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Abstract

A scenery is a coloring ξ of the integers. Let (S(t))t≥0 be a recurrent random walk on the integers.
Observing the scenery ξ along the path of this random walk, one sees the color ξ(S(t)) at time t . The
scenery reconstruction problem is concerned with trying to retrieve the scenery ξ , given only the sequence
of observations χ := (ξ(S(t)))t≥0. Russel Lyons and Yuval Peres have both posed the question of whether
two-color sceneries can be reconstructed when the observations are corrupted by random errors. The random
errors happening at different times are independent conditional on χ . It has been proved that it is possible
to do reconstruction in the case where the observations are contaminated with errors and the scenery
has several colors, provided the error probability is small enough. However, the reconstruction problem
is more difficult with fewer colors. Although the scenery reconstruction problem for two-color sceneries
from error-free observations has been solved, the reconstruction of two-color sceneries from error-corrupted
observations remains an open problem. In this paper, we solve one of the two remaining problems needed
in order to reconstruct two-color sceneries when the observations are corrupted with random errors. We
prove that given only the corrupted observations, we are able to determine a large amount of times, when
the random walk is back at the same place (marker) in the scenery.
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1. Introduction

We call ξ a scenery if it is a coloring of the integers ξ : Z 7→ {1, 2, . . . ,C} where C is the
number of colors. Let {St }t∈N be a recurrent random walk on the integers. We call χt := ξ(St )

the observation made of the scenery by the random walk at time t ∈ N. A realization of the
process χ := {χt }t∈N is called the “observation”.

The scenery reconstruction problem can be formulated as follows: If we do not know the
scenery ξ but are only given one path realization of χ , can we almost surely recover ξ? In
other words, does one path realization of the process {χt }t∈N determine ξ a.s.? We should point
out that it is only possible to reconstruct sceneries up to shift and reflection in general. Thus
the scenery reconstruction problem is the problem of trying to reconstruct ξ up to shift and
reflection given only one realization of χ . A result of Lindenstrauss [15] implies that there
exist an uncountable number of sceneries which cannot be reconstructed. Fortunately, these
unreconstructable sceneries are in a certain sense “untypical”. So, in general we take the scenery
to be generated by a random process which is independent of the random walk and then show that
almost every scenery can be reconstructed a.s. up to shift and reflection from a single realization
of χ .

Let {νt }t∈N be an i.i.d. sequence of Bernoulli random variables which is independent of ξ
and S. The variables νt are used to indicate at which times there are errors in the observations.
More precisely, when νt = 1 then there is an error in the observation at time t . Let χ̃ denote the
observations χ corrupted by the errors {νt }t∈N. Thus,

χ̃t = χt

when νt = 0 and χ̃t 6= χt otherwise. (The exact value of χ̃t when χ̃t 6= χt is not very important.)
The scenery reconstruction problem with errors can now be formulated as follows: Try to

reconstruct ξ a.s. up to shift and reflection when you are only given one realization of χ̃ . For
the case where the scenery has many colors and the error probability is small, the problem was
solved by Rolles and Matzinger in [26]. In this article, we show how we can construct markers
and stopping times telling us when the random walk is back at the markers, despite the errors.
The method we use is different from that used to deal with the non-error-corrupted case. This
solves one of the two remaining problems for scenery reconstruction with two colors and errors
in the observations.

Let us at this stage explain what the remaining open problem is for achieving scenery
reconstruction with error-corrupted observations and two-color sceneries. For this consider at
first a simplified example of reconstruction without errors in the case of a simple random walk.
Assume the scenery ξ is binary except at a point x and a point y where we observe the colors 2
and 3. Hence ξ(x) = 2 and ξ(y) = 3. Since the colors 2 and 3 appear only at one point in the
scenery, we know every time the random walk visits x or y. We can reconstruct the portion of the
scenery between x and y. For this, note that since the random walk is simple, the shortest way to
go from |x | to |y| is in |x − y| steps. When the random walk goes in shortest way from x to y it
makes steps only in one direction. Hence, during that time we see in the observations χ a copy of
the piece of ξ lying between x and y. In [18], Lember and Matzinger use this idea to prove that
it is possible to reconstruct a two-color scenery. But in a two-color scenery the two extra colors
2 and 3 are not available. So instead one uses markers to find out when one is back at the same
point. Actually the markers are not yet powerful enough. So, one collects information about the
surrounding of each marker. The information about the surroundings of several nearby markers
jointly gives us a powerful way of determining when the random walk is back in the same place.
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There is one problem left: for the method of Lember and Matzinger to work, one needs to be
able to determine that the random walk is to the right of or at x and to the left of or at y, at the
times when it is in the surrounding of x or y. (We assume that x < y.) For this problem, the
Lember–Matzinger method fails in the presence of errors.

Scenery reconstruction is closely related to the scenery distinguishing problem. We give a
brief account. Let ξa and ξb be two non-equivalent sceneries which are known to us. Assume
that the scenery ξ is equal either to ξa or to ξb but we do not know which. If we are only
given one realization of the observation process χ of the scenery ξ by the random walk S, can
we almost surely determine whether ξ is equal to ξa or whether it is equal to ξb? If so, we
say the sceneries ξa and ξb are distinguishable. Kesten and Benjamini [1] showed that almost
every pair of sceneries is distinguishable, even in the two-dimensional case and with only two
colors. To do this, they took ξa to be any non-random scenery and ξb to be an i.i.d. scenery with
two colors. Earlier, Howard [9] showed that any pair of periodic, non-equivalent sceneries are
distinguishable, as are periodic sceneries with a single defect [8].

The problem of distinguishing two sceneries which differ at only one point is called detecting
a single defect in a scenery. Kesten [12] was able to show that one can a.s. detect single defects
in the case of four-color sceneries. A question Kesten raised concerning the detection of defects
in sceneries led Matzinger [24,25,23] to investigate the scenery reconstruction problem.

As with scenery reconstruction, there is a version of the scenery distinguishing problem with
observations that are corrupted. Once again, the scenery ξ is equal either to ξa or to ξb, both of
which are known to us. However, the observations are now corrupted through an error process
{νt }t≥0, which is assumed to be a sequence of i.i.d. Bernoulli random variables with parameter
strictly smaller than 1/2 and independent of ξ and S. The variables νt are used to indicate at
which times there are errors in the observations. More precisely, when νt = 1 then there is an
error in the observation at time t . Let χ̃ denote the observations χ corrupted by the errors {νt }t∈N.
Thus,

χ̃t = χt

when νt = 0 and χ̃t 6= χt otherwise. Knowing ξa and ξb, can we decide a.s. if ξ = ξa or if
ξ = ξb based on one path realization of the process χ̃? This constitutes the scenery distinguishing
problem in the case of error-corrupted observations. The subject of this article is closely related
to a random coin tossing problem which was first investigated by Harris and Keane in [6] and
later by Levin, Pemantle and Peres in [22]. They take the error probability to be equal to 1/2.
The coin tossing problem of Harris and Keane can be described as follows:

Let X1, X2, . . . denote a sequence of Bernoulli variables where Xk is the result of the kth coin
toss. We consider two ways of doing this.

