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Abstract. Let M = ND be the positive orthant of a D-dimensional lattice and let (G,+)
be a finite abelian group. Let G ⊆ GM be a subgroup shift, and let µ be a Markov random
field whose support is G. Let � : G−→G be a linear cellular automaton. Under broad
conditions on G, we show that the Cesaro average N−1 ∑N−1

n=0 �
n(µ) converges to a

measure of maximal entropy for the shift action on G.

1. Introduction and main results
Let (G,+) be a finite abelian group and let M = ND be the positive orthant of a
D-dimensional lattice. Let GM be the set of all M-indexed configurations of values in G,
which is a compact abelian topological group under componentwise addition. Let G

be a subgroup shift of GM. A cellular automaton (CA) on G is a continuous function
� : G−→G which commutes with all M-shifts, σm : GM−→GM, m ∈ M. We call � a
linear cellular automaton (LCA) on G if

�(g) =
∑
i∈I

ϕi · σ i (g) for all g = (gm : m ∈ M) ∈ G, (1)

where I ⊆ M is a finite subset and ϕi ∈ Z for all i ∈ I. We say � is proper if at least two
different coefficients ϕj , ϕk are relatively prime to |G|, the cardinality of G.

The Haar measure on G is the unique Borel probability measure which is invariant
under translation by any element of G. Under certain conditions (e.g. M = N), the
measure of maximal entropy of G for the shift action is unique and equal to the Haar
measure on G. In general, however, it is known that the measure of maximal entropy is not
unique (see the end of §2).
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If µ is some probability measure on G and � is a CA on G, then � asymptotically
randomizes µ if

lim
N→∞

1

N

N−1∑
n=0

�n(µ) = ν, (2)

where ν is some measure of maximal entropy on G and convergence is in the weak*
topology.

This paper concerns the description of classes of measures that are randomized by LCA
on subgroup shifts. More specifically this study is done for subgroup shifts whose follower
cosets satisfy a special property called the follower lifting property (FLP).

We point out that this study has been done in previous work for the full shift GM. In that
case, the Haar measure corresponds to the uniform Bernoulli measure and it is the unique
measure of maximal entropy. A broad class of probability measures are asymptotically
randomized under the action of an LCA; these include any fully supported Markov measure
when M = N or any fully supported Markov random field, when M = ND , D ≥ 2
(see [Lin84, MM98, FMMN00, PY02, Piv03, MHM03, PY04, Piv05, PY06]).

Based on these results our strategy is the following: from the FLP property we can
reduce the action of an LCA on a subgroup shift to the action of an LCA on a full shift,
and then apply known results to establish asymptotic randomization.

In §2 we provide relevant background on LCA and subgroup shifts, and in §3 we
study the action of one-dimensional LCA on subgroup Markov shifts of GN (simply called
Markov subgroups). We conclude this introduction by listing our main results.

THEOREM 1. Let G ⊆ GN be a transitive Markov subgroup with the FLP. If µ is any
M-step Markov measure on G with full support, and� : G−→G is any proper LCA, then
� asymptotically randomizes µ to the Haar measure on G.

If p is a prime number, an abelian p-group is a product of p-power cyclic groups
(e.g. if p = 3, then G = Z/3 ⊕ (Z/27)

2 ⊕ Z/81 is a p-group). If G is a p-group, then
any Markov subgroup of GN has the FLP (Theorem 20), so we get the following result.

COROLLARY 2. Let p ∈ N be prime and let G be an abelian p-group. If G ⊆ GN is any
transitive Markov subgroup, and µ is anyM-step Markov measure on G with full support,
then any proper LCA acting on G asymptotically randomizesµ to the Haar measure on G.

Any finite abelian group G is a product of p-groups, and an LCA on GN (respectively
subgroup shift) is a product of LCA on the separate p-group (respectively subgroup shift)
factors (Lemmas 7 and 9). Thus, Corollary 2 implies the following.

COROLLARY 3. Let G be any finite abelian group. Let G ⊆ GN be a transitive Markov
subgroup, and let µ be a measure on G with full support. Suppose that G = G1 ⊕· · ·⊕GN
and µ = µ1 ⊗ · · · ⊗ µN , where Gn is a pn-group and µn is an Mn-step Markov measure
on GNn for n ∈ {1, . . . , N}. Then any proper LCA acting on G asymptotically randomizes
µ to the Haar measure on G.

In §4, we turn to D-dimensional LCA acting on a subgroup shift G ⊆ GND with G
a finite abelian p-group and D ≥ 2. To extend the FLP method to higher dimensions,
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we interpret G as a Markov subgroup of GND−1
. To formalize this interpretation, we

introduce the ring RL and associated modules, and develop some basic homological
algebra. We generalize the FLP to a property called the ‘strong’ FLP, and show the
following.

THEOREM 4. Let p ∈ N be prime and let G be an abelian p-group. If G ⊆ GM is a
subgroup shift with the strong FLP and µ is a Markov random field on G with full support,
then any proper LCA acting on G asymptotically randomizes µ to a measure of maximal
entropy on G.

As before, using the decomposition results Lemmas 7 and 9, we obtain the following
corollary.

COROLLARY 5. Let G be any finite abelian group. Let G ⊆ GM be a subgroup shift
with the strong FLP, and let µ be a measure on G with full support. Suppose that
G = G1 ⊕ · · · ⊕ GN and µ = µ1 ⊗ · · · ⊗µN , where Gn is a pn-group and µn is a Markov
random field on GMn for n ∈ {1, . . . , N}. Then any proper LCA acting on G asymptotically
randomizes µ to a measure of maximal entropy on G.

2. Preliminaries
In this section, we fix a finite abelian group (G,+) and we put M = ND , D ≥ 2.
For integers R1 ≤ R2, let [R1, R2) := {R1, . . . , R2 − 1} and [R1, R2] := {R1, . . . , R2}.
If I ⊆ M is finite, then elements of GI are called blocks. For g ∈ GM we set
g|I := (gi : i ∈ I) to be its projection to GI. Given a subset G ⊆ GM a block h ∈ GI is
G-admissible if for some g ∈ G, g|I = h. Denote GI the set of G-admissible blocks in GI.
The cylinder set associated to a block h ∈ GI is [h] := {g ∈ G : g|I = h}.

2.1. Topological dynamical systems. A topological dynamical system is a pair (X, T ),
where X is a compact metric space and T : X−→X is a continuous map.

Let M(X) be the space of all Borel probability measures on X. We equip M(X) with
the weak* topology: a sequence (µn : n ∈ N) in M(X) converges in this topology to
µ ∈ M(X) if and only if µn(f ) −−−→

n→∞ µ(f ) for every continuous function f : X−→R.

A measure in M(X) has full support if it gives positive measure to any non-empty open
set.

A topological dynamical system (Y, S) is a factor of (X, T ) if there is a continuous
onto map π : X−→Y (called a factor map) such that π ◦ T = S ◦ π . If the factor map is
also one-to-one we say the systems are (topologically) conjugate. If µ ∈ M(X), then the
measure π(µ) ∈ M(Y ) is defined by π(µ)(B) = µ(π−1(B)) for all Borel sets B ⊆ Y .
If T (µ) = µ (where T (µ) is defined analogously as π(µ)) we say µ is T -invariant.
Given invariant measures µ ∈ M(X) and ν ∈ M(Y ), the factor map π defines a measure-
theoretical factor if π(µ) = ν.

