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Abstract

Necessary and sufficient conditions are given for linearly recurrent Cantor dynamical systems to
have measurable and continuous eigenfunctions. Also an example of a linearly recurrent system
with a nontrivial Kronecker factor and a trivial maximal equicontinuous factor is constructed
explicitly.

1. Introduction

Let (X,T ) be a topological dynamical system, that is, X is a compact metric space
and T : X → X is a homeomorphism. Let µ be a T -invariant probability measure
on X. In the classification of dynamical systems in ergodic theory and topological
dynamics, rotation factors play a central role. In the measure-theoretical context
this is reflected by the existence of a T -invariant sub-σ-algebra Kµ of the Borel
σ-algebra of X, BX , such that

L2(X,Kµ , µ) = 〈{f ∈ L2(X,BX , µ) \ {0};∃λ ∈ C, f ◦ T = λf}〉.
It is the subspace spanned by the eigenfunctions which determines the Kronecker
factor. From a purely topological point of view the role of the Kronecker factor
is played by the maximal equicontinuous factor. It can be defined in several
ways. When (X,T ) is minimal (all orbits are dense), it is determined by the
continuous eigenfunctions. Thus it is relevant to ask whether there exist continuous
eigenfunctions; or even under which conditions measure-theoretical eigenvalues can
be associated to continuous eigenfunctions.

In [6] these questions are considered for substitutive systems and in [1] they are
considered for linearly recurrent systems. These last systems are characterized by
the existence of a nested sequence of clopen (for closed and open) Kakutani–Rokhlin
partitions of the system (P(n);n ∈ N) verifying some technical conditions we call
(KR1), (KR2), . . . , (KR6) (see below), and such that the height of the towers of
each partition increases ‘linearly’ from one level to the other (see also [2, 3]). A
partial answer to the former question is given in terms of the sequence of matrices
(M(n);n � 1) relating towers from different levels in [1]. A complete answer to this
question is given in the following theorem.
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We need some extra notations. For each real number x we write |||x||| for the
distance of x to the nearest integer. For a vector V = (v1, . . . , vm )T ∈ R

m , we write

‖V ‖ = max
1�j�m

|vj | and |||V ||| = max
1�j�m

|||vj |||.

For n � 2 we put P (n) = M(n) . . . M(2) andH(1) = M(1).

Theorem 1. Let (X,T ) be a linearly recurrent Cantor system given by an
increasing sequence of clopen Kakutani–Rokhlin partitions with associated matrices
(M(n);n � 1), and let µ be the unique invariant measure. Let λ = exp(2iπα).

(1) λ is an eigenvalue of (X,T ) with respect to µ if and only if∑
n�2

|||αP (n)H(1)|||2 < ∞.

(2) λ is a continuous eigenvalue of (X,T ) if and only if∑
n�2

|||αP (n)H(1)||| < ∞.

In [1] the authors prove the necessary condition in statement (1) and the sufficient
condition in statement (2). One of the most relevant facts is that both conditions
do not depend on the order of levels in the towers defining the system but just on
the matrices.

2. Definitions and background

2.1. Dynamical systems

By a topological dynamical system we mean a couple (X,T ) where X is a compact
metric space and T : X → X is a homeomorphism. We say that it is a Cantor system
if X is a Cantor space; that is, X has a countable basis of its topology which consists
of closed and open sets (clopen sets) and does not have isolated points. We only
deal here with minimal Cantor systems.

A complex number λ is a continuous eigenvalue of (X,T ) if there exists a
continuous function f : X →C, f 	=0, such that f ◦T = λf ; f is called a continuous
eigenfunction (associated to λ). Let µ be a T -invariant probability measure, that
is Tµ=µ, defined on the Borel σ-algebra BX of X. A complex number λ is
an eigenvalue of the dynamical system (X,T ) with respect to µ if there exists
f ∈L2(X,BX , µ), f 	=0, such that f◦T = λf ; f is called an eigenfunction (associated
to λ). If the system is ergodic, then every eigenvalue is of modulus 1, and
every eigenfunction has a constant modulus. Of course continuous eigenvalues are
eigenvalues.