• The first method is to toss an unbiased coin independently each time. In this case the variables
Xk are a sequence of i.i.d. Bernoulli random variables with parameter 1/2.

• Let τ1, τ2, . . . denote a sequence of return times of a random walk to the origin. We toss fair
coins independently at all times except at the times τk , at which we toss a biased coin with
fixed bias ω instead.

The problem investigated by Harris and Keane in [6] and later by Levin, Pemantle and Peres
in [22] can now be described as follows: If we are only given one realization of the process
{Xk}k≥0, but do not know whether it was generated by mechanism 1 or mechanism 2, can we
determine a.s. from which of the two processes the observation comes? Harris and Keane were
able to show that, depending on the finiteness of the moments of the stopping times, we may
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or may not be able to deduce the method used to generate the observed sequence. Later, Levin,
Pemantle and Peres were able to show that there is a phase transition depending on the size of
the bias. Furthermore, they were also able to solve the problem in the case where the stopping
times halt a random walk at a finite number of points instead of just at the origin.

It is evident that the Harris–Keane coin tossing problem can be viewed as a scenery
distinguishing problem with errors. In particular, take ξa as the scenery which is everywhere
equal to zero, and ξb as the scenery which is zero everywhere except at the origin. In the case
studied by Levin, Pemantle and Peres [22], set the scenery ξa

≡ 0 and ξb to be zero everywhere
except at a finite number of points. They take the error probability to be 1/2, except when a “one”
is observed. Hence, in their case, P(χ̃t = 0|χt = 0) = 1/2, but P(χ̃t = 0|χt = 1) 6= 1/2.

There is an excellent overview of scenery reconstruction and scenery distinguishing by
Kesten [13]. Scenery distinguishing and reconstruction belongs to the general area of probability
theory which deals with the ergodic properties of observations made by a random process in a
random media. An important related problem is the T, T −1 problem studied by Kalikow [10].
Several important contributions about the properties of the observations were made later. These
include those of Keane and den Hollander [11], den Hollander [2], den Hollander and Steif [3],
Heicklen et al. [5], and Levin and Peres [21]. Interest in the scenery distinguishing problem
was sparked when Keane and den Hollander, as well as Benjamini, asked whether all non-
equivalent sceneries could be distinguished. Lindentstrauss was able to prove that there exist pairs
of sceneries which cannot be distinguished [15]. After Matzinger showed the validity of scenery
reconstruction in the simple case of error-free observations made by a one-dimensional random
walk without jumps (see [25,24]), Kesten noticed that Matzinger’s method was inadequate for
solving the reconstruction problem in the two-dimensional case, as well as in the case when the
random walk is allowed to jump. Subsequently, Löwe and Matzinger [17] were able to prove
that scenery reconstruction is also possible on two-dimensional sceneries with many colors.
Later, Matzinger, Merkl and Löwe [19] proved that with enough colors in one dimension one
can do reconstruction even if the random walk is allowed to jump and thus is not a simple
random walk. In general, scenery reconstruction becomes more difficult as the number of
colors decreases (except in the trivial case when there is only one color). The most difficult
case of reconstruction from observations made by a random walk with jumps on two-color
sceneries was solved by Lember and Matzinger [18]. Den Hollander asked whether it would
be possible to do reconstruction if the jumps made by the random walk are not bounded. Lenstra
and Matzinger [16] were able to answer this question. Finally, following a question of den
Hollander, Löwe and Matzinger [20] investigated the possibility of reconstructing sceneries
that are not i.i.d. but have some correlation. The possibility of reconstructing finite pieces of
sceneries in polynomial time following a question of Benjamini was investigated by Rolles and
Matzinger [27].

In this article, we study one of the crucial techniques for finding markers used in scenery
reconstruction and show that one can still construct and use markers when the observations are
error-corrupted.

The paper is organized as follows. In Section 2, we consider a simplified example without
errors. We show how in this simplified case, markers can be constructed and used for scenery
reconstruction. Since many scenery reconstruction methods are very complicated, it seems
worthwhile to present this simple case. In addition, it also serves as motivation, demonstrating the
usefulness of markers. The following sections are concerned with how to define markers in the
context of error-corrupted observations and construct stopping times that tell us when the random
walk has returned to such a marker. In Section 3, we consider the likelihood of a marker being
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present in the scenery, given that some tail-event has occurred in the error-infested observation
process. In Section 4, we show how to construct a multitude of stopping times which tell us when
the random walk has returned to the location of a marker. It is assumed that there is a marker
close to the random walk’s starting state. Finally, in Section 5, we show how to find a marker for
the first time and then construct a series of stopping times which tell us when the random walk
returns to that marker.

2. An example of scenery reconstruction using a single marker

In this section, we shall illustrate the use of markers in scenery reconstruction. Let us make
some special assumptions which will only apply within this section:

• The scenery ξ : Z → {0, 1, 2} is a three-color scenery, with colors from the set {0, 1, 2}.
• The origin is colored with color 2: ξ(0) = 2.
• ξ1, ξ−1, ξ2, ξ−2, ξ3, ξ−3, . . . is a sequence of i.i.d. Bernoulli variables with parameter 1/2.

This means that, excepting the origin, the scenery ξ is a two-color scenery.
• The random walk {St }t∈N is a simple random walk starting at the origin.

The only place where there is a 2 in the scenery is the origin. We can use this “2” as a “marker”:
Every time we see a 2 in the observations, we are at the origin. This implies:

χt = 2 H⇒ St = 0.

Let τk be the time of the kth visit of S to the origin. Note that τk is observable since it is also the
kth time we observe a 2 in χ :

τk := min{t ∈ N | χt = 2, t > τk−1}, k ≥ 1.

By convention, we set τ0 := 0. Consider the following sequence of binary words:

w1 = 001100, w2 = 0011001100, w3 = 00110011001100, . . ..

Since the scenery ξ is i.i.d., every finite pattern will occur in ξ infinitely often. Hence all the
strings wk will occur in ξ infinitely often. Let xk denote the closest place to the origin where wk
occurs in the scenery. (If there are two such places, choose the one to the right of the origin.)
Hence xk is a point z minimizing |z| under the following constraints:

1. If z > 0, then

ξzξz+1 . . . ξz+4k+1 = wk .

2. If z < 0, then

ξzξz−1 . . . ξz−4k−1 = wk .

It is easy to see that the only way the string wk can appear in the observations χ is by walking
in a straight line over a portion of the scenery where wk appears. In other words, we observe the
word wk at time t , that is,

χtχ(t+1) . . . χ(t+4k+1) = wk,

if and only if, for all i = 0, . . . , i + 4k + 1, we have

S(t+i) = St + iu
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and

ξSt ξSt +u . . . ξSt +4ku+u = wk,

where u = ±1.
Let us give a numerical example. Assume that at time t ∈ N, we observe:

χtχt+1 . . . χt+5 = 001100.