2.2. Prime decomposition of abelian groups. Let p ∈ N be a prime number. An abelian
group is said to be a p-group if every element of it has order pk for some k ∈ N.
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Suppose that A is an abelian group, and there are distinct primes p1 < p2 < · · · < pN

such that

A = A1 ⊕ · · · ⊕ AN where An is a pn-group, for all n ∈ [1, N]. (3)

We call this a prime decomposition of A, and if A has prime decompositionA1⊕· · ·⊕AN ,
then AM has prime decomposition AM1 ⊕ · · · ⊕ AMN . Any finite abelian group G has a
(unique) prime decomposition [DF91, Theorem 5, §5.2], and it is a p-group if and only if

G = Z/ps1 ⊕ Z/ps2 ⊕ · · · ⊕ Z/psJ , for some J > 0 and s1, s2, . . . , sJ ≥ 0. (4)

Suppose thatA = A1⊕· · ·⊕AN andB = B1⊕· · ·⊕BN are the prime decompositions of
two abelian groups. If �n : An−→Bn are group homomorphisms for all n ∈ [1, N], then
� = �1 ⊕ · · · ⊕�n : A−→B is the homomorphism such that, for any a = (a1, . . . , aN)

∈ A, �(a) = (�1(a1), . . . ,�n(an)). The following lemma is straightforward.

LEMMA 6. Suppose that A is an abelian group with prime decomposition (3). Let Z be a
subgroup of A.
(a) Z = Z1 ⊕ · · · ⊕ZN , where Zn = {an ∈ An : ∃z = (z1, . . . , zN ) ∈ Z, zn = an} for

n ∈ [1, N].
(b) If Q = A/Z , then Q has prime decomposition Q1 ⊕· · ·⊕QN , where Qn = An/Zn

for n ∈ [1, N].
(c) If B is another abelian group, with prime decomposition B = B1 ⊕ · · · ⊕ BN

(in particular, if B = Q), and � : A−→B is any homomorphism, then there are
unique homomorphisms�n : An−→Bn, n ∈ [1, N], such that� = �1 ⊕ · · · ⊕�N .

2.3. Subgroup shifts. For any m ∈ M, let σm : GM−→GM be the shift map, defined as
(σm(g))j = gj+m, for g ∈ GM and j ∈ M. In particular, if D = 1, σ = σ 1 is the left-shift
on GN.

A subgroup G ⊆ GM is said to be a subgroup shift if it is invariant under all M-shifts†. A
result of Kitchens and Schmidt (see [KS89, Corollary 3.8]) asserts that any subgroup shift
is a subshift of finite type. Hence, by replacing G with some power if necessary, we can
recode (by using a topological conjugacy) G as a nearest-neighbor subshift of finite type.
That is, if B = {0, 1}D ⊆ M is theD-dimensional unit cube, there is a subgroup TG ⊆ GB
such that

G = {g ∈ GM : g|B+m ∈ TG,∀m ∈ M}. (5)

In particular, if D = 1 and M = N, then B = {0, 1}. Thus, TG ⊆ G{0,1} is the set
(subgroup) of admissible transitions, and G is a Markov subgroup:

G = {g ∈ GN : (gn, gn+1) ∈ TG,∀n ∈ N}. (6)

If g ∈ G, then a follower of g is any h ∈ G so that (g, h) ∈ TG. Likewise, a predecessor
of g is any h ∈ G such that (h, g) ∈ TG. A Markov subgroup G is proper if every g ∈ G has

† Subgroup shifts are often defined as shift-invariant subgroups of GZD . However, any subshift of GZD can be

projected to a subshift of GN
D

and, conversely, any subshift of GN
D

can be extended to a subshift of GZ
D

in a

unique fashion. Thus, there is no loss of generality in restricting to GN
D

, and for our purposes it yields certain
technical advantages.
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at least one follower and at least one predecessor. We can assume without loss of generality
that all Markov subgroups are proper (if not we replace G by G̃ = ⋂

n∈N σ n(G)).

A sequence (g0, g1, . . . , gN) ∈ G[0,N] is G-admissible if (gn, gn+1) ∈ TG for all
n ∈ [0, N − 1]. A Markov subgroup G is transitive if every element h ∈ G is
reachable from any element g ∈ G, meaning that there is some G-admissible sequence
(g, g1, . . . , gN−1, h) for some N > 0.

Subgroup shifts succumb to a p-group decomposition as follows.

LEMMA 7. Suppose that G has prime decomposition G1 ⊕ · · · ⊕ GN . If G ⊆ GM is a
subgroup shift, then G = G1 ⊕ · · · ⊕ GN , where Gn ⊆ GMn is a subgroup shift for all
n ∈ [1, N].

2.4. Linear cellular automata. Recall from the introduction the definition of a proper
linear cellular automaton (PLCA).

LEMMA 8. G is invariant under the action of LCA acting on GM.

Proof. If � : GM → GM is the LCA (1) and g ∈ G, then ϕi · σ i (g) ∈ G for all i ∈ I.
Thus,�(g) ∈ G. �

More generally, suppose that R is a commutative ring and G is an R-module.
An R-LCA is one of the form (1), where ϕi ∈ R for all i ∈ I.

LCA have a p-group decomposition analogous to Lemma 6(c) as follows.

LEMMA 9. Suppose that G has prime decompositionG1⊕· · ·⊕GN and G = G1⊕· · ·⊕GN

as in Lemma 7. If � : G−→G is a (proper) LCA, then there are (proper) LCA
�n : Gn−→Gn, for n ∈ [1, N], such that� = �1 ⊕ · · · ⊕�N .

Lemmas 7 and 9 allow us to reduce the study of asymptotic randomization by LCA
acting on subgroup shifts to the case of GM, where G is a p-group for some prime p ∈ N.

2.5. The Haar measure. Let G be a subgroup shift of GM, and η ∈ M(G) the Haar
measure. Lemma 17(a) in §3 characterizes η when G is a Markov subgroup of GN.
The Haar measure is uniformly distributed on G in the following sense.

LEMMA 10. If I ⊆ M is finite and ηI is the projection of η to GI, then ηI is the uniform
measure on GI.

Proof. GI is a finite group, and ηI is the Haar measure on GI, so ηI is uniform. �

Let (IR : R > 0) be an increasing sequence of finite subsets of M verifying that for any
R′ > 0 there is some R > 0 such that [0, R′]D ⊆ IR , and let GR := GIR . The topological
entropy of G ⊆ GM (with respect to σ ) is defined by

htop(G) = lim
R→∞

1

|IR| log |GR|.
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If µ is a shift invariant measure on G, then the measurable entropy of µ (with respect to σ )
is defined by

hµ(G) = − lim
R→∞

1

|IR|
∑

g∈GR
µ([g]) · logµ([g]).

Note that neither notion of entropy depends on the sequence (IR : R > 0).
A measure of maximal entropy on G is a shift invariant measure µ ∈ M(G) such

that hµ(G) = htop(G). The next result summarizes prior results about maximal-entropy
measures for subgroup shifts.
PROPOSITION 11. The Haar measure η is a measure of maximal entropy on G [Sch95,
Proposition 13.5, p. 111].

If G ⊆ GN is a transitive Markov subgroup, then η is the unique measure of maximal
entropy [Ber69].

If D ≥ 2, then η is the unique measure of maximal entropy if and only if G has no
zero-entropy, nontrivial measurable factors for η [Sch95, Theorem 20.15, p. 171].

3. Asymptotic randomization of Markov subgroups
Throughout this section D = 1, M = N and (G,+) is a finite abelian group. Let G ⊆ GN
be a Markov subgroup, as in (6). For any g ∈ G, the follower set of g is the set

FG(g) = {h ∈ G : (g, h) ∈ TG}.
Put ZG = FG(0) (mnemonic: ‘Z’ is for ‘zero’).
LEMMA 12. Let G ⊆ GN be a Markov subgroup. Then:
(a) ZG is a normal subgroup of G;
(b) for any g ∈ G, FG(g) is a coset of ZG;
(c) let QG = G/ZG be the quotient group, and define FG : G−→QG by FG(g) =

FG(g); then FG is a group homomorphism;
(d) let πG : G−→QG be the quotient epimorphism (i.e. πG(g) = g + ZG); then

G = {g ∈ GN : FG(gn) = πG(gn+1),∀n ∈ N}.
Proof. Parts (a) and (b) are parts (ii) and (iii) of Proposition 3 in [Kit87], while (c) is
discussed at the beginning of [Kit87, §4]. Part (d) then follows by definition. �

Throughout this section, let G ⊆ GN be a Markov subgroup and Z = ZG. Let Q = QG
be the quotient group and let F = FG and π = πG be the morphisms associated to G as
in Lemma 12.