In this paper we mainly consider topological dynamical systems (X,T ) which
are uniquely ergodic and minimal, that is, systems that admit a unique invariant
probability measure which is ergodic, and such that the unique T -invariant sets are
X and ∅ module µ.

2.2. Partitions and towers

Sequences of partitions associated to minimal Cantor systems were used in [5] to
build representations of such systems as adic transformations on ordered Bratteli
diagrams. Here we do not introduce the whole formalism of Bratteli diagrams since



Figure 1. Clopen Kakutani–Rokhlin partition of level n. (i) X is partitioned in C(n)
towers. Each tower Tk (n), 1 � k � C(n), is composed of hk (n) disjoint sets, called
stages of the tower. The top of a tower is the roof Bk (n). (ii) The dynamics of T
consists in going up from one stage to the other of a tower up to the roof. Points in
a roof are sent to the bottom of the towers; two points in the same roof can be sent
to different towers.

we will only use the language describing the tower structure. Both languages are
very close. We recall some definitions and fix some notations.

Let (X,T ) be a minimal Cantor system. A clopen Kakutani–Rokhlin partition is
a partition P of X given by

P = {T−jBk ; 1 � k � C, 0 � j < hk}, (2.1)

where C is a positive integer, B1, . . . , BC are clopen subsets of X, and h1, . . . , hk

are positive integers. For 1 � k � C, the kth tower of P is

Tk =
hk −1⋃
j=0

T−jBk

and its height is hk ; the roof of P is the set B =
⋃

1�k�C Bk . Let

(P(n) = {T−jBk (n); 1 � k � C(n), 0 � j < hk (n)}; n ∈ N) (2.2)

be a sequence of clopen Kakutani–Rokhlin partitions. For every n ∈ N and 1 � k �
C(n), B(n) is the roof of P(n) and Tk (n) is the kth tower of P(n) (see Figure 1).
We assume that P(0) is the trivial partition, that is, B(0) = X, C(0) = 1 and
h1(0) = 1.

We say that (P(n);n ∈ N) is nested if for every n ∈ N it satisfies the following.
(KR1) B(n + 1) ⊆ B(n).
(KR2) P(n+1) � P(n), that is, for all A ∈ P(n+1) there exists A′ ∈ P(n) such

that A ⊆ A
′
.

(KR3)
⋂

n∈N
B(n) consists of a unique point.

(KR4) The sequence of partitions spans the topology of X.

In [5] it is proved that given a minimal Cantor system (X,T ) there exists a
nested sequence of clopen Kakutani–Rokhlin partitions fulfilling (KR1)–(KR4) and
the following additional technical conditions.

(KR5) For all n � 1, 1 � k � C(n − 1), 1 � l � C(n), there exists 0 � j < hl(n)
such that T−jBl(n) ⊆ Bk (n − 1).

(KR6) For all n � 1, B(n) ⊆ B1(n − 1).

We associate to (P(n);n ∈ N) the sequence of matrices (M(n);n � 1), where
M(n) = (ml,k (n); 1 � l � C(n), 1 � k � C(n − 1)) is given by

ml,k (n) = #{0 � j < hl(n);T−jBl(n) ⊆ Bk (n − 1)}.



Notice that (KR5) is equivalent to the following: for all n � 1, M(n) has strictly
positive entries. For n � 0, set H(n) = (hl(n); 1 � l � C(n))T . As the sequence of
partitions is nested H(n) = M(n)H(n − 1) for n � 1. Notice that H(1) = M(1).
For n > m � 0 we define

P (n,m) = M(n)M(n − 1) . . . M(m + 1) and P (n) = P (n, 1).

Clearly

Pl,k (n,m) = #
{
0 � j < hl(n); T−jBl(n) ⊆ Bk (m)

}
for 1 � l � C(n), 1 � k � C(m), and

P (n,m)H(m) = H(n) = P (n)H(1).