Then we have either St+5 = St + 5 or St+5 = St − 5. In the first case, we have that

ξSt ξ(St +1)ξ(St +2) . . . ξ(St +5) = 001100

whilst in the second case, we would have:

ξSt ξ(St −1)ξ(St −2) . . . ξ(St −5) = 001100.

Almost surely, we have that

lim
k→∞

|xk | = ∞

and on both sides of the origin there are infinitely many points from the sequence xk, k ∈ N.
The shortest time after a 2 at which we can observe the word wk is xk . It takes the random

walk |xk | steps to go from the origin to xk in minimal time. When doing so, the random walk
must walk in a straight line only taking steps towards xk . Whenever the random walk travels
in a straight line, it produces a copy of the portion of the scenery which it has traversed. This
copy is manifest and plain to see in the observations. The random walk goes from the origin to
xk infinitely often in the shortest possible time. This implies that when we observe 2 at time t
followed by wk at time t + |xk |, then we have a copy of ξ0ξuξ2u . . . ξxk in the observations χ .
Here, we take u = xk/ |xk |. Hence we can reconstruct

ξ0ξuξ2u . . . ξxk (1)

using the following algorithm:

Algorithm 2.1. 1. Let µs denote the first time we observe the word wk after time τs :

µs := min{t > τs | wk = χtχt+1 . . . χt+4k+1}.

2. Let dk denote the minimum time at which we can observe the finite string wk after a 2:

dk := min{µs − τs | s ∈ N}.

3. Let s∗ denote any s minimizing µs − τs . In other words, s∗ is such that

µs∗ − τs∗ = dk .

4. The output of our algorithm is

χτs∗χτs∗+1 . . . χµs∗ . (2)

For the reasons explained above, the output of the above algorithm is equal to the piece of
the scenery located between the origin and xk inclusive with probability one. This should
demonstrate the usefulness of markers in scenery reconstruction.
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3. Existence of a marker

In this section, we take the scenery ξ : Z → {0, 1} to be a two-color i.i.d. scenery. Thus, it
is a realization of the process {ξz}z∈Z where the ξz’s are i.i.d. Bernoulli random variables with
parameter 1/2.

As before, the observation of the scenery ξ by the random walk S at time t is denoted by
χt := ξ(St ). We assume that the errors are i.i.d. with the probability P(νt = 1) = ε of an error at
time t being strictly smaller than 1/2. Then, the error-corrupted observation χ̃t at time t is given
by

χ̃t := (χt + νt ) mod 2.

We write χ = (χ0, χ1, . . .) for the error-free observations and χ̃ := (χ̃0, χ̃1, . . .) for the error-
corrupted observations. The scenery ξ , the random walk S and the error process {νt }t∈N are all
assumed to be independent of each other.

For completeness, the following list details all the assumptions we make in this section.

• Let S = {St }t≥0 be a recurrent random walk on Z starting at the origin which can visit any
point z ∈ Z with positive probability.

• The distribution of the increments of the random walk S has bounded support.
• The process ξ = {ξz}z∈Z is such that the ξk’s are i.i.d. Bernoulli variables with parameter 1/2.
• The errors νt , for t ≥ 0, are i.i.d. Bernoulli variables with parameter ε = P(νt = 1) strictly

smaller than 1/2. Here ε denotes the probability of an error.
• The three processes ξ , S and ν = {νt }t≥0 are independent of each other.

Next we need to define a few events. Firstly, define

An
:=

 n2∑
t=0

χ̃t ≤ εn2

 .
Let Bn be the event that there exists a contiguous block of zeros in ξ of length greater than n0.1

in the interval [−Ln2, Ln2
]. More precisely,

Bn
:=

{
∃z ∈ [−Ln2, Ln2

− n0.1
] such that

ξz = ξz+1 = . . . = ξ(z+n0.1) = 0

}
.

Remark. The reader might object that n0.1 is not necessarily an integer. That reader is right.
But for scenery reconstruction to work we do not need to show that for every n things work. It
is enough to show that for an increasing sequence of n’s (which does not go to infinity faster
than polynomially) things work. Hence the reader can imagine that n in the first place is the tenth
power of an integer so that n0.1 becomes an integer. Throughout this article, whenever a fractional
power of n is encountered, the reader should view that fractional power as an integer. One could
also take the integer part and every n, but then notationally things could become unpleasant.

Let Cn be the event that the error-free observation process reveals more than n1.7 1’s in the first
n2 observations:

Cn
:=

 n2∑
t=0

χt ≥ n1.7

 .
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We shall denote the complement of an event E by Ec. Next, let us present the main result of this
section.

Theorem 3.1. For n large enough,

P(Bnc
| An) ≤ exp

(
−(1 − 2ε)2n1.4/3

)
.

Hence, P(Bn
| An) → 1 as n → ∞.

Theorem 3.1 says that if in the first n2 error-corrupted observations we observe a significantly
low number of 1’s, then with very high probability there is a contiguous block of zeros of length
n0.1 very close to the origin in the scenery ξ . This unbroken block of zeros will be used in the
next section as a marker to tell us when the random walk is back near the origin.

To prove Theorem 3.1, we will need a number of lemmas. The first two of these will be used
numerous times throughout this and the following section. Let us start with a large deviation
result.

Lemma 3.1. Let ∆ > 0. Let X1, X2, . . . be a sequence of zero-mean random variables such that
{St }t≥0 is a martingale, where S0 = 0 and St =

∑t
i=1 X i for t ≥ 1. Assume furthermore that the

random variables all have bounded range, that is, for some a > 0, |X i | ≤ a for all i = 1, 2, . . ..
Then, for all k ≥ 1,

P


k∑

i=1
X i

k
≥ ∆

 ≤ exp
(

−
k∆2

2a2

)
. (3)

Proof. From Chernov’s inequality, we have

P


k∑

i=1
X i

k
≥ ∆

 = E[1Sk≥k∆]

≤ E[exp(βSk − βk∆)], for all β > 0,

= exp(−βk∆)E[exp(βSk)].

Then, an application of the Azuma–Hoeffding lemma (see [7], p. 252) yields

P


k∑

i=1
X i

k
≥ ∆

 ≤ exp(−βk∆) exp(kβ2a2/2) = exp(−βk∆ + kβ2a2/2).

The right-hand side of this final expression obtains its optimal (minimum) value at β = ∆/a2.
Substituting β = ∆/a2 into the equation yields the desired result. �

Lemma 3.2. Let S := {St }t≥0 be a random walk with bounded jumps which starts at the origin.
Then:
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1. There exists a constant C ′ > 0 such that

P

(
max

0≤t≤n2
|St | ≤ n

)
≥ C ′

for all n ≥ 0.
2. As n → ∞,

P

(
max

0≤t≤n2−γ
|St | ≤ n

)
→ 1,

for any 0 < γ < 2.