3.1. The follower lifting property. We say G has the FLP if the map F lifts to a
homomorphism L : G−→G such that π ◦ L = F. In other words, we can transform
diagram (7A) into commuting diagram (7B):

QQ

GG GG

FF ππ

L

(7A) (7B) (7)

It follows that, for any g ∈ G, F(g) = L(g)+ Z .
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The FLP allows us to project G into the full shift ZN, so that the dynamics of shifts and
LCA on G are reduced to shifts and LCA on ZN. We recall that TG ⊆ G{0,1} is defined
from (6).

LEMMA 13. Assume that G has the FLP.
(a) For (g, h) ∈ TG, define δ(g, h) = h− L(g). Let �; G−→ZN be the corresponding

block map, �(g)n = δ(gn, gn+1) for g ∈ G and n ∈ N. Then � is a group
homomorphism.

(b) Define �; G−→G × ZN by �(g) = (g0;�(g)) for g ∈ G. Then � is a group
isomorphism.

(c) � is a conjugacy between (G, σ ) and (G × ZN, σ̃ ), where σ̃ ;G × ZN−→G × ZN
is defined by σ̃ (g; z) = (ς(g; z); σ (z)), with ς(g; z) = L(g) + z0, for g ∈ G and
z ∈ ZN.

(d) For g ∈ G and z ∈ ZN, let ς(1)(g; z) = ς(g; z), and for m > 1, let ς(m)(g; z) =
ς(ς(m−1)(g; z); σm−1(z)). Then for any m ≥ 1, σ̃m(g; z) = (ς(m)(g; z); σm(z)).

Proof. (a) L is a homomorphism, so δ and � are homomorphisms.
(b) � is a homomorphism because � is a homomorphism. To show � is invertible,

let g ∈ G and z = (zn : n ∈ N) ∈ ZN. Define g ∈ GN as follows: g0 = g and
gn+1 = L(gn) + zn for n ≥ 0. Then g ∈ G, �(g) = (g; z) and g is the unique element
with this property.

(c) Let g = (gn : n ∈ N) ∈ G and �(g) = (g0; z), so z = �(g). By the definitions
above, we get

�(σ (g)) = (g1;� ◦ σ (g)) = (g1; σ ◦�(g))
= (L(g0)+ δ(g0, g1); σ (z)) = (L(g0)+ z0; σ (z)) = σ̃ (g0; z).

(d) This follows inductively from (c). �

LEMMA 14. Assume G has the FLP. Let � be a (proper) LCA on G as in (1).
Define �̃ : G × ZN−→G × ZN by �̃(g; z) = ∑

i∈I ϕi · σ̃ i (g; z), for g ∈ G and z ∈ ZN.
Then:
(a) � is a conjugacy between (G,�) and (G × ZN, �̃);
(b) for g ∈ G and z ∈ ZN, �̃(g; z) = (�̃G(g; z); �̃Z(z)), where �̃G(g; z) =∑

i∈I ϕi · ς(i)(g; z) and �̃Z(z) = ∑
i∈I ϕi · σ i (z); thus, �̃Z is itself a (proper)

LCA on ZN.

Proof. (a) � is a homomorphism, so Lemma 13(d) implies that

�(�(g)) = �

(∑
i∈I

ϕi · σ i (g)
)

=
∑
i∈I

ϕi · (� ◦ σ i )(g) =
∑
i∈I

ϕi · (̃σ i ◦�)(g) = �̃(�(g)),

for any g ∈ G. Then (b) follows from Lemma 13(e). �

Example 15. Let us revisit the example introduced in [Kit87] and check the FLP. Let G =
Z/4 ⊕ Z/2. Write an element of G as

(
x
y

)
, where x ∈ Z/4 and y ∈ Z/2, and an element of
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GN as
(x

y

)
, where x ∈ Z/4

N and y ∈ Z/2
N. Let

G =
{(

x
y

)
∈ GN : xn + yn + yn+1 = 0 mod 2,∀n ∈ N

}
.

Then

Z = F
((

0

0

))
=

{(
x1

0

)
: x1 ∈ Z/4

}
= Z/4 ⊕ {0},

and Q = G/Z ∼= Z/2. For any
(
x0
y0

) ∈ G,

F

((
x0

y0

))
=

{(
x1

y1

)
: x1 ∈ Z/4 and y1 = x0 + y0 mod 2

}
=

(
0

(x0 + y0) mod 2

)
+ Z.

Thus,

π

((
x

y

))
=

(
x

y

)
+ Z =

(
0

y

)
+ Z.

Hence, if

L

((
x0

y0

))
=

(
0

(x0 + y0) mod 2

)
,

then π ◦ L = F, which proves that G has the FLP.
Now, δ : TG−→Z is defined by

δ

((
x0

y0

)
,

(
x1

y1

))
=

(
x1

(y1 − (x0 + y0)) mod 2

)
=

(
x1

0

)
.

For any
(
x0
y0

) ∈ G and
(z

0

) ∈ ZN, we have

σ̃

((
x0

y0

)
;
(

z
0

))
=

((
z0

(x0 + y0) mod 2

)
;
(
σ (z)

0

))
.

LEMMA 16. Assume G has the FLP. Let µ ∈ M(G) be a σ -invariant N-step Markov
measure with full support on G. Then �(µ) ∈ M(ZN) is a σ -invariant (N + 1)-step
Markov measure with full support on ZN.

Proof. �(µ) is σ -invariant and Markov because � is a block map whose local map δ
looks at only two consecutive symbols. �(µ) has full support because � is surjective by
Lemma 13(b). �

LEMMA 17. Let η be the Haar measure on G. Then:
(a) for any G-admissible sequence (g0, . . . , gN ),

η([g0, . . . , gN ]) = 1

|G| · 1

|Z|N ;

(b) hη(G) = htop(G) = log |Z|.
Proof. For any g ∈ G, |FG(g)| = |Z|. Thus, there are exactly |G| · |Z|N G-admissible
words of length (N + 1). Part (a) follows because η must give all |G| · |Z|N words equal
mass (Lemma 10). Part (b) follows from the definitions of measurable and topological
entropy. �
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PROPOSITION 18. Assume that G is transitive and has the FLP. Let ρ ∈ M(G) be
σ -invariant. Then ρ is the Haar measure on G if and only if �(ρ) is the Haar measure
on ZN.

Proof. ‘�⇒’: Lemma 13(a), (b) says that � is a group epimorphism from G to ZN.
‘⇐�’: suppose that �(ρ) is the Haar measure on ZN (i.e. the uniform Bernoulli

measure). Since (ZN,�(ρ), σ ) is a measure-theoretical factor of (G, ρ, σ ), then
Lemma 17(b) implies

log |Z| = h�(ρ)(ZN) ≤ hρ(G) ≤ hη(G) = log |Z|.
Thus, hρ(G) = log |Z|. However, η is the unique maximal-entropy measure on G by
Proposition 11; hence, ρ = η. �

COROLLARY 19. Assume G is transitive and has the FLP. Let � be an LCA acting on
G as in (1) and µ ∈ M(G). Then � asymptotically randomizes µ if and only if �̃Z
asymptotically randomizes�(µ).

Proof of Theorem 1. Let µ be an N-step Markov measure on G with full support.
From Lemma 16 we get that �(µ) is an (N + 1)-step Markov measure with full support
on ZN. Thus, Corollary 10 and Theorem 12 of [PY02] and Theorem 9 of [PY04]
together imply that �̃Z (which is proper) asymptotically randomizes �(µ). Now apply
Corollary 19. �

3.2. Sufficient conditions for the FLP. Suppose that G is a p-group as in (4). Let ps

be the largest power of p in the decomposition (4), and let R = Z/ps , treated as a ring.
Then G is an R-module. An R-module P is projective if, given any commuting diagram
(8A) below (where S : N−→M is an R-module epimorphism), there exists an R-module
homomorphism L : P−→N such that we get the commuting diagram (8B):

MM

NN PP
FF SS

L

(8A) (8B) (8)

A free R-module is one of the form R ⊕ · · · ⊕ R. Any free R-module is projective.

