1+ε n
)

time, for some ε > 0 that appears in the sublinear
terms of the space complexity. Finally, the time to display a text substring of length
L is O

(

σ (L + log1+ε n)
)

. The last operation is important not only to show a text
context around each occurrence, but also because a self-index replaces the text and
hence it must provide the functionality of retrieving any desired text substring.

The compressed suffix array (CSA) of Sadakane [19] can be seen as a tradeoff
with larger search time but much milder dependence on the alphabet size. The CSA
needs (H0/ε + O(log log σ))n bits of space. Its search time (finding the number of
occurrences of a pattern) is O(m log n). Each occurrence can be reported in O (logε n)
time, and a text substring of length L can be displayed in O (L + logε n) time.

In this paper we present a simple structure based on the FM-index concept. We
Huffman-compress the text and then apply the Burrows-Wheeler transform over it,
as in the FM-index. The obtained structure can be regarded as an FM-index built
over a binary sequence. As a result, we remove any dependence on the alphabet size.
We show that our index can operate using n(2H0 +3+ε)(1+o(1)) bits, for any ε > 0.
No alphabet dependence is hidden in the sublinear terms.

At search time, our index finds the number of occurrences of the pattern in
O(m(H0 + 1)) average time. The text position of each occurrence can be reported in

worst case time O
(

1
ε
(H0 + 1) log n

)

. Any text substring of length L can be displayed

in O ((H0 + 1) L) average time, in addition to the mentioned worst case time to find
a text position. In the worst case all the H0 become log n.

This index was first presented in a poster [5], where we only gave its rough idea.
Now we present it in full detail and explore its empirical effectiveness in counting,
reporting and displaying, for a broad scope of real-world data (English text, DNA
and proteins). We also include a k-ary Huffman variant. We show that our index,
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A Simple Alphabet-Independent FM-Index

Algorithm FM Search(P ,T bwt)
(1) i = m;
(2) sp = 1; ep = n;
(3) while ((sp ≤ ep) and (i ≥ 1)) do

(4) c = P [i];
(5) sp = C[c] + Occ(T bwt, c, sp− 1)+1;
(6) ep = C[c] + Occ(T bwt, c, ep);
(7) i = i− 1;
(8) if (ep < sp) then return “not found” else return “found (ep− sp + 1) occs”.

Figure 1: Algorithm for counting the number of occurrences of P [1 . . .m] in T [1 . . . n].

albeit not among the most succinct indexes, is faster than the others in many cases,
even if we give the other indexes much more space to work.

2 The FM-index Structure

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which
produces a permutation of the original text, denoted by T bwt = bwt(T ). String T bwt

is the result of the following forward transformation: (1) Append to the end of T
a special end marker $, which is lexicographically smaller than any other character;
(2) form a conceptual matrix M whose rows are the cyclic shifts of the string T$,
sorted in lexicographic order; (3) construct the transformed text L by taking the last
column of M. The first column is denoted by F .

The suffix array (SA) A of text T$ is essentially the matrix M: A[i] = j iff the
ith row of M contains string tjtj+1 · · · tn$t1 · · · tj−1. The occurrences of any pattern
P = p1p2 · · · pm form an interval [sp, ep] in A, such that suffixes tA[i]tA[i]+1 · · · tn,
sp ≤ i ≤ ep, contain the pattern as a prefix. This interval can be searched for by
using two binary searches in time O(m log n).

The suffix array of text T is represented implicitly by T bwt. The novel idea of
the FM-index is to store T bwt in compressed form, and to simulate the search in the
suffix array. To describe the search algorithm, we need to introduce the backward
BWT that produces T given T bwt: (i) Compute the array C[1 . . . σ] storing in C[c]
the number of occurrences of characters {$, 1, . . . , c − 1} in the text T . Notice that
C[c] + 1 is the position of the first occurrence of c in F (if any). (ii) Define the LF-
mapping LF [1 . . . n + 1] as LF [i] = C[L[i]] + Occ(L, L[i], i), where Occ(X, c, i) equals
the number of occurrences of character c in the prefix X[1, i]. (iii) Reconstruct T
backwards as follows: set s = 1 and T [n] = L[1] (becauseM[1] = $T ); then, for each
n− 1, . . . , 1 do s← LF [s] and T [i]← L[s].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It finds
the interval of A containing the occurrences of the pattern P . It uses the array C and
function Occ(X, c, i) defined above. Using the properties of the backward BWT, it is
easy to see that the algorithm maintains the following invariant [3]: At the ith phase,
with i from m to 1, the variable sp points to the first row of M prefixed by P [i, m]
and the variable ep points to the last row of M prefixed by P [i, m]. The correctness
of the algorithm follows from this observation.
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Ferragina and Manzini [3] describe an implementation of Occ(T bwt, c, i) that uses
a compressed form of T bwt. They show how to compute Occ(T bwt, c, i) for any c and i
in constant time. However, to achieve this they need exponential space (in the size of
the alphabet). In a practical implementation [4] this was avoided, but the constant
time guarantee for answering Occ(T bwt, c, i) was no longer valid.