Proof. 1. Define Zk := {Zk(s)}s∈N, where Zk(s) :=
1
k Ssk2 and let W := {Wt }t≥0 denote a

Brownian motion. Then, by the invariance principle, Zn
D
→ W as n → ∞. In particular,

Zn(s)
D
→ Ws and so

max
0≤t≤n2

∣∣∣∣ St

n

∣∣∣∣ = max
s=0,1/n2,2/n2,...,1

|Zn(s)|
D
→ max

0≤s≤1
|Ws |

as n → ∞. Thus,

P

(
max

0≤t≤n2
|St | ≤ n

)
→ P

(
max

0≤s≤1
|Ws | ≤ 1

)
= P(ψ[−1,1] > 1) > 0,

where ψ[−1,1] is the first time of exit of the Brownian motion W from the interval [−1, 1].
The positivity of P(ψ[−1,1] > 1) may be deduced from the analytic expression

P(ψ[−1,1] ∈ dt) =
2

√
2π t3

∞∑
n=−∞

(4n + 1)e−
(4n+1)2

2t dt,

which is a special case of an expression derived in [14].
Thus, since P(max0≤t≤n2 |St | ≤ n) > 0 for all n, it follows that there exists C ′ > 0 such

that P(max0≤t≤n2 |St | ≤ n) ≥ C ′ for all n ≥ 0.

2. As we are assuming that S has i.i.d. increments, let σ 2 denote the variance of an increment.
Then, applying the Kolmogorov inequality (for example, see Chapter 14.6 of [28]), we have

P

(
max

0≤t≤n2−γ
|St | ≤ n

)
= 1 − P

(
max

0≤t≤n2−γ
|St | ≥ n + 1

)
≥ 1 −

n2−γ σ 2

(n + 1)2
≥ 1 − σ 2n−γ

→ 1,

as n → ∞. �

Lemma 3.3. There exists a constant c > 0 not depending on n such that, for all n ≥ 0,

P(An) ≥ c

(
1
4

)n

. (4)

Proof. Let Dn and En be events defined as follows:

Dn
:= {∀z ∈ [−n, n], ξz = 0} and

En
:= {∀t ∈ [0, n2

], St ∈ [−n, n]}.
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By Part 1 of Lemma 3.2, we know that there exists a constant C ′ > 0, not depending on n,
such that P(En) ≥ C ′. Furthermore, P(Dn) = (1/2)2n+1. Since, conditional on Dn

∩ En ,∑n2

t=0 χ̃t =
∑n2

t=0 νt ∼ Bin(n2
+ 1, ε), we see that P(An

| Dn
∩ En) > 0 for all n ≥ 0. (Here

Bin(n2
+ 1, ε) denotes a binomial distribution with parameter n2 and ε.) Furthermore, by the

central limit theorem, P(An
| Dn

∩ En) −→
1
2 as n → ∞. Thus, there exists c′′ > 0 such that

P(An
| Dn

∩ En) ≥ c′′ for all n. Consequently,

P(An) ≥ c′′ P(Dn
∩ En) = c′′ P(Dn)P(En) ≥ c

(
1
2

)2n

,

where c = C ′c′′/2. �

Lemma 3.4.

P(An
| Cn) ≤ exp

(
−
(1 − 2ε)2n1.4

2

)
(5)

for all n ≥ 1.

Proof. Let Z and Z̃ denote the sums

Z :=

n2∑
t=0

χt

and

Z̃ :=

n2∑
t=0

χ̃t .

Conditional on χt = 1, χ̃t has expectation 1− ε whilst conditional on χt = 0, χ̃t has expectation
ε. Thus, Z̃ conditional on Z has the same distribution as the sum of n2

+1 independent Bernoulli
variables where Z of them have expectation 1 − ε and the other n2

+ 1 − Z have expectation ε.
It follows that the conditional expectation of Z̃ given Z is E[Z̃ | Z ] = (n2

+ 1)ε + (1 − 2ε)Z .
Now,

P(An
| Z) = P(Z̃ ≤ εn2

| Z) = P

(
Z̃ − (εn2

+ (1 − 2ε)Z)

n2 ≤ −
(1 − 2ε)Z

n2

∣∣∣∣∣ Z

)
. (6)

Since, conditional on Z , Z̃ is distributed like a sum of n2
+ 1 independent Bernoulli variables, it

follows that we can apply Lemma 3.1. Taking k = n2, a = 1 and ∆ = (1 − 2ε)Z/n2, we find
that the expression on the right-hand side of (6) is bounded by

exp
(

−
(1 − 2ε)2 Z2

2n2

)
.

Hence, when Z ≥ n1.7 is assumed given, we obtain

P(An
| Cn) = P(An

| Z ≥ n1.7) ≤ exp
(

−
(1 − 2ε)2n1.4

2

)
and the proof is complete. �
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Next, we define qn
x,y to be the probability that the random walk S visits the point x or y before

time n0.21:

qn
x,y := P

(
∃t ≤ n0.21, St ∈ {x, y}

)
.

Let qn denote the minimum

qn
:= min

(x,y)∈Gn
qn

x,y,

where Gn :=
{
(x, y) ∈ [−n0.1, n0.1

]
2
|x < 0 < y

}
. The following lemma will be needed to prove

Lemma 3.6.

Lemma 3.5. limn→∞ qn
= 1.

Proof. Let n be large and choose two points x, y ∈ [−n0.1, n0.1
] such that x < 0 < y. Also, let

Ix and Iy denote the intervals Ix := [x − L , x + L] and Iy := [y − L , y + L] respectively. Then,
we define τxy to be the time of the first visit by S to Ix ∪ Iy and use En

xy to denote the event that
S visits x or y before time n0.21:

En
xy :=

{
∃t ≤ n0.21, St ∈ {x, y}

}
.

Further, let En
a,xy denote the event that, within time n0.2 of the stopping time τxy , the random

walk visits all the points in a neighborhood of radius L of the point Sτxy . Hence, En
a,xy denotes

the event that for all z satisfying
∣∣z − Sτxy

∣∣ ≤ L , there exists t ∈ [τxy, τxy + n0.2
] such that

St = z.
Lastly, define En

b to be the event that the random walk S is outside the interval [−n0.1, n0.1
]

at time t = n0.205:

En
b :=

{
Sn0.205 6∈ [−n0.1, n0.1

]

}
.