PROPOSITION 20. Let p be prime, and let G be an abelian p-group. Then any Markov
subgroup G ⊆ GN has the FLP.

Proof. Let G = Z/ps1 ⊕ Z/ps2 ⊕ · · · ⊕ Z/psJ . Put s = max{s1, . . . , sJ } and R = Z/ps .
Then G is an R-module. Let P = RJ = R ⊕ · · · ⊕ R (J times), then P is a free (thus
projective) R-module.

CLAIM 1. G is isomorphic to a submodule of P .

Proof. Let rj = s − sj for all j ∈ [1, J ]. Then define ψ : G−→P by

ψ((z1, . . . , zJ )) = (pr1z1, . . . , p
rJ zJ ) for any (z1, . . . , zJ ) ∈ G.
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If G̃ = ψ(G) ⊆ P , then ψ : G−→G̃ is an R-module isomorphism. �
G G G GG GG G

P PPP

Q QQQ

F FFF F̃F̃F̃

L

L̃L̃

ψ
ψψ

ψ

π πππ

(9A) (9B) (9C) (9D)

(9)
At this point we have diagram (9A).

CLAIM 2. There is a map F̃ : P−→Q such that F̃ ◦ ψ = F, as in diagram (9B).

Proof. Since Q is a quotient of G, we know that Q is also a p-group, and Q = Z/pQ1 ⊕
Z/pq2 ⊕ · · · ⊕ Z/pqK , where qk ≤ s for all k ∈ [1,K]. Thus, Q is also an R-module.
We can embed Q into RK by repeating the argument of Claim 1. We will thus assume that
Q ⊆ RK . The homomorphism F : G−→Q can then be written as

F(g) = (F0(g),F1(g), . . . ,FK(g)) for any g ∈ G,

where for each k ∈ [0,K], Fk : G−→R is a homomorphism of the form:

Fk((z1, z2, . . . , zJ )) =
J∑
j=1

Fj,k(zj ) for any (z1, z2, . . . , zJ ) ∈ G,

for some homomorphisms Fj,k : Z/psj −→R. Now, R = Z/ps and s = rj + sj ,
so there is some fj,k ∈ Z/psj such that Fj,k(z) = prj · fj,k · z, for any z ∈ Z/psj .
Define F̃j,k : R−→R by F̃j,k(r) = fj,k · r , for any r ∈ R. Then define F̃k : P−→R by

F̃k((r1, r2, . . . , rJ )) =
J∑
j=1

F̃j,k(rj ) for any (r1, r2, . . . , rJ ) ∈ RJ = P .

It follows that F̃k ◦ ψ = Fk . Finally, define F̃ : P−→RK by

F̃(p) = (F̃1(p), F̃2(p), . . . , F̃K(p)) for any p ∈ P .

We conclude that F̃ ◦ ψ = F. �
Now P is projective, so we can find a morphism L̃ : P−→G yielding diagram (9C).
Define L = L̃ ◦� to get commuting diagram (9D). Then π ◦ L = F, as desired. �

Proof of Corollary 2. Proposition 20 says G has the FLP. Now apply Theorem 1. �

4. Randomization of multidimensional subgroup shifts
We will generalize the results of §3 by treating a (D + 1)-dimensional subgroup shift as a
one-dimensional Markov group, whose alphabet is itself a D-dimensional subgroup shift.

We first fix some notation for this section. Let L = ND and M = ND+1 = L × N.
Let p ∈ N be prime, and let G be the abelian p-group:

G = (Z/p)
s1 ⊕ (Z/p2)

s2 ⊕ · · · ⊕ (Z/pJ )sM for some J > 0 and s1, s2, . . . , sJ ≥ 0. (10)

Let R = Z/pJ (as a ring). Then G is an R-module.
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Set U = GL. Any element of GM can be seen as an N-indexed sequence of elements
in U. In other words, GM is naturally isomorphic to the full shift UN. Likewise,
if G ⊆ GM is a nearest-neighbor group shift, then we can interpret G as a Markov
subgroup of UN. Then elements of G can be written as g = (gn : n ∈ N) ∈ UN.
Define UG = {u ∈ U : u = g0 for some g ∈ G}. Then UG is a subgroup shift of U (and
possibly U �= UG).

Now we introduce some machinery to make these statements precise.

4.1. The ring RL and its modules. An R-LCA is a map � : U−→U defined by

� =
∑
i∈I

ϕi · σ i where I ⊆ L is a finite subset and ϕi ∈ R for all i ∈ I.

If RL is the set of all R-LCA on U, then RL is a ring under addition and function
composition. Indeed, RL is isomorphic to the ring R[σ1, . . . , σD] of formal polynomials
inD indeterminants σ1, . . . , σD , with coefficients in the ring R. Here, each σi corresponds
to the shift along the ith axis of L.

An RL-module is a compact, metrizable abelian topological group together with a
continuous RL-action. For example, GL is an RL-module, where σ1, . . . , σD , act as shifts
along the D axes, and other elements of RL act as LCA in the obvious way. If M is an
RL-module, then a submodule is a closed subgroup N ⊆ M which is invariant under
R-multiplication and under all L-shifts; we then write N ≺ M. For example, if V ⊆ GL
is a subgroup shift, then Lemma 8 says that V is an RL-submodule of GL.

The most obvious examples of RL-modules are subgroup shifts of GL, but some
RL-modules (in particular, quotient modules) do not admit a natural subgroup shift
representation. If N ≺ M, then the quotient module is the quotient group Q = M/N
with the quotient topology, the natural action of R and with L acting on Q as follows:
fix m ∈ M and let (m + N ) be the corresponding coset; then for any  ∈ L, σ (m +
N ) = σ (m) + N is another coset (because N is L-shift-invariant). To show that Q is
an RL-module, it remains to show the following.

LEMMA 21. Q is compact and metrizable, and L acts continuously on Q.

Proof. Q is the continuous image of the compact space M, hence Q is compact.
A topological group is metrizable if and only if it is first-countable [Wil70, 38C, p. 259],
hence M is first-countable. The continuous open image of a first-countable space is
first-countable [Wil70, 16A(#3), p. 113], therefore Q is also first-countable and finally
metrizable.

To see that L acts continuously, observe that any neighborhood of the coset (m + N )
has the form (B + N ), where B ⊆ M is a neighborhood of m ∈ M. However, then
σ−(B + N ) = σ−(B)+ N is a neighborhood of σ−(m+ N ) = σ−(m)+ N . �

If M and N are RL-modules, then a morphism is a continuous group homomorphism
� : M−→N which commutes with the RL-action. For example:

• any LCA � : GL−→GL is an RL-module endomorphism of GL;
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• if G ⊆ GL and H ⊆ HL are subgroup shifts (regarded as RL-modules), then an
RL-morphism from G to H is just a block map � : G−→H which is also a group
homomorphism;

• if N ≺ M are RL-modules, and Q = M/N is the quotient module, then the
quotient map π : M−→Q is an RL-epimorphism.

4.2. Direct sums. If M and N are two RL-modules, then their direct sum M ⊕ N
is the product group M × N endowed with the product topology, with R and L

acting componentwise. Now suppose that (Mn : n ∈ N) is a countable family of
RL-modules. The direct sum

⊕
n∈NMn is the Cartesian product

∏
n∈NMn, endowed

with the Tychonoff product topology and componentwise addition, with R and L acting
componentwise†. For the RL-module M we define MN = ⊕

n∈NMn, where Mn
∼= M

for all n ∈ N.

LEMMA 22. Let M be an RL-module. Then:
(a) MN is an RM-module;
(b) if M = U, then MN = UN ∼= GM as RM-modules.

