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Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile

E-mail: amaass@dim.uchile.cl, smartine@dim.uchile.cl and sobottka@dim.uchile.cl

Abstract
Consider a topological Markov subgroup which is ps-torsion (with p prime) and
an affine cellular automaton defined on it. We show that the Cesàro mean of the
iterates, by the automaton of a probability measure with complete connections
and summable memory decay that is compatible with the topological Markov
subgroup, converges to the Haar measure.

1. Introduction

Let (G, +) be a finite Abelian group and (GZ, +) be the product group with the componentwise
addition. Let G ⊆ GZ be a subgroup shift, which without loss of generality can be considered
to use all elements of G. It is well known that G can be seen as a topological Markov chain
(see [4]).

One says � : G → G is an affine cellular automaton if it is given by � = a · id + b ·σ + c,
where a, b ∈ Z are such that the maps g �→ a · g and g �→ b · g are both automorphisms of
G, c ∈ G is a constant sequence and σ : G → G is the shift map.

Cellular automata have been used to model several physical and biological systems
presenting self-organization. Consequently, the study of their dynamics has attracted
increasing attention over the last three decades. One approach to studying the dynamic
behaviour of a cellular automaton is to consider a shift-invariant probability measure µ of
full support in G, which represents a realistic amount of initial conditions, and the sequence
of iterated measures (µ ◦ �−n : n ∈ N). Even in the simplest case the limit of µ ◦ �−n

as n → ∞ does not exist, thus one studies the convergence of the Cesàro mean distribution
N−1 ∑N−1

n=0 µ ◦ �−n as n → ∞ instead. In this spirit, Lind [5] considered the case G = Z2,
G = GZ, � = σ−1+σ and µ a Bernoulli measure, and proved that the Cesàro mean distribution
always converges to the Haar measure (in this case the uniform Bernoulli measure). Later, in [1]
and [7], the same result was shown for µ a Markov measure. In [2], using regeneration theory
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of stochastic processes with finite state space, it was proved that the Cesàro mean distribution
also converges to the Haar measure when µ has complete connections and summable memory
decay, G = Zps for some p prime, and � = a · id + b · σ . By using harmonic analysis ideas
Pivato and Yassawi [10, 11] found the same result for the case where: G = ⊕k

i=1 Zmi
for any

collection of positive integers {mi : 1 � i � k}, the initial measure is harmonically mixing
and � is a diffusive in density cellular automaton. Indeed, this case includes affine cellular
automata and measures with complete connections and summable memory decay (see [2, 3]).
Notice that all previous results are stated for the case G = GZ.

Recently in [8] it was shown that if (G, +) is ps-torsion with p prime, G is a Markov field
verifying a ‘filling property’, � = id + σ and µ is a Markov measure, then the attractiveness
property of the Haar measure also holds. In [9] the same result was proven in the one-
dimensional case. In this case the Haar measure corresponds to the uniform Markov measure
on the allowed words.

In [4] Kitchens showed that any irreducible subgroup shift (G, +) is isomorphic and
topologically conjugated to a full shift group (AZ, ∗), where ∗ is not necessarily a 1-block
operation. Let π : G → AZ be this isomorphism. Hence, from the proof of Kitchens’
representation theorem (theorem 1(ii) in [4]) one can get that if µ is a probability measure
with complete connections and summable memory decay on G, then it is projected by π

onto the probability measure µ ◦ π−1 on GZ having these same properties. Moreover, when
� = a · idG + b ·σG + c is an affine cellular automaton on G, then it is topologically conjugated
to ϕ = a · idAZ ∗ b · σAZ ∗ π(c) through π . Therefore, whenever ∗ is a 1-block operation (e.g.
if the topological entropy of (G, σG) is log N with N = p1 · p2 · · · pq , p1, . . . , pq distinct
prime numbers) one can conclude the Cesàro mean convergence directly from [3]. However,
this occurs only if ∗ has some type of regularity, and thus for most of affine cellular automata
this method cannot be used (see also remark 1 below).