Since the random walk S starts at the origin, it must cross (but not necessarily hit) either x
or y before leaving the interval [−n0.1, n0.1

]. Since the step lengths of S are bounded by L , the
random walk must visit either Ix or Iy in order to exit the interval [−n0.1, n0.1

]. Hence, when En
b

holds, we have

τxy ≤ n0.205. (7)

Now, whenever (7) and En
a,xy hold, the set {x, y} will be visited before time n0.205

+ n0.2. For
n large enough, n0.205

+ n0.2 < n0.21. Hence,

En
a,xy ∩ En

b ⊂ En
xy,

for any (x, y) ∈ Gn . This implies that

P(Enc
xy) ≤ P(Enc

a,xy)+ P(Enc
b ).

Next, let En
a denote the event that the random walk visits all the points in [−L , L] before time

n0.2. By the strong Markov property of S, we see that P(Enc
a,xy) = P(Enc

a ) and hence we obtain

P(Enc
xy) ≤ P(Enc

a )+ P(Enc
b ). (8)
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Note that the bound on the right side does not depend on either x or y and that (8) holds for all
(x, y) ∈ Gn . Therefore,

qn
= min

x,y
P(En

xy) ≥ 1 − P(Enc
a )− P(Enc

b ). (9)

Now, by the central limit theorem, we have

lim
n→∞

P(Enc
b ) = 0. (10)

Also, by the assumption that S is recurrent and hence has positive probability of visiting all points
in Z, we find that P(E∞

a ) = 1. (Here the event E∞
a is defined to be equal to ∪n>1 En

a .) Then, by
continuity of probability,

lim
n→∞

P(En
a ) = P(E∞

a ) = 1. (11)

Then, by applying (10) and (11) to (9), we conclude that

lim
n→∞

qn
= 1. �

Lemma 3.6. For sufficiently large n,

P(Cnc
| Bnc) ≤ exp(−n1.79/8). (12)

Proof. We begin by defining Bernoulli variables {Yk}k≥1 in the following way:

Yk = 1 kn0.21∑
t=(k−1)n0.21

χt ≥1
= 1∃t∈](k−1)n0.21,kn0.21] such that χt =1.

Clearly, Yk ≤
∑kn0.21

t=(k−1)n0.21−1 χt and

n1.79∑
k=1

Yk ≤

n2∑
t=0

χt .

Thus,

Cnc
=

 n2∑
t=0

χt < n1.7

 ⊆

n1.79∑
k=1

Yk < n1.7


and

P(Cnc
| Bnc) ≤ P

n1.79∑
k=1

Yk < n1.7
| Bnc

 . (13)

Let F :=
⋃

∞

k=1 Fk be the σ -algebra defined by the filtration {Fk}k≥1, where

Fk := σ(St , ξz | t ≤ kn0.21, z ∈ Z).

The sequence {Yk}k∈N is F-adapted. Furthermore, Mk =
∑k

i=1(Yi − E[Yi | Fi−1]) is a
martingale with respect to {Fk}k≥1.

Starting from the origin, the random walk S takes steps with lengths bounded by L . This
implies that S stays in the set [−Ln0.21, Ln0.21

] during the time interval [0, n0.21
]. When the
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event Bnc holds, there exists, for every point z ∈ [−Ln0.21, Ln0.21
], two random points x∗ and y∗

such that z−n0.1 < x∗ < z < y∗ < z+n0.1 with ξx∗ = ξy∗ = 1. By the strong Markov property,
given that the random walk is at z at time t , the probability of visiting x∗ or y∗ during the time
interval (t, t + n0.21

] is equal to qn
x∗−z,y∗−z . Hence this probability is larger than qn . In this case

the conditional probability that we observe at least one 1 in χ during the time interval [t, t+n0.21
]

is larger than or equal to qn . (Conditional on Bnc and St , where St ∈ [−Ln0.21, Ln0.21
].) This

means that, when the event Bnc holds, then

P(Yk = 1 | Fk−1) = E[Yk | Fk−1] ≥ qn,

for all 1 ≤ k ≤ n1.79. Since

lim
n→∞

qn
= 1

by Lemma 3.5, we can assume that n is large enough so that qn > 3/4. Thus,

E[Yk | Fk−1] ≥
3
4

(14)

for n large enough when Bnc holds and k ≤ n1.79. Because of (14) and since Bnc is F0-
measurable, we find

P

n1.79∑
k=1

Yk < n1.7
| Bnc

 ≤ P


n1.79∑
k=1

(Yk − E[Yk | Fk−1])

n1.79 <
n1.7

n1.79 −
3
4

∣∣∣∣∣∣∣∣∣ Bnc

 (15)

for large n. Since {Mk}k≥0 constitutes a martingale with respect to the filtration {Fk}k≥0 and
since Bnc is F0-measurable, Mk remains a martingale when we condition on Bnc. Therefore, we
can apply Lemma 3.1 to bound the probability on the right side of (15). For this we take a = 1
and k = n1.79. For n large enough we have that n−0.09

−
3
4 < −

1
2 , which allows us to take the

value 1
2 for the ∆ of Lemma 3.1. In this way we find that the right side of (15) is smaller than

exp(−n1.79/8). Combining inequalities (13) and (15) with this bound completes the proof. �

Lemma 3.7. For n sufficiently large,

P(An
| Bnc) ≤ 3 exp

(
−
(1 − 2ε)2n1.4

2

)
. (16)

Proof. We have

P(An
| Bnc) = P

(
(An

∩ Cn) ∪ (An
∩ Cnc) | Bnc)

= P(An
∩ Cn

| Bnc)+ P(An
∩ Cnc

| Bnc)

≤ P(An
| Cn)P(Bnc)−1

+ P(Cnc
| Bnc).

Note that for n large, P(Bnc) is close to one. Thus, let us assume that P(Bnc) > 1/2. With this
assumption we obtain

P(An
| Bnc) ≤ 2P(An

| Cn)+ P(Cnc
| Bnc).

We can now apply the bounds from inequalities (5) and (12) to the right-hand side of this last
inequality. Note that the first of these two bounds is much larger than the second. We therefore
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find that P(An
| Bnc) is smaller than 3 times the larger bound, provided that n is large enough.

In other words,

P(An
| Bnc) ≤ 3 exp

(
−
(1 − 2ε)2n1.4

2

)
for large n. This completes the proof. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We have

P(Bnc
| An) = P(An

| Bnc) ·
P(Bnc)

P(An)
≤

P(An
| Bnc)

P(An)
. (17)

Applying inequalities (4) and (16) to this expression, we obtain

P(Bnc
| An) ≤

3 exp
(
−(1 − 2ε)2n1.4/2

)
c(1/4)n

= exp
(
−(1 − 2ε)2n1.4/2 + n ln 4 + ln(3/c)

)
for n sufficiently large. In the expression −(1 − 2ε)2n1.4/2 + n ln 4 + ln(3/c), the dominating
term is the first. This implies that for n large enough, −(1 − 2ε)2n1.4/2 + n ln 4 + ln(3/c) is
smaller than −(1 − 2ε)2n1.4/3. This in turn implies that

P(Bnc
| An) ≤ exp

(
−(1 − 2ε)2n1.4/3

)
for large n and this yields the desired result. �

We conclude this section with a lemma that will be useful in the next section.