For the rest of the section, let U = GL and UN ∼= GM, as in Lemma 22. To avoid
confusion, we will use σ

L
to indicate the action of L on U, which we apply componentwise

to sequences in UN. We will use σ
N

to indicate the shift on elements of UN, which are
treated as N-indexed sequences. Finally, σ

M
indicates the action of M = L × N obtained

by combining σ
L

and σ
M

. If g ∈ GM, then we write g = (g0, g1, g2, . . . ) ∈ UN, where,
for all n ∈ N, gn = g|L×{n} is an element of U.

4.3. Markov RL-modules. Consider the direct sum UN as an RL-module under σ
L

and
the natural action of R. An RL-submodule shift of UN is a closed RL-submodule V ⊆ UN

which is also σ
N

-invariant. A Markov RL-submodule is an RL-submodule shift V which
is determined by some set of admissible transitions TV ⊆ U{0,1} such that

V = {u ∈ UN : (un,un+1) ∈ TV,∀n ∈ N}. (11)

For any u ∈ U, let FV(u) = {v ∈ U : (u, v) ∈ TV} be the followers of u. Note that FV(u)
could be empty.

PROPOSITION 23. Let G ⊆ GM be a nearest-neighbor subgroup shift as in (5). Then:
(a) G is a Markov RL-submodule of UN.

Let Z = FG(0) ⊆ U be the follower set of the zero configuration in U (mnemonic: ‘Z’
is for ‘zero’). Then:
(b) Z is an RL-submodule of U;
(c) for any u ∈ UG, FG(u) is a coset of Z;
(d) let Q = UG/Z be the quotient RL-module, and define F : UG−→Q by F(u) =

FG(u), then F is an RL-module morphism;

† Note that this differs from the algebraic direct sum of modules, where only finitely many coordinates can be
non-zero.
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(e) let π : UG−→Z be the quotient map (i.e. π(u) = u + Z), then G =
{u ∈ UNG : F(un) = π(un+1),∀n ∈ N}.

Proof. (a) let B and TG be as in (5), and define

SG = {g ∈ GL×{0,1} : g|B+(,0) ∈ TG,∀ ∈ L}. (12)

If u, v ∈ U = GL, let [u, v] be the corresponding element of GL×{0,1}. Then for any
u ∈ UN, u ∈ G if and only if [un,un+1] ∈ SG, for all n ∈ N. In other words, (11) is true.
Also, G is a group and is σ

N
-invariant. It follows that G is a Markov RL-submodule.

(b) We must show that Z is a closed, σ
L

-invariant subgroup of UG. We will use the
following claim.

CLAIM 1. If SG is as in (12), then SG is a subgroup shift in (G{0,1})L.

Z is σ
L

–invariant. Let u ∈ U, and let  ∈ L. Then, from definitions of Z and SG, and the
claim, we get

(u ∈ Z) ⇐⇒ ([0,u] ∈ SG) ⇐⇒ ([σ (0), σ (u)] ∈ SG) ⇐⇒ ([0, σ (u)] ∈ SG)

⇐⇒ (σ (u) ∈ Z).

Z is closed. Let {zn}n∈N ⊆ Z be a sequence with limit z ∈ U. We must show z ∈ Z also.
For all n ∈ N, treat [0, zn] as an element of GL×{0,1}. By hypothesis, [0, zn] ∈ SG for all
n ∈ N. However, SG is closed (Claim 1). Hence, limn→∞ [0, zn] = [0, z] is also in SG.
We conclude that z ∈ Z.

Z is a group. This follows from the fact that SG is a group (Claim 1).
(c) Let u ∈ UG and let v,w ∈ FG(u). We want to show that (v − w) ∈ Z. Observe that
[u, v] ∈ SG and [u,w] ∈ SG. Since SG is a group (Claim 1), [u, v]− [u,w] = [0, (v−w)]
is also in Z, which means (v − w) ∈ Z.

(d) F is a group homomorphism. Let u1,u2 ∈ UG and suppose that F(u1) = v1 + Z and
F(u2) = v2+Z. We want to show that F(u1+u2) = (v1+v2)+Z. Observe that [u1, v1] ∈
SG and [u1, v2] ∈ SG. However, SG is a group, so [u1, v1]+ [u2, v2] = [u1 + u2, v1 + v2]
is in SG; thus, F(u1 + u2) = (v1 + v2)+ Z.

F commutes with σ
L

. Let u ∈ UG and m ∈ L. Suppose F(u) = v + Z. Thus,
[u, v] ∈ SG and [σm(u), σm(v)] ∈ SG (Claim 1 says SG is σ

L
-invariant). Hence,

F(σm(u)) = σm(v)+ Z = σm(v + Z) = σm(F(u)).

F is continuous. Let {un}n∈N ⊆ UG be a sequence converging to u ∈ U, and let
F(un) = vn + Z. We want to show that the sequence {vn + Z}n∈N ⊆ Q converges to
F(u) = v + Z.

Let u′
n = un − u and let v′

n = vn − v. Hence, limn→∞ u′
n = 0, and it suffices to show

that the sequence {v′
n+Z}n∈N ⊆ Q converges to F(0) = Z. Recall that the element v′

n can
be any representative of its coset; it suffices to show that we can pick elements such that
limn→∞ v′

n = 0, in which case limn→∞ v′
n + Z = 0 + Z = Z.

Let R > 0. Since limn→∞ u′
n = 0, we know that there is some N > 0 such that, for all

n > N , u′
n|[0,R]D = 0|[0,R]D (i.e. u′

n is constantly zero inside of [0, R]D). Thus, we can
pick v such that v′

n|[0,R−2]D = 0|[0,R−2]D . We conclude limn→∞ v′
n = 0 as required.

(e) Follows from the definition of F and π . �
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4.4. The FLP. Let G ⊆ GM be a nearest-neighbor subgroup shift as in (5). Then G is
a Markov RL-submodule of UN by Proposition 23. Let Z and Q be as in Proposition 23,
with morphisms F : UG−→Q and π : UG−→Q. We say that G has the FLP if the map
F lifts to an RL-morphism L : UG−→UG such that π ◦ L = F. In other words, we can
transform diagram (13A) into commuting diagram (13B):

QQ

UGUG UGUG

FF ππ

L

(13A) (13B) (13)

It follows that for any u ∈ UG, FG(u) = L(u)+Z. The FLP allows us to project G into
a full shift on ZN, so that the dynamics of LCA on G are reduced to the dynamics of LCA
on ZN. In what follows L : UG−→UG will always be the lifting map of a nearest-neighbor
subgroup shift G with the FLP.

LEMMA 24. Suppose that G has the FLP.
(a) Let SG be as in (12). For any (v,w) ∈ SG, let δ(v,w) = w − L(v) and let

� : G−→ZN be the block map �(g)n = δ(gn, gn+1) for g ∈ G and n ∈ N. Treat G

and ZN as RL-modules under componentwise σ
L

-action. Then � is an RL-module
morphism.

(b) Define� : G−→UG× ZN by �(g) = (g0;�(g)), g ∈ G. Then � is an RL-module
isomorphism.

(c) � is a conjugacy between (G, σ
N
) and (UG×ZN, σ̃ ), where σ̃ : UG×ZN−→UG×

ZN is defined by σ̃ (u; v) = (ς(u; v); σ
N
(v)), where ς(u; v) = L(u) + v0, for all

u ∈ UG and v ∈ ZN.
(d) For u ∈ UG and z ∈ ZN, let ς(1)(u; z) = ς(u; z), and for n > 1, let ς(n)(u; z) =

ς(ς(n−1)(u; z); σ n−1
N

(z)). Then, for any n ∈ N, σ̃ n(u; z) = (ς(n)(u; z); σ n
N
(z)).

Proof. (a) and (b): L is a morphism, so δ and � are morphisms. Thus, � is a morphism.
The remainder of the proof is exactly as in Lemma 13. �

Example 25. We have the following.
(a) Let D = 0. Then L = N0 is the trivial group and M = N. Interpret R as RN0; then

G is an RN0-module, and Proposition 23 becomes Lemma 12. Here diagram (13)
becomes diagram (7), the FLP for Markov subgroups.