In this work we assume (G, +) is ps-torsion with p prime and we prove the convergence
of the Cesàro mean distribution to the Haar measure when G ⊆ GZ is any subgroup shift,
µ is a probability measure with complete connections compatible with G and summable
memory decay and � is any affine cellular automaton on G. The elements of our proof share
techniques with [2] and [9]. More precisely, the regenerative construction of the measure and
the combinatorics of the binomial coefficients leading the dynamics.

In section 2 we develop the background and state the main result (theorem 1). In section 3,
for a fixed left-infinite sequence w = (w−1, w−2, . . .) allowed in G, we construct a random
sequence x = (xn : n ∈ N) in G distributed as the conditional probability measure µw

and present the renewal process associated with x. Finally, in section 4 we prove that for
sufficiently large n the finite-dimensional distribution of �n(x), conditioned to some renewal
times, coincides with the finite-dimensional law of the Haar measure. This implies theorem 1.

2. Background and main result

The Abelian group (G, +) is ps-torsion with p prime and s � 1 if: (i) psg = 0 for any g ∈ G;
(ii) given 1 < m < ps there exists g ∈ G such that mg �= g.

Denote by σ : G → G the shift map (σ (g))n = gn+1 where g ∈ G and n ∈ Z. Given
g ∈ G, g = (gi : i ∈ Z) and m � n set gn

m = (gm, . . . , gn). For � � 1 denote by G� the set of
all allowed finite words of length � in G. Given g ∈ G, F(g) = {h ∈ G : (g, h) ∈ G2} is the
set of followers of g. In the same way, one defines P(g) the set of predecessors of g.

For g ∈ G put F1(g) = F(g) and for any n > 1 define recursively Fn+1(g) =
∪h∈F(g)Fn(h). From [4], for every n � 1, Fn := Fn(0) is a normal subgroup of G and
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for any h ∈ G there exists h′ ∈ G such that Fn(h) = h′ + Fn. In particular, one can choose
an arbitrary map f : G → G such that f (g) ∈ F(g). It follows that F(g) = f (g) + F .
Furthermore, the irreducibility of G implies it is mixing and thus there exists m � 0 such
that Fm = G. From now on we assume G is irreducible and we denote by r the smallest m

satisfying the previous property.
Given n � 1 and g, h ∈ G, one defines

C
n(g, h) = {(g1, . . . , gn−1) ∈ Gn−1 : (g, g1, . . . , gn−1, h) ∈ Gn+1}.

Notice that C
n(0, 0) is a normal subgroup of Gn−1 and thus for all n � r and g, h ∈ G, one

has that

|Cn(g, h)| = |Cn(0, 0)| = |G|−1|F |n. (1)

In fact, since n � r , given g, h ∈ G the set C
n(g, h) is not empty and ∪g,h∈GC

n(g, h) = Gn+1.
One deduces that |G|2|Cn(0, 0)| = |Gn+1| = |G||F |n.

Denote by N the set of all non-negative integers and by N
∗ the set of all positive integers.

Let G− and G+ be the projections of G on G−N
∗

and GN, respectively. Given w ∈ G− denote
by G+

w the projection on G+ of the set of all sequences (gi : i ∈ Z) ∈ G with gi = wi for
i � −1. Notice that if n � r then for any w ∈ G− one has σn(G+

w) = G+.
Let µ be any shift-invariant probability measure on G. For w ∈ G−, w = (w−1, w−2, . . .)

let µw be the conditional probability measure on G+
w. We say µ has complete connections

compatible with G if given a ∈ G, for all w ∈ G− such that a ∈ F(w−1), one has µw(a) > 0.
If µ is a probability measure with complete connections, we define the quantities γm, for
m � 1, by

γm := sup

{∣∣∣∣ µv(a)

µw(a)
− 1

∣∣∣∣ : v, w ∈ G
−; v−i = w−i , 1 � i � m; a ∈ F(v−1) = F(w−1)

}
.

(2)

When
∑

m�1 γm < ∞, we say µ has summable memory decay, and this implies a uniform
continuity condition on µw(a) as a function of w.