Lemma 3.8. For n large,

P(An) ≤ 2Ln2
(

1
2

)n0.1

.

Proof. Let Bn
z denote the event that there is a contiguous block of zeros in the scenery between

z and z + n0.1 inclusive:

Bn
z :=

{
ξz = ξz+1 = · · · = ξz+n0.1 = 0

}
.

Since the scenery is generated by i.i.d. Bernoulli random variables, P(Bn
z ) = (1/2)n

0.1
+1.

Furthermore, with this definition, Bn
=
⋃

z Bn
z , where the union is taken over z in [−Ln2, Ln2

−

n0.1
]. The length of this interval is smaller than 2Ln2. Thus we see that

P(Bn) ≤

∑
z

P(Bn
z ) ≤ 2Ln2

(
1
2

)n0.1
+1

. (18)

Now,

P(An) = P(An
| Bnc)P(Bnc)+ P(An

| Bn)P(Bn) ≤ P(An
| Bnc)+ P(Bn). (19)

We can bound P(An
|Bnc) using the inequality (16) and P(Bn) with the aid of (18). The bound

given on the right-hand side of (18) is asymptotically much larger than that given in (16). Thus,
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for large enough n, we can bound (19) by twice the larger of the two bounds and obtain

P(An) ≤ 2Ln2
(

1
2

)n0.1

. �

4. Returning to a marker

The main result of the last section states that, given that we observe a significantly low number
of 1’s in the first n2 error-corrupted observations (the event An), there is a high probability that
the scenery ξ has a contiguous block of n0.1 or more zeros in the interval [−Ln2, Ln2

]. In the
context of sceneries observed with errors, we shall call such a block a marker.

In this section we shall prove that, by just looking at the observations χ̃ , we can tell exp(n0.001)

times with high probability when the random walk is back at the marker. More precisely, we
shall show that we can construct exp(n0.001) stopping times, which are observable, that is, σ(χ̃)
measurable, and will stop the random walk close to the marker in the interval [−2Ln2, 2Ln2

]. Of
course, we need to make the assumption that there is such a marker in the interval [−Ln2, Ln2

].
In order to do this, we will assume that the probability distribution governing our whole world
of scenery, random walk and errors has properties similar to the measure we obtain by taking the
distribution used in the previous section conditional on the event Bn . To simplify notation, we
do not use P(· | Bn), but a measure P2(·) having very similar properties to P(· | Bn) instead.
Throughout this section, P2(·) denotes a measure which satisfies the following conditions:

• The random walk S and the scenery ξ are independent of each other. (See also the assumptions
at the beginning of section 3.)

• The random walk S has the same distribution under P2(·) as it had in the previous section.
Moreover, it starts at the origin.

• The scenery outside the interval [−Ln2, Ln2
] is i.i.d. Bernoulli with parameter 1/2.

• The portion of the scenery inside the interval [−Ln2, Ln2
] is independent of the remainder

outside the interval.
• The scenery ξ P2-almost surely contains a contiguous block of zeros longer than n0.1 in

[−Ln2, Ln2
]. We require that

P2

(
∃z ∈ [−Ln2, Ln2

− n0.1
] such that ξz = ξz+1 = · · · = ξz+n0.1 = 0

)
= 1.

• The errors under P2(·) are distributed as before and are independent of the random walk and
the scenery. In other words, the process {νt }t≥0 is P2-independent of {St }t≥0 and {ξz}z∈Z.
Also, P2(νt = 1) = ε. Once again, for all t ∈ N,

χt := ξ(St ) and χ̃t := χt + νt mod 2.

Next, we define an increasing set of stopping times that are supposed to tell us when the
random walk S is back close to the origin.

Definition 4.1. Let T denote the random integer set

T :=

t ≥ 0 :

t+n0.1∑
s=t

χ̃s ≤ εn0.1

 .
For k > 0, let τk denote the kth element (under the usual ordering on N) of the set T .
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We can now state the principal result of this section. It says that, with high P2-probability, all
of the first exp(n0.001) stopping times τk stop the random walk in the interval [−2Ln2, 2Ln2

]

near a contiguous block of more than n0.1 zeros. Furthermore, it also says that these stopping
times all occur prior to time exp(n0.003) with high P2-probability.

Theorem 4.1. For large n,

P2

(
∀k ≤ exp(n0.001), Sτk ∈ [−2Ln2, 2Ln2

] and τexp(n0.001) ≤ exp(n0.003)
)

≥ 1 − 3 exp(−n0.003/4).

Before continuing, we shall define a few useful intervals and a number of events that we shall
need in the following.

I n
1 := [−Ln2, Ln2

], I n
2 := [−1.5Ln2, 1.5Ln2

],

I n
3 := [−2Ln2, 2Ln2

], I n
4 := [−Ln2, Ln2

− n0.1
],

I n
5 := [−Ln2

− n0.005, Ln2
], I n

6 := [−Ln2
+ n0.1/2, Ln2

− n0.1/2],

I n
7 := [−L exp(n0.003), L exp(n0.003)].

The first event En
no-error says that we never see a significantly low average of 1’s in the

observations up to time t = exp(n0.003) when we are outside I n
2 .

En
no-error :=

t+n0.1∑
s=t

χ̃s > εn0.1, ∀t ≤ exp(n0.003) such that St 6∈ I n
2

 .
We know that under P2(·) there is a block of color zero having length n0.1 in I n

1 with
probability one. Let zc denote the center of such a block. Thus, zc ∈ I n

6 P2-almost surely and

P2(ξz = 0, ∀z ∈ [zc − n0.1/2, zc + n0.1/2]) = 1.

Note that, by assumption, zc is P2-independent of {St }t≥0 and {νt }t≥0. Let κ∗

l denote the lth visit
by S to the point zc. Let κk denote the l = kn0.1th stopping time κ∗

l . More precisely,

κk := κ∗

kn0.1 , k ∈ N.

We define the stopping times κk in this way to ensure they are separated by time periods of length
at least n0.1.

Let En
visits denote the event that there are more than exp(n0.002) visits to zc before time

exp(n0.003):

En
visits :=

{
κexp(n0.002) ≤ exp(n0.003)

}
.

Let Yk denote the Bernoulli variable which is equal to one if and only if

κk+n0.1∑
s=κk

χ̃s ≤ εn0.1.
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Let En
marker-works denote the event that we observe a significantly low number of ones more

than 1/3 of the time after a stopping time κk, k ≤ exp(n0.002):

En
marker-works :=


exp(n0.002)∑

k=1

Yk ≥
exp(n0.002)

3

 .
The final event we shall need is En

OK which is the event that our stopping times work the way
we want, that is,

En
OK :=

{
∀k ≤ exp(n0.001), Sτk ∈ I n

3 and τexp(n0.001) ≤ exp(n0.003)
}
.