2.3. Linearly recurrent systems

The notion of linearly recurrent minimal Cantor system (also called linearly
recurrent system) in the generality we present below was stated in [1]. It is an
extension of the concept of linearly recurrent subshift introduced in [4].

Definition 2. A minimal Cantor system (X,T ) is linearly recurrent (with
constant L) if there exists a nested sequence of clopen Kakutani–Rokhlin partitions
(P(n) = {T−jBk (n); 1 � k � C(n), 0 � j < hk (n)};n ∈ N) satisfying (KR1)–
(KR6) and the following.

(LR) There exists L such that for all n � 1, l ∈ {1, . . . , C(n)} and k ∈
{1, . . . , C(n − 1)},

hl(n) � L hk (n − 1).

Most of the basic dynamical properties of linearly recurrent minimal Cantor
systems are described in [1]. In particular, they are uniquely ergodic and the unique
invariant measure is never strongly mixing. In addition, C(n) � L for any n ∈ N

and the set of matrices {M(n);n � 1} is finite.
To prove Theorem 1 we need to consider the property
(KR5′) for all n � 2, 1 � k � C(n − 1), 1 � l � C(n), there exist 0 � j < j′ <

hl(n) such that T−jBl(n) ⊆ Bk (n − 1) and T−j ′
Bl(n) ⊆ Bk (n − 1);

instead of (KR5). This condition is equivalent to saying that the coefficients of
M(n) are strictly larger than 1 for n � 2.

Let (X,T ) be a linearly recurrent system given by a nested sequence of clopen
Kakutani–Rokhlin partitions (P(n);n∈N) which verifies (KR1)–(KR6) and (LR).
Then the sequence of partitions defined by P ′(0)=P(0) and P ′(n)=P(2n− 1) for
n� 1 is a sequence of nested clopen Kakutani–Rokhlin partitions of the system
which verifies (KR1)–(KR4), (KR5′), (KR6) and (LR) (with another constant).
It follows that M ′(1)= M(1) and M ′(n)= M(2n − 1)M(2n − 2) for n� 2, where
(M(n);n� 1) and (M ′(n);n� 1) are the sequence of matrices associated to the
partitions (P(n);n∈N) and (P ′(n);n ∈ N), respectively. Moreover,∑

n�2

|||αP (n)H(1)|||p < ∞ ⇔
∑
n�2

|||αP ′(n)H(1)|||p < ∞, (2.3)

where α ∈ R and p ∈ {1, 2}.



3. Markov chain associated to a linearly recurrent system

Let (X,T ) be a linearly recurrent system and let µ be its unique invariant
measure. Consider a sequence (P(n);n� 0) of clopen Kakutani–Rokhlin partitions
which satisfies (KR1)–(KR6) and (LR) with constant L and let (M(n);n � 1) be
the sequence of matrices associated. The purpose of this section is to formalize the
fact that there exists a Markovian measurable structure behind the tower structure.

The following relation will be of constant use in this paper. For n� 1 put µ(n) =
(µ(Bt(n)); 1 � t � C(n)) (the vector of measures of the roofs at level n). It follows
directly from the structure of towers that for 1 � k < n

µ(n − k) = MT (n − k + 1) . . . MT (n)µ(n). (3.1)

3.1. First entrance times and combinatorial structure of the towers

In this subsection we define several concepts that will be used extensively later.
They are illustrated in Figure 2.

Define the first entrance time map to the roof B(n), rn : X → N, by

rn (x) = min{j � 0;T j (x) ∈ B(n)}.

Since (X,T ) is minimal and B(n) is a clopen set, then rn is finite and continuous.
Define the tower of level n map τn : X → N by

τn (x) = k if and only if x ∈ Tk (n) for some 1 � k � C(n).

Note that

rn (T (x)) − rn (x) =

{
−1 if x /∈ B(n)
hk (n) − 1 if x ∈ B(n) and τn (T (x)) = k.