(b) Let G = R = Z/27 and let D = 1, so that L = N, M = N2 and U = GN.
Let J = {(0, 0), (0, 1), (1, 0)} ⊆ N2, and define

G =
{

g ∈ GM :
∑
j∈J

3 · gm+j = 0 mod 27,∀m ∈ N
2
}
.

Then UG = U,

SG =
{

s ∈ GN×{0,1} :
∑
j∈J

3 · s(,0)+j = 0 mod 27,∀ ∈ N

}
and

Z = {z ∈ GN : 3 · z = 0 mod 27,∀ ∈ N} = ZN,
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where Z := {0, 9, 18} is the cyclic subgroup of Z/27 generated by 9. Thus,

Q = U/Z = GN/ZN ∼= (G/Z)N ∼= PN,
where P = Z/9 and ∼= represents RN1-module isomorphism. For any g ∈ GN,

FG(g) = {h ∈ GN : 3h = −3g − 3g+1 mod 27, ∀ ∈ N} = f + Z,

where f = −g − σ
L
(g) ∈ GN.

Put L(g) = f, then L : U−→U is an RL-module homomorphism (i.e. an R-LCA)
and FG(g) = L(g)+ Z. Hence, G has the FLP.
For u, v ∈ U, δ(u, v) = v + (u + σ

L
(u)) ∈ U. Thus, for any g = (gn : n ∈ N) ∈ G,

�(g) = v = (vn : n ∈ N) ∈ ZN, where vn = gn+1 + (gn + σ
L
(gn)). Clearly,

� : G−→ZN is an RN-module homomorphism. Put, �(g) = (g0; v), thus,

ς(g0; v) = L(g)+ v0 = (−g0 − σ
L
(g0))+ v0

= (−g0 − σ
L
(g0))+ g1 + (g0 + σ

L
(g0)) = g1,

in accord with Lemma 24(c).
(c) Again let L = N, M = N2 and U = GN. Now, however, let G = R = Z/2 and let

K = {(0, 0), (0, 1), (1, 1)} ⊆ N2. Define

G =
{

g ∈ GM :
∑
k∈K

gm+k = 0 mod 2,∀m ∈ N
2
}
.

Then UG = U and Z = {z ∈ GN : z + z+1 = 0 mod 2,∀ ∈ N} = {0, 1} ∼= Z/2,
where 0 = (0 0 0 . . . ) and 1 = (1 1 1 . . . ). Define 0 = 1 and 1 = 0, and for any
g = (g :  ∈ N) ∈ GN, let g = 1 + g = (g :  ∈ N). Then g + Z = {g, g}, and

Q = U/Z = {{g, g} : g ∈ GN}.
For any g ∈ GN, FG(g) = {h ∈ GN : h + h+1 = g mod 2,∀ ∈ N}.

In this example G does not have the FLP. To see this, let dn = (

n︷ ︸︸ ︷
0 . . . 0 1 0 0 0 . . . ).

Then FG(dn) = {hn,hn}, where

hn = (0 . . . 0︸ ︷︷ ︸
n

0 1 1 1 . . . ) and hn = (1 . . . 1︸ ︷︷ ︸
n

1 0 0 0 . . . ).

So, if L : U−→U satisfies diagram (13), then either L(dn) = hn or L(dn) = hn.
Suppose that L(dn) = hn. Since L is an RN-module homomorphism, L commutes
with σ

L
. Thus, 1 = σ n+1

L
(hn) = σ n+1

L
(L(dn)) = L(σ n+1

L
(dn)) = L(0) = 0, a

contradiction. Hence, we must have L(dn) = hn, for all n ∈ N. However, L must
also be continuous. Hence, 1 = limn→∞ hn = limn→∞ L(dn) = L(limn→∞ dn) =
L(0) = 0, again, a contradiction. �

Let V ⊆ UN be a Markov RL-submodule. An RL-LCA on V is a function� : V−→V

given by
�(u) =

∑
i∈I

φi ◦ σ i
N
(u) for all u ∈ V, (14)

where I ⊆ N is some finite subset and φi ∈ RL for all i ∈ I. Thus, the maps φi are
themselves R-LCA on subgroups of U. It is easy to verify the following.
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PROPOSITION 26. Identify GM ∼= UN as in Lemma 22. Let � : G−→G be some map.
Then � is an R-LCA on G (as a subgroup of GM) if and only if � is an RL-LCA on G

(as an RL-submodule of UN).

LEMMA 27. Assume G has the FLP and let� : G−→G be an RL-LCA as in (14). Define
�̃ : UG × ZN−→UG × ZN by �(u; z) = ∑

i∈I φi ◦ σ̃ i (u; z), for any u ∈ UG and z ∈ ZN.
Then:
(a) � is a conjugacy between (G,�) and (UG × ZN, �̃);
(b) for u ∈ UG and z ∈ ZN, �̃(u; z) = (�̃U(u; z), �̃Z(z)), where �̃U(u; z) =∑

i∈I φi ◦ ς(i)(u; z) and where �̃Z = ∑
i∈I φi ◦ σ i

N
is itself an RL-LCA on ZN.

Proof. The proof is analogous to Lemma 14. �

For any I ⊆ M and R > 0, let I(R) = {j ∈ M : |i − j | < R for some i ∈ I}, and let
∂RI = I(R) \ I. A measure µ ∈ M(G) is a Markov random field (MRF) of range R if for
any finite subsets I ⊆ M and J ⊆ M\ I(R), and any G-admissible blocks u ∈ GI, v ∈ G∂RI
and w ∈ GJ,

µ([u] ∩ [w] ∩ [v])
µ([v]) = µ([u] ∩ [v])

µ([v]) · µ([w] ∩ [v])
µ([v]) .

In other words, the events [u] and [w] are conditionally independent given [v].
LEMMA 28. Let µ ∈ M(G). If µ is a (σ

N
-invariant) MRF with full support on G, then

�(µ) is a (σ
N

-invariant) MRF with full support on ZN.

Proof. The proof is analogous to Lemma 16. �

PROPOSITION 29. Assume G has the FLP and let µ ∈ M(G). Then:
(a) µ is a measure of maximal entropy on G if and only if �(µ) is of maximal entropy

on ZN;
(b) � asymptotically randomizes µ if and only if �̃Z asymptotically randomizes �(µ),

where � and �̃Z are as in Lemma 27.

Proof. If G has the FLP, then L : UG−→UG is an RL-morphism, that is, a CA.
Suppose that L has local rule Lloc : G[0,R]D−→G for some R > 0, such that for any
 ∈ L and u ∈ U, L(u) = Lloc(u|+[0,R]D). The local map Lloc acts naturally on any

block of U containing translations of [0,NR]D for any N > 0. �

For N ≥ 0, let �(N) = {(, n) ∈ M : n ∈ [0, N] and  ∈ [0, (N − n)R]D} ⊆ M, and

let �(N) = {(, n) ∈ M : n ∈ [1, N] and  ∈ [0, (N − n)R]D}. For example, if L = N

and R = 2 then �(4) = {(0, 1), . . . , (6, 1), (0, 2), . . . , (4, 2), (0, 3), (1, 3), (2, 3), (0, 4)}
and �(4) = �(4) ∪ {(0, 0), . . . , (8, 0)}.

For any N > 0, let GN×0 = {g|[0,NR]D×{0} : g ∈ G} ⊆ G[0,NR]D .