Denote by ν the Haar measure on G, which is the Markovian measure given by the
stochastic matrix L = (Lgh : g, h ∈ G), where Lgh = |F−1|1F(g)(h) and the L-
stationary vector ρ = (ρg = |G|−1 : gεG). Recall ν is the maximal entropy measure
for the Markov shift (G, σ ) and it is the unique �-invariant Markov measure with full
support. For all m � n, let � = m − n + 1 and g = (gm, . . . , gn) ∈ G�, it holds that
ν{x ∈ G : xn

m = g} = |G|−1|F |−(�−1).
Now, using the above notations we are able to state the main result.

Theorem 1. Let G be ps-torsion with p prime and G ⊆ GZ be an irreducible subgroup shift.
Let � : G → G be an affine cellular automaton and µ be a shift-invariant probability measure
with complete connections and summable memory decay compatible with G. Then, the Cesàro
mean of µ under the action of � converges to the Haar measure.

Notice that to prove theorem 1 it is enough to show that for any w ∈ G−, m ∈ N and
g ∈ Gm+1:

lim
N→∞

1

N

N−1∑
n=0

µw((�nx)m0 = g) = |G|−1|F |−m. (3)

Remark 1. We point out that from Kitchens’ theorem proof one can get that any probability
measure with complete connections and summable memory decay µ on G is projected by an
isomorphism π : G → GZ onto the probability measure µ′ := µ ◦ π−1 on GZ.
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Indeed, the isomorphism π given in theorem 1(ii) of [4] can be constructed with memory
� and anticipation 0, which implies that for any w′ ∈ GZ−

and a′ ∈ F(w′
−1) there exist unique

w ∈ G− and a ∈ F(w−1) such that aw = π−1(a′w′). Therefore, one gets µ′
w′(a′) = µw(a)

that gives the complete connection property for µ′. Now, denote by γn and γ ′
n the quantities

defined by the expression (2) for the measures µ and µ′, respectively. It can be shown that
the way used to construct π in [4], allows us to deduce that γ ′

m � γm−�, which implies the
summable decay property of µ′. Now, if � = a · idG + b ·σG + c is an affine cellular automaton
on G, then it is topologically conjugated to ϕ = a · idAZ ∗ b ·σAZ ∗π(c) through π . Therefore,
whenever ∗ is a 1-block operation one can conclude the Cesàro mean convergence of µ directly
from [3]. However, for most of the cases ∗ will be a k-block operation for k > 1, and this
argumentation cannot be used to conclude the Cesàro mean convergence of µ under the action
of �.

In any case our proof of theorem 1 does not use the properties on projections of complete
connections and summable memory decay measures supplied by the construction of Kitchens.

3. Processes with infinite memory and regeneration times

As mentioned in the introduction we follow closely the construction made in [2]. Let µ be
a probability measure with complete connections and summable memory decay compatible
with G. In this section, for a fixed w ∈ G− we construct a stochastic process {xn : n � 0) and
a probability law Pw such that

Pw{xn = gn|xn−1 = gn−1, . . . , x0 = g0} = µgn−1...g0w(gn). (4)

Let w ∈ G− and g ∈ F(w−1). By assumption of complete connections µw(g) > 0.
Define,

a−1(g|w) = inf{µv(z) : v ∈ G
−, z ∈ F(v−1)},

and

a0(g|w) = inf{µv(g) : v ∈ G
− such that g ∈ F(v−1)}.

Notice that a−1(g|w) depends neither on g nor on w, while a0(g|w) does not depend on
w. Furthermore, the function µ(·)(z) : {v ∈ G− : z ∈ F(v−1)} → [0, 1] is continuous because
µ has summable memory decay, and is non-zero because µ has complete connections. Thus,
since G is compact, a−1(g|w) > 0. Let α > 0 be such that α < a−1(g|w)|F |. Now, for k � 1,
set

ak(g|w) = inf{µv(g) : v ∈ G
−, vi = wi, −k � i � −1, g ∈ F(v−1)},

which is non-decreasing in k and limk→∞ ak(g|w) = µw(g).
We will use the above quantities to determine a partition of the interval [0, 1] as follows.