(3.2)

Let n � 1 and 1 � t � C(n). By hypothesis (KR5), several stages in the tower
Tt(n) are included in the roof B(n− 1), and in particular stage Bt(n). The number
of such stages is

mt(n) =
C (n−1)∑

k=1

mt,k (n) = #{0 � j < ht(n);T−jBt(n) ⊆ B(n − 1)}.

Let {e1, e2, . . . , emt (n)} = {0 � j < ht(n);T−jBt(n) ⊆ B(n−1)} with ht(n) > e1 >
e2 > . . . > emt (n) = 0. The integers e1, . . . , emt (n) are the first entrance times of
points belonging to Tt(n) ∩ B(n − 1) into Bt(n). Moreover, for all 1 � l � mt(n)
there is a unique k ∈ {1, . . . , C(n − 1)} such that

T−el Bt(n) ⊆ Bk (n − 1).

Denote this k by θt
l (n − 1). From (KR6) we have

θt
mt (n)(n − 1) = 1. (3.3)

We set

θt(n − 1) = θt
1(n − 1) . . . θt

mt (n)(n − 1) ∈ {1, . . . , C(n − 1)}∗. (3.4)



Note that el − el+1 is the height of the θt
l+1(n− 1)th tower of P(n− 1) for 1 � l <

mt(n). Thus

el =
mt (n)∑
k=l+1

hθt
k (n−1)(n − 1).

Now, the tower Tt(n) can be decomposed as a disjoint union of the towers of P(n−1)
it intersects. More precisely, Tt(n) =

⋃mt (n)
l=1 El,t(n − 1), where

El,t(n − 1) =
el⋃

j=el−1−1

T−jBt(n) =

hθ t
l
(n −1)(n−1)−1⋃

j=0

T−j−el Bt(n).

By definition,

El,t(n − 1) ⊆
hθ t

l
(n −1)(n−1)−1⋃

j=0

T−jBθt
l (n−1)(n − 1).

For x ∈ X, denote by ln (x) the unique integer in {1, . . . , mτn (x)(n)} such that
x ∈ Eln (x),τn (x)(n − 1). The following lemma follows from the construction. The
proof is left to the reader.

Lemma 3. For all x ∈ X we have

n⋂
k=1

Elk (x),τk (x)(k − 1) = T−rn (x)Bτn (x)(n), (3.5)

{x} =
⋂
n�1

Eln (x),τn (x)(n − 1). (3.6)

Moreover, given that

(tn ;n � 0) ∈
∏
n�0

{1, . . . , C(n)}, (jn ;n � 1) ∈
∏
n�1

{1, . . . , mtn
(n)}

such that θtn
jn

(n − 1) = tn−1 for n � 1, there exists a unique x ∈ X such that

((ln (x), τn (x));n � 1) = ((jn , tn );n � 1). (3.7)

Note that the set in (3.5) is the atom of the partition P (n) containing x.
For all n � 1 and x ∈ X define sn−1(x) = (sn−1,t(x); 1 � t � C(n − 1)) by

sn−1,t(x) = #{j; rn−1(x) < j � rn (x), T jx ∈ Bt(n − 1)}.
It also holds that

sn−1,t(x) = #{j; ln (x) < j � mτn (x)(n), θ
τn (x)
j (n − 1) = t}.

In other words, the vector sn−1(x) counts, in each coordinate 1 � t � C(n−1), the
number of times the tower Tt(n− 1) is crossed by a point x, after its first return to
the roof of level n−1, and before reaching the roof of the tower of level n it belongs
to. Notice that sn−1 does not consider the order in which the towers are visited. In
Figure 2 we illustrate the notations introduced previously.

A direct computation yields the following lemma. It will be used extensively in
the sequel. Denote by 〈·, ·〉 the usual scalar product.



Figure 2. A tower t of P(n) in an example. We assume that in P(n − 1) there are
only two towers and that mt (n) = 5. If x ∈ E1, t (n − 1), then sn−1(x) = (3, 1)T and
ln (x) = 1. If x ∈ E4, t (n − 1), then sn−1(x) = (1, 0)T and ln (x) = 4.