CLAIM 1. For any N > 0, |G�(N)| = |GN×0| · |(ZN)�(N)|.
Proof. Suppose that g ∈ G�(N) and write g = (g0, g1, . . . , gN), where gn ∈ G[0,(N−n)R]D .
Thus, g0 ∈ GN×0 ⊆ (UG)[0,NR]D . Let f1 = Lloc(g0) ∈ (UG)[0,(N−1)R]D , and
for all n ∈ [2, N], let fn = Lloc(fn−1) ∈ (UG)[0,(N−n)R]D . Then gn = fn + zn,
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where zn ∈ Z[(N−n)R]D . Then g0 and (z1, . . . , zN) ∈ (ZN)�(N) completely determine g.
Conversely, any element of G�(N) can be generated in this fashion by choosing some g ∈
GN×0 and some z = (z1, . . . , zN) ∈ (ZN)�(N). Thus, |G�(N)| = |GN×0| · |(ZN)�(N)|. �

CLAIM 2. We claim that htop(G) = htop(Z
N).

Proof. It follows from the definition of topological entropy that

htop(G) = lim
N→∞

log |G�(N)|
|�(N)| = lim

N→∞
log |GN×0| + log(|(ZN)�(N)|)

|�(N)|

= lim
N→∞

log |(ZN)�(N)|
�(n) + lim

N→∞
log |GN×0|

|�(N)| = htop(Z
N). �

CLAIM 3. We claim that hµ(G) = h�(µ)(Z
N).

Proof. As in Claim 2, we have

hµ(G) = − lim
N→∞

1

|�(N)|
∑

g∈G�(N)
µ([g]) · log(µ([g])). (15)

Let ζ := �(µ), and use the bijection G�(N) � g �→ (g0; z) ∈ GN×0 × (ZN)�(N) from
Claim 1 to see that∑

g∈G�(N)
µ([g]) · logµ([g])

=
∑

g0∈GN×0

∑
z∈(ZN)�(N)

µ([g0]) · ζ([z]) · [log(µ([g0]))+ log(ζ([z]))]

=
∑

g0∈GN×0

µ([g0]) · logµ([g0])+
∑

z∈(ZN)�(N)
ζ([z]) · log(ζ([z])).

Substituting the last expression into (15) yields

hµ(G) = − lim
N→∞

1

|�(N)|
×

( ∑
g0∈GN×0

µ([g0]) · logµ([g0])+
∑

z∈(ZN)�(N)
ζ([z]) · log(ζ([z]))

)

= − lim
N→∞

1

| � (N)|
∑

z∈(ZN)�(N)
ζ([z]) · log(ζ([z])) = hζ (Z

N).

Finally, Claims 2 and 3 yield (a), and then Lemma 27(a) yields (b). �

Suppose that D = 1, so that L = N and M = N2. If G ⊂ GM has the FLP, then
Lemma 24(b) yields an isomorphism � : G−→UG × ZN, where UG ⊂ GN and Z ⊂ GN
are themselves one-dimensional Markov subgroups. We will say that G has the strong FLP
if the group Z also has the FLP, as described in §3.1.

If D ≥ 2 (and M = ND+1), and G ⊂ GM has the FLP, then we get an isomorphism
� : G−→UG×ZN, where UG ⊂ GND and Z ⊂ GND . We inductively define G to have the
strong FLP if the group Z has the FLP as a subgroup shift of GND .
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For example, if G is a p-group, and G ⊂ GN2
has the FLP, then G automatically has the

strong FLP, because Proposition 20 implies that Z ⊂ GN has the FLP.

PROPOSITION 30. Let G ⊂ GND+1
have the strong FLP.

(a) There is a finite abelian group Z , and for each d ∈ [1,D], there is a subgroup
shift Ud ⊂ GNd , and a topological group isomorphism � : G−→G, where G :=
UD × UND−1 × · · · × UN

D−1

1 × GND × ZND+1
.

(b) If � : G−→G is an LCA, then there is an LCA �Z : ZND+1−→ZND+1
, there is a

homomorphism �0 : GND × ZND+1−→GND and, for every d ∈ [1,D], there is a
homomorphism

�d : UN
D−d

d × · · · × UN
D−1

1 × GND × ZND+1−→UN
D−d

d

such that, if we define� : G−→G by

�(uD, . . . ,u1, g; z)

:= (�D(uD, . . . ,u1, g; z), . . . ,�2(u2,u1, g; z),�1(u1, g; z);�0(g; z);�Z(z)),
(16)

then � is a conjugacy from (G,�) to (G,�).
Let µ ∈ M(G), and let ζ ∈ M(ZND+1

) be the projection of �(µ) to ZND+1
. Then:

(c) µ is a σ -invariant MRF with full support on G if and only if ζ is a σ -invariant MRF

with full support on ZND+1
;

(d) � asymptotically randomizes µ if and only if �Z asymptotically randomizes ζ .

Proof (By induction onD.) IfD = 0, then G = G ×ZN. Thus, if we set � = � , then (a)
is Lemma 13(b), (b) is just Lemma 14, (c) is Lemma 16 and (d) is Corollary 19.

Suppose that the proposition is true forD = k− 1, and let D = k. Lemma 24(b) yields
an isomorphism� : G−→UD × ZN, where UD ⊂ GND and Z ⊂ GND are subgroup shifts.

(a) Z has the strong FLP, so induction yields an isomorphism

�Z : Z−→Z := UD−1 × UND−2 × · · · × UN
D−2

1 × GND−1 × ZND ,

where U1, . . . ,UD−1 ⊂ GND−1
and Z are as described above. We extend this to an

isomorphism

�NZ : ZN−→Z
N ∼= UND−1 × UN

2

D−2 × · · · × UN
D−1

1 × GND × ZND+1

by applying �Z componentwise.
Now, for any g ∈ G, if �(g) = (uD, z) ∈ UD ×ZN, then define �(g) := (uD,�NZ (z)) ∈

G.
(b) Lemma 27(b) yields an LCA �̃Z : ZN−→ZN and a homomorphism �̃D : UD ×

ZN−→UD so that �̃ is a conjugacy from (G,�) to (UD × ZN, �̃), where �̃(u, z) :=
(�̃D(u, z), �̃Z(z)).

As in (14), write �̃Z = ∑
i∈I φ̃i ◦ σ i

N
, where I ⊂ N, and, for each i ∈ I,

φ̃i : Z−→Z is an LCA. By induction, for each i ∈ I, we can find φ
i

Z : ZND−→ZND ,

a homomorphism φ
i

0 : G × ZND−→G and, for all d ∈ [1,D), a homomorphism
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φ
i

d : UN
D−d−1

d ×· · ·×UN
D−2

1 ×GND−1 ×ZND−→UN
D−d−1

d such that, if we define φ
i : Z−→Z

analogously to (16), then φ
i ◦ �Z = �Z ◦ φ̃i .

Identify ZND+1 ∼= (ZND)N, and define �Z : (ZND)N−→(ZND)N by �Z :=∑
i∈I φ

i

Z ◦ σ i
N

. Identify GND ∼= (GND−1
)N, and define �0 : (GND−1

)N ×
(ZND)N−→(GND−1

)N by �0 := ∑
i∈I φ

i

0 ◦ σ i
N

. For each d ∈ [1,D), identify

UN
D−d

d
∼= (UN

D−d−1

d )N, and define �d : (UND−d−1

d )N × · · · × (UN
D−2

1 )N × (GND−1
)N ×

(ZND)N−→(UN
D−d−1

d )N by �d := ∑
i∈I φ

i

d ◦ σ i
N

. If we define �Z : Z
N−→Z

N

analogously to (16), then it follows that �Z ◦ �NZ = �NZ ◦ �̃Z. Finally, for any

(uD; uD−1, . . . ,u1, g; z) ∈ G ∼= UD × Z
N

, let �D(uD; uD−1, . . . ,u1, g; z) :=
�̃D(uD, z), where z = (�NZ )

−1(uD−1, . . . ,u1, g; z) ∈ ZN. If we define � : G−→G

as in (16), then (b) follows.
Prove (c) by inductively applying Lemma 28. Prove (d) by inductively applying

Proposition 29(b). �

Proof of Theorem 4. If µ is an MRF with full support on G, then Proposition 30(c) says
that ζ is an MRF with full support on ZND+1

. Thus, Theorems 12 and 15 of [PY02] and
Theorem 6 of [PY04] together imply that �Z asymptotically randomizes ζ . Now apply
Proposition 30(d). �

4.5. Sufficient conditions for the FLP. Let V ⊆ GL be a subgroup shift. An endo-
morphic cellular automaton (ECA) is a CA � : V−→V that is also an endomorphism of
V as a topological group. For example, all LCA are ECA, but not vice versa. It is not hard
to show the following.