With these definitions, we are ready to formulate the four intermediate results which we will
need in order to prove Theorem 4.1. The first lemma is of a combinatorial nature.

Lemma 4.1. For n sufficiently large, En
no-error ∩ En

visits ∩ En
marker-works ⊂ En

OK.

Proof. When it occurs, the event En
no-error guarantees that all the stopping times in T up to time

exp(n0.003) stop the random walk inside the interval I n
2 . Since I n

2 ⊂ I n
3 , En

no-error implies that

Sτk ∈ I n
3 for all τk ≤ exp(n0.003).

Next, if En
visits and En

marker-works both hold, then there are at least exp(n0.002)/3 stopping times
in T which occur prior to time exp(n0.003). In other words,

τexp(n0.002)/3 ≤ exp(n0.003).

Now, when n is sufficiently large, n0.001
≤ n0.002/3 and so

τexp(n0.001) ≤ exp(n0.003).

Consequently, the simultaneous occurrence of both En
visits and En

marker-works implies that τk ≤

exp(n0.003) for all k ≤ exp(n0.001) when n is large.
Finally, if En

no-error holds in addition to En
visits and En

marker-works, then we also see that Sτk ∈ I n
3

for all k ≤ exp(n0.001). Thus, when all three events

En
no-error, En

visits and En
marker-works

occur simultaneously, then En
OK must also occur. �

The next three results yield lower bounds on the quantities P2(En
no-error), P2(En

visits) and
P2(En

marker-works).

Lemma 4.2. For n large,

P2(E
n
no-error) ≥ 1 − (0.6)n

0.005
. (20)

Proof. Let κz,l denote the time of the lth visit by the random walk S to the point z. Let En
no-error,z,l

denote the event that there is no significantly low number of ones immediately following the
stopping time κz,l , that is,

En
no-error,z,l :=


κz,l+n0.1∑

s=κz,l

χ̃s > εn0.1

 .
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Up to time t = exp(n0.003), the random walk cannot visit points z further away from the origin
than L exp(n0.003) nor can it visit a point more than exp(n0.003) times. Thus, all the times which
appear in the definition of the event En

no-error, that is all the times t for which t ≤ exp(n0.003) and
St 6∈ I n

2 , include the set of times κz,l for which z ∈ (I n
7 \ I n

2 ) and l ≤ exp(n0.003). This implies
that ⋂

z,l

En
no-error,z,l ⊂ En

no-error, (21)

where the intersection is taken over all z ∈ (I n
7 − I n

2 ) and l ≤ exp(n0.003).
If the random walk S is outside the interval I n

2 at time t , then it is impossible for the random
walk to reach the interval I n

1 within time n0.1. Thus if St 6∈ I n
2 then Ss cannot be in I n

1 for all
times s ∈ [t, t + n0.1

]. However, outside the interval I n
1 , the scenery ξ has the same distribution

under P(·) as it does under P2(·). Thus, for z 6∈ I n
2 ,

P2(E
n
no-error,z,l) = P(En

no-error,z,l).

Furthermore, since the distribution of the scenery under P(·) is both time and spatially
homogeneous, an application of the strong Markov property yields

P(En
no-error,z,l) = P(En

no-error,0,0) = P

n0.1∑
s=0

χ̃s > εn0.1

 ,
for all z 6∈ I n

2 . However the event
{∑n0.1

s=0 χ̃s > εn0.1
}

is just the event Amc from Section 3 with

m = n0.05. Hence, from Lemma 3.8 we obtain

P(Enc
no-error,z,l) = P(Am) ≤ 2Lm2

(
1
2

)m0.1

= 2Ln0.1
(

1
2

)n0.005

(22)

for all z 6∈ I n
2 . By combining this with (21), we arrive at

P(Enc
no-error) ≤

∑
z∈I n

7 \I n
2 ,0≤l≤exp(n0.003)

P(Enc
no-error,z,l) ≤ 2L exp(2n0.003) · 2Ln0.1

(
1
2

)n0.005

.

The final inequality comes about by recognizing that there are fewer than 2L exp(2n0.003) pairs
(z, l) with z ∈ I n

7 \ I n
2 and 0 ≤ l ≤ exp(n0.003).

Now, the dominating term in the bound on the right-hand side of this inequality is (1/2)n
0.005

.
Thus, for n big enough, the expression on the right-hand side of the last inequality is smaller than
(0.6)n

0.005
. The result follows by applying this bound to En

no-error. �

Lemma 4.3. For large n,

P2(E
n
marker-works) ≥ 1 − exp(−0.225 exp(n0.002)). (23)

Proof. Let R be a random walk with increments identical to those of the random walk S but
starting at the random point zc. Thus, Rt := St + zc. Let χ R

t denote the observation made by the
random walk R at time t of the scenery ξ , that is, χ R

t := ξ(Rt ). We shall use χ̃ R
t to denote that

same observation made with an error:

χ̃ R
t := χ R

t + νt mod 2.
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Let En
R denote the event that R does not stray from zc by a distance greater than n0.1/2 before

time n0.1:

En
R :=

{
∀t ≤ n0.1, |Rt − zc| ≤ n0.1/2

}
.

Note that when En
R occurs, the random walk R stays within the contiguous block of zeros in ξ

having zc at its center during its first n0.1 steps. Consequently, if En
R holds, we have

n0.1∑
t=0

χ R
t = 0.

It follows, conditional on En
R , that

∑n0.1

t=0 χ̃
R
t ∼ Bin(n0.1, ε). Then, by the central limit theorem,

as n tends to infinity,

P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

| En
R


converges to 1/2. Now,

P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

 = P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

| En
R

 P2(E
n
R)

+ P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

 ∩ Enc
R

 . (24)

By Part 2 of Lemma 3.2, P2(En
R) converges to one as n converges to infinity. It also follows that

P2({
∑n0.1

t=0 χ̃
R
t ≤ εn0.1

} ∩ Enc
R ) converges to zero as n tends to infinity. Hence,

P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

 −→
1
2

as n → ∞.
Next, let us assume that n is large enough so that

P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

 ≥ 0.49. (25)

Define Gk to be the σ -algebra

Gk := σ(zc, ξz; S0, S1, . . . , Sκk + n0.1
| z ∈ Z)

and let G denote the filtration G :=
⋃

k Gk . It can be seen that the sequence of random variables
Y1, Y2, . . . is G-adapted. Furthermore, by definition, the stopping times κk are at least n0.1 time
steps apart from each other. It follows that κk+1 happens no earlier than time κk + n0.1. By
the strong Markov property of the random walk S, when we stop the process at a point, it then
continues on as though it were a new random walk which was started at that point, independent
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of what happened beforehand. Putting it another way, conditional on Gk , S is distributed after
time κk+1 like R. So,

P2(Yk+1 = 1 | Gk) = P2

 κk+1+n0.1∑
s=κk+1

χ̃s ≤ εn0.1

∣∣∣∣∣∣Gk

 = P2

n0.1∑
t=0

χ̃ R
t ≤ εn0.1

 P2-a.s.