The FM-index can also show the text positions where P occurs, and display any
text substring. The details are deferred to Section 4.

3 First Huffman, then Burrows-Wheeler

We focus now on our index representation. Imagine that we compress our text T$
using Huffman. The resulting bit stream will be of length n′ < (H0 + 1)n, since
(binary) Huffman poses a maximum representation overhead of 1 bit per symbol2.
We call T ′ this sequence, and define a second bit array Th, of the same length of T ′,
such that Th[i] = 1 iff i is the starting position of a Huffman codeword in T ′. Th is
also of length n′. (We will not represent T ′ nor Th in our index.)

The idea is to search the binary text T ′ instead of the original text T . Let us
apply the Burrows-Wheeler transform over text T ′, so as to obtain B = (T ′)bwt. In
order to have a binary alphabet, T ′ will not have its own special terminator character
“$” (yet that of T is encoded in binary at the end of T ′).

More precisely, let A′[1 . . . n′] be the suffix array for text T ′, that is, a permutation
of the set 1 . . . n′ such that T ′[A′[i] . . . n′] < T ′[A′[i + 1] . . . n′] in lexicographic order,
for all 1 ≤ i < n′. In a lexicographic comparison, if a string x is a prefix of y, assume
x < y. Suffix array A′ will not be explicitly represented. Rather, we represent bit
array B[1 . . . n′], such that B[i] = T ′[A′[i]− 1] (except that B[i] = T [n′] if A′[i] = 1).
We also represent another bit array Bh[1 . . . n′], such that Bh[i] = Th[A′[i]]. This
tells whether position i in A′ points to the beginning of a codeword.

Our goal is to search B exactly like the FM-index. For this sake we need array C
and function Occ. Since the alphabet is binary, however, Occ can be easily computed:
Occ(B, 1, i) = rank(B, i) and Occ(B, 0, i) = i − rank(B, i), where rank(B, i) is the
number of 1’s in B[1 . . . i], rank(B, 0) = 0. This function can be computed in constant
time using only o(n) extra bits [11, 14, 2]. The solution, as well as its more practical
implementation variants, are described in [7].

Also, array C is so simple for the binary text that we can do without it: C[0] = 0
and C[1] = n′ − rank(B, n′), that is, the number of zeros in B (of course value
n′ − rank(B, n′) is precomputed). Therefore, C[c] + Occ(T bwt, c, i) is replaced in our
index by i− rank(B, i) if c = 0 and n′ − rank(B, n′) + rank(B, i) if c = 1.

There is a small twist, however, due to the fact that we are not putting a termina-
tor to our binary sequence T ′ and hence no terminator appears in B. Let us call “#”
the terminator of the binary sequence so that it is not confused with the terminator
“$” of T$. In the position p# such that A′[p#] = 1, we should have B[p#] = #.
Instead, we are setting B[p#] to the last bit of T ′. This is the last bit of the Huffman
codeword assigned to the terminator “$” of T$. Since we can freely switch left and
right siblings in the Huffman code, we will ensure that this last bit is zero. Hence the

2Note that these n and H0 refer to T $, not T . However, the difference between both is only
O(log n), and will be absorbed by the o(n) terms that will appear later.
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A Simple Alphabet-Independent FM-Index

Algorithm Huff-FM Search(P ′,B,Bh)
(1) i = m′;
(2) sp = 1; ep = n′;
(3) while ((sp ≤ ep) and (i ≥ 1)) do

(4) if P ′[i] = 0 then
sp = (sp− 1)− rank(B, sp− 1) + 1 + [sp− 1 < p#];
ep = ep− rank(B, ep) + [ep < p#];

else sp = n′ − rank(B, n′) + rank(B, sp− 1) + 1;
ep = n′ − rank(B, n′) + rank(B, ep);

(7) i = i− 1;
(8) if ep < sp then occ = 0 else occ = rank(Bh, ep)− rank(Bh, sp− 1);
(9) if occ = 0 then return “not found” else return “found (occ) occs”.