LEMMA 31. Let � : V−→V be a CA. Then � is an ECA if and only if � is an
RL-endomorphism of V as an RL-module.

Let G ⊆ GM be a nearest-neighbor subgroup shift. Then G is a Markov RL-submodule
of UN by Proposition 23. Let Z and Q be as in Proposition 23, with morphisms F : U−→Q
and π : U−→Q. Write elements of G as g = (gn : n ∈ N) ∈ UN.

PROPOSITION 32. The subgroup shift G has the FLP if and only if there exists an ECA
L : UG−→UG such that G = {(gn : n ∈ N) ∈ UNG : gn+1 − L(gn) ∈ Z,∀n ∈ N}.
Proof. ‘�⇒’ Suppose that G satisfies the FLP. Let L : UG−→UG be as in diagram (13).
Then L : UG−→UG is an RL-morphism, so Lemma 31 says that L is an ECA.

If g, f ∈ UG then π(g − L(f)) = π(g)− π(L(f)) = π(g) − F(f). Thus, the following
are equivalent: (i) (g − L(f)) ∈ Z; (ii) π(g − L(f)) = 0; and (iii) π(g) = F(f).

Hence,

G = {(gn : n ∈ N) ∈ UNG : π(gn+1) = F(gn),∀n ∈ N} (by Proposition 23(e))

= {(gn : n ∈ N) ∈ UNG : (gn+1 − L(gn)) ∈ Z,∀n ∈ N} as desired.

‘⇐�’ Suppose that G = {(gn : n ∈ N) ∈ UNG : gn+1 − L(gn) ∈ Z,∀n ∈ N} with L :
UG−→UG an ECA. Clearly, FG(0) = Z and for any b ∈ UG, FG(b) = L(b)+ Z.

It follows that π ◦ L = F, in accord with diagram (13). �
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Example 33. In Example (25b) D = 1, so L = N and M = N2. Also, G = Z/27, and
UG = U = GN, and Z = ZN, where Z = {0, 9, 18}. Finally, L : GN−→GN is the LCA
L(g) = −g − σ L(g).

4.6. Natural extension to ZD . Let prN : GZD−→GND be the projection map.
Any subshift G ⊆ GND has a natural extension to a unique subshift G ⊆ GZD such
that G = prN(G). If α ∈ GL (ZD) is a linear transformation, then α induces a continuous
group automorphism α∗ : GZD−→GZD such that, if g = (gz : z ∈ ZD) ∈ GZD , then
α∗(g) = (g′

z : z ∈ ZD) where g′
z = gα(z) for all z ∈ ZD . If G,H ⊆ GZD are two subshifts

of GZD , we say that G is α-equivalent to H if α∗(G) = H. If G,H ⊆ GND are two subshifts
of GND , with natural extensions G and H, respectively, then we say G is α-equivalent to H

if G and H are α-equivalent.

Any shift invariant measure µ ∈ M(GND) extends to a unique shift invariant measure
µ ∈ M(GZD) such that prN(µ) = µ, and any cellular automaton � : GND−→GND
extends to a unique CA � : GZD−→GZD such that prN ◦� = � ◦ prN. We say the triple
(G, µ,�) is the natural extension of (G, µ,�).

If α ∈ GL (ZD) and z ∈ Z, then σ z ◦ α∗ = α∗ ◦ σα(z). Thus, if � : GZD−→GZD
is a (linear) CA, and we define � = α∗ ◦ � ◦ α−1∗ , then � is also a (linear) CA, and

α∗ ◦ � = � ◦ α∗. If G,H ⊆ GZD are subshifts, and µ ∈ M(G) and ν ∈ M(H) are
shift invariant measures, �,� : GZD−→GZD are CA, then (G, µ,�) is α-equivalent to
(H, ν,�) if α∗(G) = H, α∗(µ) = ν and � = α∗ ◦� ◦ α−1∗ ◦ σ z for some z ∈ ZD .

If G,H ⊆ GND are two subshifts of GND and µ, ν ∈ M(GND) are two shift invariant
measures, and �,� : GND−→GND are two CA, then we say that the triple (G, µ,�) is
affine equivalent to (H, ν,�) if (G, µ,�) has natural extension (G, µ,�) and (H, ν,�)
has natural extension (H, ν,�), and (G, µ,�) is α-equivalent to (H, ν,�), for some
α ∈ GL (ZD).

LEMMA 34. Suppose (G, µ,�) is affine equivalent to (H, ν,�). Then � asymptotically
randomizes µ on G if and only if � asymptotically randomizes ν on H.

Proof. Let (G, µ,�) and (H, ν,�) be the natural extensions as above. Let �̂ = α∗ ◦� ◦
α−1∗ and suppose � = �̂ ◦ σ z for some z ∈ ZD . However, µ and ν are shift invariant,
and �̂n(ν) = α∗ ◦ �n ◦ α−1∗ ◦ α∗(µ) = α∗ ◦ �n(µ). Thus, the following are equivalent:
(i) � randomizes µ on G; (ii) � randomizes µ on G; (iii) �̂ randomizes ν on H; (iv) �
randomizes ν on H; (v) � randomizes ν on H. �

PROPOSITION 35. Suppose that G ⊆ GND is a subgroup shift which is affine-equivalent
to a subgroup shift H ⊆ GND having the strong FLP. If µ is a Markov random field with
full support on G, then any PLCA acting on G asymptotically randomizes µ to a measure
of maximal entropy on G.

Proof. Suppose α ∈ GL (ZD) defines an affine equivalence of G and H. If µ ∈ M(GND),
let µ ∈ M(GZD) be its extension, ν = α∗(µ) and ν = prN(µ). If µ is an MRF with full
support on G, then ν is an MRF with full support on H.
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Let � : GND−→GND be a PLCA as in (1), and let � : GZD−→GZD be its natural
extension. Put �̂ = α∗ ◦� ◦ α−1∗ . Then �̂ = ∑

i∈̂I ϕ̂i · σ i , where Î = α−1(I) and for each
i ∈ Î, ϕ̂i = ϕα(i).

We want to project �̂ to an LCA on GND , but Î �⊆ ND , because some of the elements
of Î may have negative coordinates. Let z = (z1, . . . , zD), where for each d ∈ [1,D],
zd = − min {id : i = (i1, . . . , iD) ∈ Î}. Now let � = �̂ ◦ σ z = ∑

j∈J ψj · σ j , where

J = Î + z ⊆ ND , and where for each j ∈ J, ψj = ϕ̂j−z. Then � projects to an LCA

� : GND−→GND and (G, µ,�) is affine equivalent to (H, ν,�). Theorem 4 says that �
asymptotically randomizes ν; hence Lemma 34 implies that � also randomizes µ. �

Example 36. If G is from Example 25(c), then G = {g ∈ GZ2 ; ∑
k∈K gz+k =

0 mod 2,∀z ∈ Z2}. Now, define α : Z2−→Z2 by α(x, y) = (x,−y). Then α(K) = J,
where J is as in Example (25b). Thus, α∗(G) = {h ∈ GZ2 ; ∑

j∈J hz+j = 0,∀z ∈ Z2}
=: H. Finally, let H = prN(H) = {h ∈ GN2 : ∑

j∈J hn+j = 0,∀n ∈ N2}. Then G is
α-equivalent to H.

G does not have the FLP, but G is affine equivalent to H, and H satisfies the conditions of
Proposition 32 (similarly to Example 33). Thus, H has the FLP. Hence, Proposition 35 says
that any PLCA asymptotically randomizes any MRF with full support on G to a measure
of maximal entropy on G.
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