Let b−1(g|w) = a−1(g|w) − α|F |−1 and for k � 0 put bk(g|w) = ak(g|w) − ak−1(g|w).
Then we can construct a partition of (α, 1] by intervals Bk(g|w) of Lebesgue measure
bk(g|w), respectively, disposed in increasing order with respect to g and k. That is, writing
g1, . . . , g|F | ∈ F(w−1) with gi < gi+1, i ∈ {1, . . . , |F |}, then one orders the intervals:
B−1(g1|w), . . . , B−1(g|F ||w), B0(g1|w), . . ., B0(g|F ||w), .... From this construction∣∣∣∣∣∣

⋃
k�−1

Bk(g|w)

∣∣∣∣∣∣ = µw(g) − α|F |−1 and

∣∣∣∣∣∣
⋃

g∈F(w−1)
⋃

k�−1

Bk(g|w)

∣∣∣∣∣∣ = 1 − α. (5)

Then [0, 1] can be written as the disjoint union [0, α] ∪ ⋃
g∈F(w−1)

⋃
k�−1 Bk(g|w).
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Consider P a probability law such that (Un : n ∈ Z) and (Vn : n ∈ N) are two independent
sequences of i.i.d. random variables such that Un is uniformly distributed in [0, 1] and Vn is
uniformly distributed in F , that is, P{Vn = g} = |F |−1 for any g ∈ F . Then, for each w ∈ G−

one can construct recursively a stochastic process (xn : n � 0) by

xn := (f (xn−1) + Vn)1[0,α](Un) +
∑

g∈F(xn−1)

g
∑
k�−1

1Bk(g|xn−1...x0w)(Un), (6)

where f : G → G is an arbitrary map such that f (g) ∈ F(g).
From here, we shall denote Pw := P the probability law of the process (xn : n � 0) which

was constructed with respect to the past w. One checks that the equation (4) holds,

Pw{xn = gn|xn−1 = gn−1, . . . , x0 = g0}
= Pw{Un � α, Vn = gn − f (gn−1)} + Pw{Un ∈ ∪k�−1Bk(gn|gn−1 . . . g0w)}
= α|F |−1 + | ∪k�−1 Bk(gn|gn−1 . . . g0w)| =(∗) µgn−1...g0w(gn),

where =(∗) is because of equalities (5).
Now, define for � � −1,

a� = min
w∈G−




∑
g∈F(w−1)

a�(g|w)


 .

It is a non-decreasing non-zero sequence such that for any w ∈ G−

[0, ak] ⊆ [0, α] ∪
k⋃

�=−1

⋃
g∈F(w−1)

B�(g|w).

Hence, one has recovered lemma 2.4 of [2]. Namely, for n ∈ N, in the event {Un � ak} one
only needs to look at xn−1, . . . , xn−k to decide the value of xn.

For i � j , denote by Uj

i � α the event {Ui � α, Ui+1 � α, . . . , Uj � α}. Given m � 1
define times (T

(m)
i : i � 1) by

T
(m)

1 = min{n � 0 : Un+m
n � α, Un+m+j+1 � aj−1, j � 0}

and for i � 2

T
(m)
i = min{n > T

(m)
i−1 : Un+m

n � α, Un+m+j+1 � aj−1, j � 0}.
Let N(m) be the counting measure on N induced by (T

(m)
i : i � 1). That is, for any A ⊆ N,

N(m)(A) =
∑
i�1

1A(T
(m)
i ), N(m)({n}) = N(m)(n).

In particular,

{N(m)(n) = 1} ⇔ {Un+m
n � α, Un+m+j+1 � aj−1, j � 0}.

Let P{Un+m
n � α, Un+m+j+1 � aj−1, ∀j � 0} = αm+1a0a1 · · · = β. We claim β > 0.

Indeed, since µ has summable memory decay ak(g|v) � (1 − γk)Pw{x0 = g} if vi = wi for
i ∈ {−k, . . . , −1}. Therefore, ak � (1 − γk) and

∑
k�0(1 − ak) �

∑
k�0 γk < ∞, which

implies β > 0. This is a crucial fact to show that N(m) is a renewal stationary process on N,
with finite inter-renewal mean as was done in lemma 2.5 [2]. Then, by lemma 3.1 in [2],

∃ε : N → R
+ non-increasing, ε(n) →n→∞ 0 and P{N(m)(A) = 0} � ε(|A|). (7)
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4. The Cesàro limit

In this section we prove theorem 1. To achieve it one needs to prove the following two results,
which are infinite memory measure versions of lemmas 3.1 and 3.2 in [9].