Figure 2: Algorithm for counting the number of occurrences of P ′[1 . . .m′] in
T ′[1 . . . n′].

correct B sequence would be of length n′ + 1, starting with 0 (which corresponds to
T ′[n′], the character preceding the occurrence of “#”, since # < 0 < 1), and it would
have B[p#] = #. To obtain the right mapping to our binary B, we must correct
C[0] + Occ(B, 0, i) = i − rank(B, i) + [i < p#], that is, add 1 to the original value
when i < p#. The computation of C[1] + Occ(B, 1, i) remains unchanged.

Therefore, by preprocessing B to solve rank queries, we can search B exactly as
the FM-index. The extra space required by the rank structure is o(H0n), without
any dependence on the alphabet size. Overall, we have used at most n(2H0 + 2)(1 +
o(1)) bits for our representation. This will grow slightly in the next sections due to
additional requirements.

Our search pattern is not the original P , but its binary coding P ′ using the
Huffman code we applied to T . If we assume that the characters in P have the same
distribution of T , then the length of P ′ is < m(H0 + 1). This is the number of steps
to search B using the FM-index search algorithm.

The answer to that search, however, is different from that of the search of T for
P . The reason is that the search of T ′ for P ′ returns the number of suffixes of T ′ that
start with P ′. Certainly these include the suffixes of T that start with P , but also
other superfluous occurrences may appear. These correspond to suffixes of T ′ that
do not start a Huffman codeword, yet they start with P ′.

This is why we have marked the suffixes that start a Huffman codeword in Bh.
In the range [sp, ep] found by the search for P ′ in B, every bit set in Bh[sp . . . ep]
represents a true occurrence. Hence the true number of occurrences can be computed
as rank(Bh, ep)− rank(Bh, sp− 1). Figure 2 shows the search algorithm.

Therefore, the search complexity is O(m(H0 + 1)), assuming that the zero-order
distributions of P and T are similar. Next we show that the worst case search cost is
O(m log n). This matches the worst case search cost of the original CSA (while our
average case is better).

For the worst case, we must determine which is the maximum height of a Huffman
tree with total frequency n. Consider the longest root-to-leaf path in the Huffman
tree. The leaf symbol has frequency at least 1. Let us traverse the path upwards
and consider the (sum of) frequencies encountered in the other branch at each node.
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These numbers must be, at least: 1, 1, 2, 3, 5, . . ., that is, the Fibonacci sequence
F (i). Hence, a Huffman tree with depth d needs that the text is of length at least
n ≥ 1+

∑d
i=1 F (i) = F (d+2) [21, pp. 397]. Therefore, the maximum length of a code

is F−1(n)− 2 = logφ(n)− 2 + o(1), where φ = (1 +
√

5)/2.
Therefore, the encoded pattern P ′ cannot be longer than O(m log n) and this is

also the worst case search cost, as promised. An exception to the above argument
occurs when P contains a character not present in T . This is easier, however, as we
immediately know that P does not occur in T .

Actually, it is possible to reduce the worst-case search time to O(m log σ), without
altering the average search time nor the space usage, by forcing the Huffman tree to
become balanced after level (1 + x) log σ. For details see [6].

4 Reporting Occurrences and Displaying the Text

Up to now we have focused on the search time, that is, the time to determine the
suffix array interval containing all the occurrences. In practice, one needs also the
text positions where they appear, as well as a text context. Since self-indexes replace
the text, in general one needs to extract any text substring from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-
index reports each such position in O(σ log1+ε n) time, for any ε > 0 (which appears
in the sublinear space component). The CSA can report each in O(logε n) time, where
ε is paid in the nH0/ε space. Similarly, a text substring of length L can be displayed
in time O(σ(L + log1+ε n)) by the FM-index and O(L + logε n) by the CSA.

In this section we show that our index can do better than the FM-index, although
not as well as the CSA. Using (1 + ε)n additional bits, we can report each occurrence
position in O(1

ε
(H0+1) log n) time and display a text context in time O(L log σ+log n)

in addition to the time to find an occurrence position. On average, assuming that
random text positions are involved, the overall complexity to display a text interval
becomes O((H0 + 1)(L + 1

ε
log n)).