Lemma 4. For all x ∈ X and all n � 2 it holds that

r1(x) = s0(x), rn (x) = rn−1(x) + 〈sn−1(x),H(n − 1)〉,

rn (x) =
n−1∑
j=2

〈sj (x), P (j)H(1)〉 + 〈s1(x),H(1)〉 + s0(x).

3.2. Markov property for the towers

Now we prove that the sequence of random variables (τn ;n ∈ N) is a non-
stationary Markov chain. We need some preliminary computations. Let n � 1.
From Lemma 3 we have

µ
(
Bτn (x)(n)

)
= µ

(
n⋂

k=1

Elk (x),τk (x)(k − 1)

)
.

Let (ti ∈ {1, . . . , C(i)}; 0 � i � n). The set [τn = tn ] is the tower Ttn
(n). For

0 � k < n, τk (x) is constant on each level of Ttn
(n). By a simple induction, the

number of levels of this tower where τ0(x) = t0, . . . , τn−1(x) = tn−1 is equal to
mt1,t0(1) . . . mtn ,tn −1(n). In other words, the set [τ0 = t0, . . . , τn = tn ] is the union
of mt1,t0(1) . . . mtn ,tn −1(n) levels of the tower Ttn

(n) and

µ[τ0 = t0, . . . , τn = tn ] = mt1,t0(1) . . . mtn ,tn −1(n)µ(Btn
(n)). (3.8)

In particular, from the last equality and the definition of the matrices (M(n);n � 1)
we deduce that

µ[τn = tn |τn−1 = tn−1] =
mtn ,tn −1(n)µ(Btn

(n))
µ(Btn −1(n − 1))

.

Now, given the sequence (P(n);n ∈ N) we can prove that (τn ;n ∈ N) is a Markov



chain on the probability space (X,BX , µ). Therefore, by (3.1), the matrix Q(n) =
(qt,t̄(n); 1 � t̄ � C(n), 1 � t � C(n − 1)) with

qt,t̄(n) =
mt̄,t(n)µ(Bt̄(n))

µ(Bt(n − 1))

is a stochastic matrix.

Lemma 5. The sequence of random variables (τn ;n ∈ N) is a non-stationary
Markov chain with associated stochastic matrices (Q(n);n � 1).

Proof. From (3.8) we get

µ[τn = t̄|τn−1 = t, τn−2 = tn−2, . . . , τ0 = t0]

=
mt1,t0(1) . . . mt,tn −2(n − 1)mt̄,t(n)µ(Bt̄(n))

mt1,t0(1) . . . mt,tn −2(n − 1)µ(Bt(n − 1))

=
mt̄,t(n)µ(Bt̄(n))

µ(Bt(n − 1))
= µ[τn = t̄|τn−1 = t]
= qt,t̄(n).

The following lemma provides an exponential mixing property for non-stationary
ergodic Markov chains. It is a standard result. The proof can be adapted from that
of [8, Corollary 2, p. 141]. That is, this corollary can be generalized to the case of
a non-stationary Markov chain where the stochastic matrices have not necessarily
the same dimension. Alternatively, a direct proof follows from [8, inequality (3.3),
Theorem 3.1, p. 81] in the case of our particular matrices.

Lemma 6. Let (τn ;n ∈ N) be the non-stationary Markov chain defined in the
previous subsection. There exist c ∈ R+ and β ∈ [0, 1[ such that for all n, k ∈ N,
with k � n,

sup
1�t�C (n−k),1�t̄�C (n)

|µ[τn = t̄|τn−k = t] − µ[τn = t̄ ]| � cβk .

4. Measurable eigenvalues

The main purpose of this section is to prove statement (1) of Theorem 1 (this
is done in Subsection 4.2). In the first subsection we give a general necessary and
sufficient condition to be a measurable eigenfunction of a minimal Cantor system.

4.1. A necessary and sufficient condition to be an eigenvalue

We give a general necessary and sufficient condition to be an eigenvalue. We do
not use it directly to prove our result, but we think it gives an idea of the classical
way to tackle the problem and shows that the difficulty relies in understanding the
stochastic behaviour of the sequence (rn ;n ∈ N). We would like to stress the fact
that we still do not have a convincing interpretation of the sequence of functions
ρn which appears in the next theorem.