According to (25), the final expression in the equality above is greater than 0.49 for n sufficiently
large and, hence, E[Yk+1] ≥ 0.49. We can therefore use Lemma 3.1. Setting k = exp(n0.002),
a = 1/

√
2 and ∆ = 0.15, we obtain

P2(E
nc
marker-works) = P2

exp(n0.002)∑
k=1

Yk < exp(n0.002)/3



≤ P2


exp(n0.002)∑

k=1
(Yk − E[Yk])

exp(n0.002)
< 1/3 − 0.49



≤ P2


exp(n0.002)∑

k=1
(Yk − E[Yk])

exp(n0.002)
≤ −0.15


≤ exp(−0.225 exp(n0.002)).

Thus, P2(En
marker-works) ≥ 1 − exp(−0.225 exp(n0.002)) asymptotically. �

Lemma 4.4. For large n,

P2(E
n
visits) ≥ 1 − exp(−n0.003/4). (26)

Proof. Let s := n0.1 exp(n0.002) and observe that

En
visits =

{
κexp(n0.002) ≤ exp(n0.003)

}
=

{
κ∗

s ≤ exp(n0.003)
}
.

Without loss of generality, assume that zc = 0. If zc is not zero, the proof is virtually the same
since zc is at most a distance polynomial in n away from the origin, which has negligible influence
on the event, since we are considering exponentially long times in n. When zc = 0, the event
En

visits is simply the event that the random walk S visits the origin no less than s times before time
exp(n0.003). Let Zk denote the kth interarrival time between consecutive visits by S to the origin.
Hence,

∑k
l=1 Zl is the time of the kth visit by S to the origin. Note that the random variables

Zk, k ∈ N, are i.i.d. Define n3 to be the number n3 := exp(n0.003). Under the assumption that
zc = 0 (which changes the ultimate bound we shall find in only a minor way), we have that

P2(E
nc
visits) = P2

(
s∑

k=1

Zk > n3

)
.
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Now,

P2

(
s∑

k=1

Zk > n3

)
= P2

( s∑
k=1

Zk

)1/3

> n4

 ,
where n4 := (n3)

1/3. For any set of positive numbers {al}
j
1 , it is always true that (

∑ j
l=1 al)

3
≥∑ j

l=1(al)
3. Hence,

∑s
k=1(Zk)

1/3
≥ (

∑s
k=1 Zk)

1/3 and so

P2(E
nc
visits) ≤ P2

(
s∑

k=1

(Zk)
1/3 > n4

)
.

By the Markov inequality,

P2(E
nc
visits) ≤

sE2[(Z1)
1/3

]

n4
=

n0.1 exp(n0.002)E2[(Z1)
1/3

]

exp(n0.003/3)
. (27)

It is known that E2[(Zk)
1/3

] is finite (see for example Durrett [4]) and thus is a constant not
depending on n. Furthermore, the dominating factor in the bound given in (27) is exp(−n0.003/3).
It follows that, for n large enough, the right-hand side of (27) is smaller than exp(−n0.003/4). �

Proof of Theorem 4.1. Lemma 4.1 yields

P2(E
nc
OK) ≤ P2(E

nc
no-error)+ P2(E

nc
visits)+ P2(E

nc
marker-works). (28)

For the three quantities P2(Enc
no-error), P2(Enc

visits) and P2(Enc
marker-works), we have the bounds (20),

(26) and (23) respectively. The largest of these bounds is given by (26). Since P2(Enc
OK) is

asymptotically smaller than 3 times this bound, we can write P2(Enc
OK) ≤ 3 exp(−n0.003/4)

for n large. �

5. Recognizing markers in error-corrupted observations

In the preceding section, we investigated the case where we condition on the event Bn .
Unfortunately, Bn is not an observable event. So instead, we need to condition on an event we
are able to observe. We shall therefore choose to condition on An , which is observable. From
Theorem 3.1, we know that, whenever An is observed, there is a block of zeros of length greater
than n0.1 close to the origin with high probability. (Here, close to the origin means belonging to
[−Ln2, Ln2

].) We can then use this abnormally long block of zeros as a marker. This enables
us to construct a total of exp(n0.001) stopping times τk and, with high probability, these stopping
times all stop the random walk S in the interval [−2Ln2, 2Ln2

]. This is a situation similar to the
one described in Section 2, where we had a 2 at the origin. When we previously conditioned on
the event Bn , we “forced” the scenery to have a marker close to the origin. We did this in order to
simplify notation in the preceding argument. In reality, we have to search for a marker first. We
shall now show how this can be done. (For simplification the following explanation is for P2(·)

rather than for P(·|Bn).)
Let τ ∗ denote the first time t at which we see a string of length n2 with less than εn2 ones in

the error-corrupted observations:

τ ∗
:= min

t > 0 :

n2∑
s=0

χ̃t+s ≤ εn2

 .
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Since ξ , S and ν are mutually independent and S is a recurrent random walk, the stopping time
τ ∗ must be almost surely finite, that is, P(τ ∗ < ∞) = 1. The neighborhood of Sτ∗ is very similar
to the origin under the conditional probability measure P2(·). Due to the spatial homogeneity of
the scenery, the theory which we developed in the last section holds for the point z = Sτ∗ instead
of the origin. Hence, with high probability, there is a block of more than n0.1 contiguous zeros in
the interval

Iτ∗ := [Sτ∗ − 2Ln2, Sτ∗ + 2Ln2
].

Using this block of zeros as a marker, we can then construct a total of exp(n0.001) stopping
times which, with high probability, all stop the random walk S in Iτ∗ . We shall denote this
sequence of stopping times by {τ̄k}k>0. They are defined as follows:

Definition 5.1. For k > 0, let τ̄k denote the kth element (under the usual ordering on N) of the
set T ∩ [τ ∗,∞). Note that τ̄1 = τ ∗.

The result is that with high probability the first exp(n0.001) stopping times τ̄k stop S in Iν .

Theorem 5.1. The probability

P
(
∀k ≤ exp(n0.001), Sτ̄k ∈ Iτ∗ and (τ̄exp(n0.001) − τ ∗) ≤ exp(n0.003)

)
tends to one as n → ∞.

Proof. The proof is analogous to that of Theorem 4.1. �

These stopping times can be used to reconstruct a little piece of the scenery ξ in the
neighborhood of the point Sτ∗ . The methods which can be used for this are similar to what
was described in Section 2.

In [18], Lember and Matzinger show how being able to reconstruct a small amount of
information contained in the neighborhood of markers implies that the whole scenery ξ can be
reconstructed almost surely. Their proof, however, only pertains to the case of observations made
without errors. The question as to whether or not it is possible to perform scenery reconstruction
from error-corrupted observations of a two-color scenery remains open.
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