4.1 Reporting Occurrences

A first problem is how to extract, in O(occ) time, the occ positions of the bits set
in Bh[sp . . . ep]. This is easy using select function: select(Bh, j), gives the position
of the j-th bit set in Bh. This is the inverse of function rank and it can also be
implemented in constant time using o(n) additional space [11, 14, 2, 7]. Actually we
need a simpler version, selectnext(Bh, j), which gives the first 1 in Bh[j, n].

Let r = rank(Bh, sp−1). Then, the positions of the bits set in Bh are select(Bh, r+
1), select(Bh, r + 2), . . ., select(Bh, r + occ). We recall that occ = rank(Bh, ep) −
rank(Bh, sp−1). This can be expressed using selectnext: The positions pos1 . . . posocc

can be found as pos1 = selectnext(Bh, sp), and posi+1 = selectnext(Bh, posi + 1).
We focus now on how to find the text position of a valid occurrence.

We choose some ε > 0 and sample ⌊ εn
2 log n

⌋ positions of T ′ at regular intervals,
with the restriction that only codeword beginnings can be chosen. For this sake, pick
positions in T ′ at regular intervals of length ℓ = ⌈2n′

εn
log n⌉, and for each such position

1 + ℓ(i− 1), choose the beginning of the codeword being represented at 1 + ℓ(i− 1).
Recall from Section 3 that no Huffman codeword can be longer than logφ n−2+o(1)
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bits. Then, the distance between two chosen positions in T ′, after the adjustment,
cannot exceed

ℓ+ logφ n−2 +o(1) ≤ 2

ε
(H0 + 1) log n+ logφ n−1 +o(1) = O

(

1

ε
(H0 + 1) log n

)

Now, store an array TS with the ⌊ εn
2 log n

⌋ positions of A′ pointing to the chosen

positions of T ′, in increasing text position order. More precisely, TS[i] refers to
position 1+ℓ(i−1) in T ′ and hence TS[i] = j such that A′[j] = select(Th, rank(Th, 1+
ℓ(i − 1))). Array TS requires εn

2
(1 + o(1)) bits, since each entry needs log n′ ≤

log(n log min(n, σ)) = log n + O(log log min(n, σ)) bits.
The same A′ positions are now sorted and the corresponding T positions (that

is, rank(Th,A′[i])) are stored in array ST , for other εn
2

bits. Finally, we store an
array S of n bits so that S[i] = 1 iff A′[select(Bh, i)] is in the sampled set. That is,
S[i] tells whether the i-th entry of A′ pointing to beginning of codewords, points to
a sampled text position. S is further processed for rank queries.

Overall, we spend (1 + ε)n(1 + o(1)) bits for these three arrays, raising our final
space requirement to n(2H0 + 3 + ε)(1 + o(1)).

Let us focus first in how to determine the text position corresponding to an entry
A′[i] for which Bh[i] = 1. Use bit array S[rank(Bh, i)] to determine whether A′[i]
points or not to a codeword beginning in T ′ that has been sampled. If it does, then find
the corresponding T position in ST [rank(S, rank(Bh, i))] and we are done. Other-
wise, just as with the FM-index, determine position i′ whose value is A′[i′] = A′[i]−1.
Repeat this process, which corresponds to moving backward bit by bit in T ′, until a
new codeword beginning is found, that is, Bh[i′] = 1. Now determine again whether
i′ corresponds to a sampled character in T : Use S[rank(Bh, i′)] to determine whether
A′[i′] is present in ST . If it is, report text position 1 +ST [rank(S, rank(Bh, i′))] and
finish. Otherwise, continue with i′′ trying to report 2 + ST [rank(S, rank(Bh, i′′))],

and so on. The process must finish after O
(

1
ε
(H0 + 1) log n

)

backward steps in T ′

because we are considering consecutive positions of T ′ and that is the maximum
distance among consecutive samples.

We have to specify how we determine i′ from i. In the FM-index, this is done
via the LF-mapping, i′ = C[T bwt[i]] + Occ(T bwt, T bwt[i], i). In our index, the LF-
mapping over A′ is implemented as i′ = i − rank(B, i) if B[i] = 0 and i′ = n′ −
rank(B, n′)+rank(B, i) if B[i] = 1. This LF-mapping moves us from position T ′[A′[i]]
to T ′[A′[i]− 1].

Overall, an occurrence can be reported in worst case time O(1
ε
(H0 + 1) log n).