Theorem 7. Let (X,T ) be a minimal Cantor system and let µ be an invariant
measure. Let (P(n);n ∈ N) be a sequence of clopen Kakutani–Rokhlin partitions
verifying (KR1)–(KR4). A complex number λ = exp(2iπα) is an eigenvalue of
(X,T ) with respect to µ if and only if there exist real functions ρn : {1, . . . , C(n)} →
R, n ∈ N, such that

α(rn (x) + ρn ◦ τn (x)) converges (mod Z) (4.1)

for µ-almost every x ∈ X when n tends to infinity.

Proof. Let λ = exp(2iπα) be a complex number of modulus 1 such that (4.1)
holds and let g be the corresponding limit function. Consider x 	∈

⋂
n∈N

B(n) so x
does not belong to B(n) for all large enough n ∈ N. Then from (3.2), we get

exp(2iπg(Tx))
exp(2iπg(x))

= lim
n→∞

λrn (T x)−rn (x) = λ−1.

This implies that λ is an eigenvalue of (X,T ) with respect to µ.

Now, assume that λ is an eigenvalue of (X,T ) with respect to µ and let g ∈
L2(X,BX , µ) be an associated eigenfunction. For all n ∈ N let φn = λ−rn and
ψn = g/φn . The map φn is P(n)-measurable and bounded, so

φnEµ(ψn |P(n)) = Eµ(φnψn |P(n)) = Eµ(g|P(n)) −−−−→
n→∞

g

µ-almost everywhere. Since ψn ◦ T−j /ψn = λrn ◦T −j −rn −j , the restriction of ψn to
each tower of level n is invariant under T . Thus Eµ(ψn |P(n)) is constant on each
of these towers and is therefore equal to the average of ψn on each tower.

To finish, for 1 � i � C(n) we define ρn (i) such that

Argλ−ρn (i) = Arg

(
1

µ(Bi(n))

∫
Bi (n)

ψndµ

)
.

This ends the proof.

Remark 8. The same proof works if we remove the Cantor and clopen
hypotheses.

4.2. Eigenvalues of linearly recurrent systems

In this subsection we prove statement (1) of Theorem 1. Recall that (X,T ) is
linearly recurrent and µ is the unique invariant measure. Let (P(n);n � 0) be a
sequence of clopen Kakutani–Rokhlin partitions such that (KR1)–(KR6) and (LR)
with constant L are satisfied. Let (M(n);n � 1) be the associated sequence of
matrices.

We will need the following lemma. Its proof can be found in [1].

Lemma 9. Let u ∈ R
C (1) be a real vector such that |||P (n)u||| → 0 as n → ∞.

Then there exist m � 2, an integer vector w ∈ Z
C (m ) and a real vector v ∈ R

C (m )

with

P (m)u = v + w and ‖P (n,m)v‖ → 0 as n → ∞.



Assume that the following condition holds.∑
n�2

|||αP (n)H(1)|||2 < ∞. (4.2)

Then |||P (n)(αH(1))|||→ 0 as n→∞. From Lemma 9 there exist an integer n0 � 2, a
real vector v ∈R

C (n0) and an integer vector w∈Z
C (n0) such that P (n0)(αH(1))=

v + w and P (n, n0)v→ 0 as n→∞. By modifying a finite number of towers, if
needed, we can assume without loss of generality that n0 = 1 and that H(1) =
(1, . . . , 1)T . Thus condition (4.2) implies that∑

n�2

‖P (n)v‖2 < ∞. (4.3)

From (2.3), we can also assume without loss of generality that (KR5′) holds. That
is, entries of matrices M(n) are larger than 2 for all n � 2.

For n � 1 we define gn : X → R by

gn (x) = s0(x) + 〈s1(x), v〉 +
n−1∑
j=2

〈sj (x), P (j)v〉.