Recall we fixed r as the smallest integer such that F r = G. Given w ∈ G−, let
x = (xn : n ∈ N) be the stochastic process associated to w.

Lemma 1. Let k � r , m � 0, l � 1, g ∈ Gm+1, h ∈ Gk−r+1 such that h0 ∈ F(w−1), and
y ∈ Gl , then

(i) Pw{xk+m
k = g|Uk+m

k−r+1 � α, xk−r
0 = h} = |G|−1|F |−m,

(ii) Pw{xk+m
k = g|N(m+2r−1)(k − r + 1) = 1, xk−r

0 = h, xk+m+r+l−1
k+m+r = y} = |G|−1|F |−m.

Proof.(I) Let h = (h0, h1, . . . , hk−r ) ∈ Gk−r+1 such that h0 ∈ F(w−1), g =
(gk, gk+1, . . . , gk+m) ∈ Gm+1, then

Pw{xk+m
k = g| Uk+m

k−r+1 � α, xk−r
0 = h}

=
∑

z∈Cr (hk−r ,gk)

Pw{xk−1
k−r+1 = z, xk+m

k = g|Uk+m
k−r+1 � α, xk−r

0 = h}

=(∗)

∑
z∈Cr (hk−r ,gk)

|F |−(r+m) = |G|−1|F |−m,

where =(∗) is because the values (xn : k − r + 1 � n � k + m) are distributed as
(Vn : k − r + 1 � n � k + m), where each component is uniformly distributed on F ,
and |Cr (hk−r , gk)| = |Cr (0, 0)| = |G|−1|F |r .
(ii) Fix N = k+m+r+l−1. Let h = (h0, h1, . . . , hk−r ) ∈ Gk−r+1, g = (gk, . . . , gk+m) ∈ Gm+1

and y = (yk+m+r , . . . , yN) ∈ GN−k−m−r+1. Put m̃ = m + 2r − 1 and k̃ = k − r + 1, then

Pw{xk+m
k = g| N(m̃)(k̃) = 1, xk−r

0 = h, xN
k+m+r = y}

= Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g}

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h}
· Pw{xk+m

k = g|N(m̃)(k̃) = 1, xk−r
0 = h}. (8)

Notice that

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g}

=
∑

z∈Cr (gk+m,yk+m+r )

Pw{xN
k+m+r = y, xk+m+r−1

k+m+1 = z|N(m̃)(k̃) = 1, xk−r
0 = h, xk+m

k = g}. (9)

For each z ∈ C
r (gk+m, yk+m+r ) one has

Pw{xN
k+m+r = y, xk+m+r−1

k+m+1 = z|N(m̃)(k̃) = 1, xk−r
0 = h, xk+m

k = g}
=

∑
v∈Cr (hk−r ,gk)

Pw{xN
k+m+r = y, xk+m+r−1

k+m+1 = z, xk−1
k−r+1 = v|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g}

=
∑

v∈Cr (hk−r ,gk)

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h, xk−1
k−r+1 = v, xk+m

k = g, xk+m+r−1
k+m+1 = z}

·Pw{xk+m+r−1
k+m+1 = z|N(m̃)(k̃) = 1, xk−r

0 = h, xk−1
k−r+1 = v, xk+m

k = g}
·Pw{xk−1

k−r+1 = v|N(m̃)(k̃) = 1, xk−r
0 = h, xk+m

k = g}
=() C|F |−(r−1)

∑
v∈Cr (hk−r ,gk)

Pw{xk−1
k−r+1 = v|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g}, (10)
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where =() is because
- in the event {N(m̃)(k̃) = 1, xk+m+r−1

0 = u} it follows that xN
k+m+r = y does not depend on

the chosen u ∈ C
k+m+r+1(w−1, yk+m+r ) which implies P{xN

k+m+r = y|N(m̃)(k̃) = 1, xk+m+r−1
0 =

u} = C(y) := C > 0 a constant; and
- for all k +m+ 1 � n � k +m+ r −1 the value of xn only depends on the random variable