Figure 3 gives the pseudocode.

4.2 Displaying Text

In order to display a text substring T [l . . . r] of length L = r − l + 1, we start by
binary searching TS for the smallest sampled text position larger than r. Given
value TS[j], we know that S[rank(Bh, TS[j])] = 1 as it is a sampled A′ entry, and
the corresponding T position is simply ST [rank(S, rank(Bh, TS[j]))]. Once we find
the first sampled text position that follows r, we have its corresponding position
i = TS[j] in A′. From there on, we perform at most O

(

1
ε
(H0 + 1) log n

)

steps going

backward in T ′ (via the LF-mapping over A′), position by position, until reaching
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Algorithm Huff-FM Position(i,B,Bh,ST )
(1) d = 0;
(2) while S[rank(Bh, i)] = 0 do

(3) do if B[i] = 0 then i = i− rank(B, i) + [i < p#];
else i = n′ − rank(B, n′) + rank(B, i);

(4) while Bh[i] = 0;
(5) d = d + 1;
(6) return d + ST [rank(S, rank(Bh, i))];

Figure 3: Algorithm for reporting the text position of the occurrence at B[i]. It is
invoked for each i = select(Bh, r + k), 1 ≤ k ≤ occ, r = rank(Bh, sp− 1).

Algorithm Huff-FM Display(l,r,B,Bh,TS)
(1) j = min{k, ST [rank(S, rank(Bh, TS[k]))] > r}; // binary search
(2) i = TS[j];
(3) p = ST [rank(S, rank(Bh, i))];
(4) L = 〈 〉;
(5) while p ≥ l do

(6) do L = B[i] · L;
(7) if B[i] = 0 then i = i− rank(B, i) + [i < p#];

else i = n′ − rank(B, n′) + rank(B, i);
(8) while Bh[i] = 0;
(9) p = p− 1;
(10) Huffman-decode the first r − l + 1 characters from list L;

Figure 4: Algorithm for extracting T [l . . . r].

the first bit of the codeword for T [r + 1]. Then, we obtain the L preceding positions
of T , by further traversing T ′ backwards, collecting all its bits until reaching the first
bit of the codeword for T [l]. The reversed bit stream collected is Huffman-decoded
to obtain T [l . . . r].

Each of those L characters costs us O(H0 + 1) on average because we obtain the
codeword bits one by one. In the worst case they cost us O(log n). The overall time
complexity is O((H0 + 1)(L + 1

ε
log n)) on average and O(L log n + (H0 + 1)1

ε
log n) in

the worst case. Figure 4 shows the pseudocode.

5 K-ary Huffman

The purpose of the idea of compressing the text before constructing the index is to
remove the sharp dependence of the alphabet size of the FM index. This compression
is done using a binary alphabet. In general, we can use Huffman over a coding
alphabet of k > 2 symbols and use ⌈log k⌉ bits to represent each symbol. Varying
the value of k yields interesting time/space tradeoffs. We use only powers of 2 for k
values, so each symbol can be represented without wasting space.

The space usage varies in different aspects. Array B increases its size since the
compression ratio gets worse. B has length n′ < (H

(k)
0 + 1)n symbols, where H

(k)
0 is

the zero order entropy of the text computed using base k logarithm, that is, H
(k)
0 =
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−∑σ
i=1

ni

n
logk

(

ni

n

)

= H0/ log2 k. Therefore, the size of B is bounded by n′ log k =

(H0 + log k)n bits. The size of Bh is reduced since it needs one bit per symbol, and
hence its size is n′. The total space used by these structures is then n′(1 + log k) <

n(H
(k)
0 + 1)(1 + log k), which is not larger than the space requirement of the binary

version, 2n(H0 + 1), for 1 ≤ log k ≤ H0.
The rank structures also change their size. The rank structures for Bh are com-

puted in the same way of the binary version, and therefore they reduce their size,
using o(H

(k)
0 n) bits. For B, we can no longer use the rank function to simulate

Occ. Instead, we need to calculate the occurrences of each of the k symbols in B.
For this sake, we precalculate sublinear structures for each of the symbols, including
k tables that count the occurrences of each symbol in a chunk of b = ⌈logk(n)/2⌉
symbols. Hence, we need o(kH

(k)
0 n) bits for this structures. In total, we need

n(H
(k)
0 + 1)(1 + log k) + o(H

(k)
0 n(k + 1)) bits.

Regarding the time complexities, the pattern has length < m(H
(k)
0 + 1) symbols,

so this is the search complexity, which is reduced as we increase k. For reporting
queries and displaying text, we need the same additional structures TS, ST and S
that for the binary version. The k-ary version can report the position of an occurrence
in O

(

1
ǫ
(H

(k)
0 + 1) log n

)

time, which is the maximum distance between two sampled

positions. Similarly, the time to display a substring of length L becomes O((H
(k)
0 +

1)(L + 1
ǫ

log n)) on average and O(L log n + (H
(k)
0 + 1)1

ǫ
log n) in the worst case.

6 Experimental Results

In this section we show experimental results on counting, reporting and displaying
queries and compare the efficiency to existing indexes. The indexes used for the
experiments were the FM-index implemented by Navarro [18], Sadakane’s CSA [19],
the RLFM index [17], the SSA index [17], and the LZ index [18]. Other indexes,
like the Compressed Compact Suffix Array (CCSA) of Mäkinen and Navarro [16], the
Compact SA of Mäkinen [15] and the implementation of Ferragina and Manzini of
the FM-index were not included because they are not comparable to the FM Huffman
index due either to their large space requirement (Compact SA) or their high search
times (CCSA and original FM index).

We considered three types of text for the experiments: 80 MB of English text
obtained from the TREC-3 collection 3 (files WSJ87-89), 60 MB of DNA and 55 MB
of protein sequences, both obtained from the BLAST database of the NCBI4 (files
month.est_others and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2
GB of RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the code
with gcc 3.4.2 using optimization option -O9.

Now we show the results regarding the space used by our index and later the
results of the experiments classified by query type.

3Text Retrieval Conference, http://trec.nist.gov
4National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
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6.1 Space results

Table 1 (left) shows the space that the index takes as a fraction of the text for different
values of k and the three types of files considered. These values do not include the
space required to report positions and display text.

We can see that the space requirements are lowest for k = 4. For higher values
this space increases, although staying reasonable until k = 16. With higher values
the spaces are too high for these indexes to be comparable to the rest.

We did not consider the version of the index with k = 8 in the other experiments
because we do not expect an improvement in the query time, since log k is not a power
of 2 and then the computation of Occ is slower (reasons omitted for lack of space).
The version with k = 16 can lead to a reduction in query time, but the access to 4
machine words for the calculation of Occ (reasons omitted for lack of space) could
negatively affect it. It is important to say that these values are only relevant for the
English text and proteins, since it does not make sense to use them for DNA.

It is also interesting to see how the space requirement of the index is divided
among its different structures. Table 1 (right) shows the space used by each of the
structures for the index with k = 2 and k = 4 for the three types of texts considered.

k Fraction of text
English DNA Proteins

2 1,68 0,76 1,45
4 1,52 0,74 1,30
8 1,60 0,91 1,43
16 1,84 — 1,57
32 2,67 — 1,92
64 3,96 — —

FM-Huffman k = 2 FM-Huffman k = 4
Structure Space [MB] Space [MB]

English DNA Proteins English DNA Proteins

B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14,80
Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20
Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55

Total 134,69 45,61 80,48 121,41 44,30 72,15
Text 80,00 60,00 55,53 80,00 60,00 55,53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1: On top, space requirement of our index for different values of k. The value
corresponding to the row k = 8 for DNA actually corresponds to k = 5, since this is
the total number of symbols to code in this file. Similarly, the value of row k = 32
for the protein sequence corresponds to k = 24. On the bottom, detailed comparison
of k = 2 versus k = 4. We omit the the spaces used by the Huffman table, the
constant-size tables for Rank, and array C, since they are negligible.
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For higher values of k the space used by B will increase since the use of more
symbols for the Huffman codes increases the resulting space. On the other hand, the
size of Bh decreases at a rate of log k and so do its rank structures. However, the
space of the rank structures of B increases rapidly, as we need k structures for an
array that reduces its size at a rate of log k, which is the reason of the large space
requirement for high values of k.

6.2 Counting queries

For the three files, we show the search time as a function of the pattern length, varying
from 10 to 100, with a step of 10. For each length we used 1000 patterns taken from
random positions of each text. Each search was repeated 1000 times. Figure 5 (left)
shows the time for counting the occurrences for each index and for the three files
considered. As the CSA index needs a parameter to determine its space for this type
of queries, we adjusted it so that it would use approximately the same space of the
binary FM-Huffman index.