Vn which is uniformly distributed on F .
For each v ∈ C

r (hk−r , gk) one has

Pw{xk−1
k−r+1 = v|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g}

= Pw{xk+m
k = g|N(m̃)(k̃) = 1, xk−r

0 = h, xk−1
k−r+1 = v}

Pw{xk+m
k = g|N(m̃)(k̃) = 1, xk−r

0 = h} Pw{xk−1
k−r+1 = v|N(m̃)(k̃) = 1, xk−r

0 = h}

=(1)

|F |−(m+1)

Pw{xk+m
k = g|N(m̃)(k̃) = 1, xk−r

0 = h} |F |−(r−1) =(2)

|F |−(m+1)

|G|−1|F |−m
|F |−(r−1), (11)

where =(1) reduces by the same ‘renewal-epoch’ argument as in equation (10) and =(2) by
part (i).

Combining equations (9), (10) and (11), and since |Cr (hk−r , gk)| = |Cr (gk+m, yk+m+r )| =
|G|−1|F |r , one gets

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g} = C|F |

|G| . (12)

On the other hand, one has

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h}
=

∑
g′∈Gm+1

Pw{xN
k+m+r = y|N(m̃)(k̃) = 1, xk−r

0 = h, xk+m
k = g′} (13)

·Pw{xk+m
k = g′ |N(m̃)(k̃) = 1, xk−r

0 = h}
= C|F |

|G|
∑

g′∈Gm+1

Pw{xk+m
k = g′ |N(m̃)(k̃) = 1, xk−r

0 = h} = C|F |
|G| .

Then, replacing (12) and (13) in (8), and using part (i) one concludes the result. �

From lemma 1 one can deduce the relevance of considering a measure with complete
connections and summable memory decay. Indeed, for such a measure one has that there
exists 0 < α < a−1(g|w)|F |, which can be interpreted as a positive transition probability to
any state (allowed in the topological Markov chain G) independently of the past and w. This
implies that the state of (xn : n ∈ N) between times k and k + m is independent of the past
and on w in the event Uk+m

k−r+1 � α. Furthermore, the summable memory decay property is
necessary to get that {Un+m+j+1 � aj−1, ∀j � 0} is an event with positive probability. This
was used to conclude in part (ii) of previous lemma the independence of xk+m

k with respect to
the future between the times k + m + r and k + m + r + � − 1. To finish let us note that the
summable memory decay property also is needed to get (7), which will be used later in the
proof of theorem 1.

Now, consider � = a id +b σ +c an affine cellular automaton on G, with a and b relatively
prime to p and c = (. . . , c, c, c, . . .) ∈ G. We will not distinguish the operations on G and
G. Then given x ∈ G, i ∈ N and n � 1 it follows

(�nx)i =
n∑

k=0

(
n

k

)
an−kbkxi+k + c

n−1∑
k=0

k∑
�=0

(
k

�

)
ak−�b�.



A Maass et al

For every m ∈ Z denote by m(s) its equivalence class mod(ps) in Zps . Then

(�nx)i =
n∑

k=0

((
n

k

)
an−kbk

)(s)

xi+k + c

n−1∑
k=0

k∑
�=0

((
k

�

)
ak−�b�

)(s)

. (14)

Suppose �, m, k � 0, n � m + � + 1 and m � k � n − �, then one says that k is
(m, �)-isolated in n if (i)

(
n
k

)(s) �= 0; and (ii) for every k′ ∈ {k − m, . . . , k + �}, k′ �= k, then
(
n
k′

)(s) = 0.

Lemma 2. Let m � 0, n � 2r + 2m + 1, and assume k is (r + m, r + m)-isolated in n. Then,
for every i ∈ N and g ∈ Gm+1:

Pw{(�nx)i+m
i = g|Ui+k+m+r

i+k−r+1 � α, Ui+k+m+r+j+1 � aj−1, j � 0} = |G|−1|F |−m.