We show in Figure 5 (right) the average search time per character along with the
minimum space requirement of each index to count occurrences. Unlike the CSA,
the other indexes do not need a parameter to specify their size for counting queries.
Therefore, we show a point as the value of the space used by the index and its search
time. For the CSA index we show a line to resemble the space-time tradeoff for
counting queries.

6.3 Reporting queries

We measured the time that each index took to search for a pattern and report the
positions of the occurrences found. From the English text and the DNA sequence
we took 1000 random patterns of length 10. From the protein sequence we used
patterns of length 5. We measured the time per occurrence reported varying the
space requirement for every index except the LZ, which has a fixed size. For the
CSA we set the two parameters, namely the size of the structures to report and the
structures to count, to the same value, since this turns out to be optimal. Figure 6
(left) shows the times per occurrence reported for each index as a function of its size.

6.4 Displaying text

We measured the time to display a context per character displayed. That is, we
searched for the 1000 patterns and displayed 100 characters around each of the po-
sitions of the occurrences found. Figure 6 (right) shows this time along with the
minimum space required for each index for the counting functionality, since the dis-
play time per character does not depend on the size of the index. This is not true for
the CSA index, whose display time does depend on its size. For this index we show
the time measured as a function of its size.

6.5 Analysis of Results

We can see that our FM-Huffman k = 16 index is the fastest for counting queries
for English and proteins and that the version with k = 4 is, together with the SSA,
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Figure 5: On the left, search time as a function of the pattern length over, English
(80 MB), DNA (60 MB), and a proteins (55 MB). The times of the LZ index do not
appear on the English text plot, as they range from 0.5 to 4.6 ms. In the DNA plot,
the time of the LZ index for m = 10 is 0.26. The reason of this increase is the large
number of occurrences of these patterns, which influences the counting time for this
index. On the right, average search time per character as a function of the size of the
index.
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Figure 6: On the left, time to report the positions of the occurrences as a function of
the size of the index. On the right, time per character to display text passages. We
show the results of searching on 80 MB of English text, 60 MB of DNA and finally
55 MB of proteins.
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the fastest for DNA. The binary FM-Huffman index takes the same time that k = 4
version for DNA and it is a little bit slower that the FM-index for the other two
files. As expected, the three versions are faster than CSA, RLFM and LZ, the latter
not being competitive for counting queries. Regarding the space usage, the SSA is
an attractive tradeoff alternative for the three files, since it uses less space than our
index and has low search times (although not as good as our index except on DNA).
The same happens with the FM-index, although not for DNA, where it uses more
space and time than our index.

For reporting queries, our index loses to the FM-index for English and proteins,
mainly because of its large space requirement. Also, it only surpasses the RLFM and
CSA, and barely the SSA, for large space usages. For DNA, however, our index, with
k = 2 and k = 4, is better than the FM-index, although it loses to the SSA for low
space usage. This reduction in space in our index is due to the low zero-order entropy
of the DNA, which makes our index compact and fast.

Regarding display time, our index variants are again the fastest. On English text,
however, the LZ is equally fast and smaller (version k = 16 is the relevant one here).
On DNA, the k = 4 version is faster than any other, requiring also little space. Those
taking (at best 20%) less space are about 3 times slower. Finally, on proteins, the
version k = 16 is clearly the fastest. The best competitor, the FM-index, uses 30%
less space but it is twice as slow.

The versions of our index with k = 4 improved the space and time of the binary
version. The version with k = 16 increased the space usage, but resulted in the fastest
of the three for counting and display queries. In general, our index is not the smallest
but it is the fastest among those using the same space.

7 Conclusions

We have focused in this paper on a practical data structure inspired by the FM-index
[3], which removes its sharp dependence on the alphabet size σ. Our key idea is to
Huffman-compress the text before applying the Burrows-Wheeler transform over it.
Over a text of n characters, our structure needs O(n(H0 +1)) bits, being H0 the zero-
order entropy of the text. It can search for a pattern of length m in O(m(H0 + 1))
average time. Our structure has the advantage over the FM-index of not depending at
all on the alphabet size, and of having better complexities to report text occurrences
and displaying text substrings. In comparison to the CSA [19], it has the advantage
of having better search time.

Furthermore, our structure is simple and easy to implement. Our experimental
results show that our index is competitive in practice against other implemented
alternatives. In most cases it is not the most succinct, but it is the fastest, even if we
let the other structures use significatively more space.
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