Proof. Define X = (Xi, . . . , Xi+m) and Y = (Yi, . . . , Yi+m) by

Yi+j =
((

n

k

)
an−kbk

)(s)

xi+j+k, j ∈ {0, . . . , m} (15)

and

Xi+j := (�nx)i+j − Yi+j , j ∈ {0, . . . , m}. (16)

Notice that

Xi+j =
n∑

k′=0
k′ �=k

((
n

k′

)
an−k′

bk′
)(s)

xi+j+k′ + c

n−1∑
k′=0

k′∑
�=0

((
k′

�

)
ak′−�b�

)(s)

=(∗)

k−r−m−1∑
k′=0

((
n

k′

)
an−k′

bk′
)(s)

xi+j+k′ +
n∑

k′=k+r+m+1

((
n

k′

)
an−k′

bk′
)(s)

xi+j+k′

+ c

n−1∑
k′=0

k′∑
�=0

((
k′

�

)
ak′−�b�

)(s)

, (17)

where =(∗) is because k is (r + m, r + m)-isolated. From definition (�nx)i+m
i = X + Y ∈

Gm+1. From Y = ((
n
k

)
an−kbk

)(s) ·xi+k+m
i+k one deduces that Y ∈ Gm+1 and since Gm+1 is a group

one concludes that X, Y ∈ Gm+1. By lemma 3.4 [9]
(
n
k

)(s)
is relatively prime to p. Since a and

b are also relatively prime to p, it follows that d = ((
n
k

)
an−kbk

)(s)
has a multiplicative inverse

d−1 in Zps and so d−1 · Y = xi+k+m
i+k . Observe that if xi+k−r−1

i = h and xi+m+n
i+k+m+r+1 = z then

X = κ(h, z). Hence, putting m̃ = m + 2r − 1 and k̃ = i + k − r + 1 one obtains

Pw{(�nx)i+m
i = g|N(m̃)(k̃) = 1}

=
∑

z∈Gn−k−r
h∈Gk−r ,

Ci+1(w−1 ,h0)�=∅

Pw{Y = g − κ(h, z)|xi+k−r−1
i = h, xi+m+n

i+k+m+r+1 = z, N(m̃)(k̃) = 1}

· Pw{xi+k−r−1
i = h, xi+m+n

i+k+m+r+1 = z|N(m̃)(k̃) = 1}
=() |G|−1|F |−m

∑
z∈Gn−k−r
h∈Gk−r ,

Ci+1(w−1 ,h0)�=∅

Pw{xi+k−r−1
i = h, xi+m+n

i+k+m+r+1 = z|N(m̃)(k̃) = 1} = |G|−1|F |−m,

where =() follows from lemma 1(ii). �
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4.1. Proof of theorem 1

This proof uses strongly the Pascal triangle properties showed in [9].
First, let us introduce the following notation. For a, i, n ∈ N, let n = ∑

j∈N
njp

j be the
decomposition of n in base p (so nj ∈ {0, ..., p − 1} for every j ); Ji(n) := {j � i : nj �= 0};
ξi(n) := |Ji(n)|; and pa

N := {pa · n : n ∈ N} = {n ∈ N : nj = 0, ∀0 � j < a}.
Suppose a � 2s + 1, pa � 2m + 2r + 1, and let

M := {n ∈ pa
N : n � p2(m + r)2, ξ

a+� 1
2 logp(n)�(n) � 1

5 logp(n)},
where �c� denotes the integer part of any given real number c, and so given n ∈ M let
A(n) := {k � n : k is (m + r, m + r)-isolated in n}. In lemma 3.4 and the proof of theorem
1.1 in [9] is shown that there exists C > 0 (it suffices to consider C−1 = 5 log2 p) such that
|A(n)| � nC − 1. Thus, for any i � 0,

P{∃k ∈ A(n) with Ui+k+m+r
i+k−r+1 � α, Ui+k+m+r+j+1 � aj−1, j � 0}

=P{N(m+2r−1)((i − r + 1) + A(n)) �= 0} = 1 − ε(|A(n)|)�1 − ε(�nC − 1�),
where ε : N → R+ is a non-increasing function which converges to zero as n goes to

infinity (see (7)).
Then, using lemma 2 we get for any w ∈ G−, g ∈ Gm+1, and n ∈ M:

|Pw{(�nx)i+m
i = g} − |G|−1|F |−m| � ε(�nC − 1�).

Lemma 3.5 in [9] says that the relative density of M is one in pa
N; that is,

lim
n→∞

|M ∩ {1, . . . , n}|
|paN ∩ {1, . . . , n}| = 1.

This implies that the (m + 1)-dimensional marginal of the Cesàro mean converges along
pa

N, that is,

lim
N→∞

1

|paN ∩ {0, . . . , N − 1}|
∑

n∈paN∩{0,...,N−1}
P{(�nx)i+m

i = g} = |G|−1|F |−m.

Therefore, since the Haar measure is invariant for powers of �, one has that for any
0 � j < pa , the (m + 1)-dimensional marginal of the Cesàro mean also converges along
Mj = {n + j ; n ∈ M}. Hence, we conclude from the fact that

pa lim
N→∞

1

N

∑
n�N

P{(�nx)i+m
i = g}

=
∑

0�j<pa

1

|Mj ∩ {0, . . . , N − 1}|
∑

n∈Mj ∩{0,...,N−1}
P{(�nx)i+m

i = g} = |G|−1|F |−m.

We can use theorem 1 together with Kitchens’ result to conclude about the convergence
of Cesàro mean distribution of wider classes of algebraic cellular automata. In fact, if we
consider an Abelian k-block group shift (A, +̃), that is, the group operation +̃ is a sliding block
code from A×A to A with a k-block local rule (see [4] and [6]), then we can take the following
result.

Proposition 1. Suppose (A, +̃) is ps-torsion for some prime number p and define ϕ :=
a · id +̃ b · σ +̃ c, where a, b ∈ N are relatively prime to p, and c ∈ A is a constant
sequence. If µ is a probability measure with complete connections and summable memory
decay compatible with A, then the Cesàro mean distribution of the iterates of µ under the
action of ϕ converges to the Haar measure.
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Proof. From proposition 4 in [4] we set that there exists a 1-block shift group (G, +), such
that (A, +̃, σA) is isomorphic to (G, +, σG), that is, there exists a map π : A → G which is
a topological conjugacy between (A, σA) and (G, σG), and an isomorphism between (A, +̃)

and (G, +). Therefore, π is also a topological conjugacy between (A, ϕ) and (G, �), where
� = a · idG + b · σG + π(c). In particular, + is a 1-block operation on G, and so (G, �) is an
affine cellular automaton as in theorem 1.

Suppose µ is a probability measure on A with complete connections compatible with
A and summable memory decay. We need to show that µ′ := µ ◦ π−1 also has complete
connections compatible with G and summable memory decay.

In fact, the construction of the proof of proposition 4 in [4] gives that π is a Higher Block
Code (see [6]). Without loss of generality we can consider π has memory � and anticipation
0. Thus, given a cylinder [a′

i , . . . , a
′
m] of G we have that π−1

(
[a′

i , . . . , a
′
m]

) = [ai−�, . . . , am]
is a cylinder of A. Hence, given a′ ∈ G, for all w′ ∈ G− such that a′ ∈ F(w′

−1), set
aw = π−1(a′w′) with a ∈ A and w ∈ A−. One has that

µ′
w′(a

′) = µπ−1(w′)(π
−1(a′)) = µw(a) > 0,

and

γ ′
m := sup

{∣∣∣∣ µv′(a′)
µw′(a′)

− 1

∣∣∣∣ : v′, w′ ∈ G
−; v′

−i = w′
−i , 1 � i � m; a′ ∈ F(v′

−1) = F(w′
−1)

}

= sup

{∣∣∣∣ µv(a)

µw(a)
− 1

∣∣∣∣ : v, w ∈ A
−; v−i = w−i , 1 � i � m + �; a ∈ F(v−1) = F(w−1)

}

= γm+�.

Now, since µ′ has complete connections and summable memory decay, we use theorem 1
to get � randomizes µ′ to ν ′, that is the Haar measure on G. Then

lim
N→∞

1

N

N−1∑
n=0

µ ◦ ϕ−n = lim
N→∞

1

N

N−1∑
n=0

µ ◦ π−1◦ �−n ◦ π = lim
N→∞

1

N

N−1∑
n=0

µ′ ◦ �−n◦ π =ν ′ ◦ π,

and due to the uniqueness of the maximum-entropy measure we have ν ′ ◦ π is the Haar
measure on A.
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