Since we are assuming that H(1) = (1, . . . , 1)T , then s0 = 0 and

gn (x) =
n−1∑
j=1

〈sj (x), P (j)v〉,

where we set P (1) = Id.

Lemma 10. If (4.2) holds, then the sequence (fn = gn−Eµ(gn );n � 1) converges
in L2(X,BX , µ).

Proof. Let n � 1. Recall that P(n) is the partition of level n and let T (n) be the
coarser partition {Tj (n); 1 � j � C(n)}. As usual we identify the finite partitions
with the σ-algebras they span and we use the same notation. Thus T (n) is the
σ-algebra spanned by the random variable τn .

Let Xn be the random variable given by

Xn = 〈sn , P (n)v〉 − Eµ(〈sn , P (n)v〉).
We decompose it as Xn = Yn + Zn , where

Yn = Eµ(Xn |P(n)) and Zn = 〈sn , P (n)v〉 − Eµ(〈sn , P (n)v〉|P(n)).

We write κn = ‖P (n)v‖. Observe that there is a positive constant K such that for
all n � 1 we have |Xn | � Kκn , |Yn | � Kκn and |Zn | � Kκn .

First we show that the series
∑

Zn converges. Let m and n be positive integers
with m < n. The random variable Zm is measurable with respect to P(m+1), and
thus also with respect to P(n). Since Eµ(Zn |P(n)) = 0 we get Eµ(Zm · Zn ) = 0.
As |Zn | � Kκn for every n � 1, the series

∑
Eµ(Z2

n ) converges, and thus the
orthogonal series

∑
Zn converges in L2(X,BX , µ).

Now we prove that the series
∑

Yn converges in L2(X,BX , µ). Fix 1 � t̄ �
C(n + 1) and 1 � j � mt̄(n + 1). The set Ej,t̄(n) is included in the tower Tt(n)
where t = θt̄

j (n). Moreover, the intersections of all levels of Tt(n) with Ej,t̄(n) are
levels of Tt̄(n + 1) (see Figure 2) and thus have the same measure µ(Bt̄(n + 1)). As



each level of the tower Tt(n) has measure µ(Bt(n)) we have

µ(Ej,t̄(n)|P(n))(x) =




µ(Bt̄(n+ 1))
µ(Bt(n))

if x ∈ Tt(n)

0 otherwise.
(4.4)

Observe that this conditional probability is constant in each atom of T (n) and thus

µ(Ej,t̄(n)|P(n)) = µ(Ej,t̄(n)|T (n)).

As sn is constant on each set Ej,t̄(n), the same property holds for Xn and thus

Yn = Eµ(Xn |P(n)) = Eµ(Xn |T (n)). (4.5)

In particular, Yn is equal to a constant on each set [τn = t̄ ] and we write yt̄ for this
constant. Fix k with 0 � k � n. If τn−k (x) = t then

Eµ(Yn |T (n − k))(x) =
C (n)∑
t̄=1

µ[τn = t̄ |τn−k = t]yt̄ .

From
∑C (n)

t̄=1 µ[τn = t̄ ]yt̄ = Eµ(Yn ) = 0 we get

|Eµ(Yn |T (n − k))(x)| �
C (n)∑
t̄=1

|µ[τn = t̄|τn−k = t] − µ[τn = t̄]||yt̄ |.

From Lemma 6, we deduce the fact that C(n) is bounded independently of n and
|Yn | � Kκn so that for some positive constant C

|Eµ(Yn |T (n − k))(x)| �
C (n)∑
t̄=1

|µ[τn = t̄|τn−k = t] − µ[τn = t̄]||yt̄ | � Cβkκn .

As Yn−k is measurable with respect to T (n − k) we have

|Eµ(Yn · Yn−k )| � CβkκnEµ(|Yn−k |) � Cβkκnκn−k .

For 1 � m < n we compute

Eµ


(

n∑
k=m

Yk

)2

 =

∑
m�j,l�n

Eµ(Yj · Yl) � C
∑

m�j,l�n

β|j−l|κjκl

� C

n−m∑
r=0

βr
n−r∑
l=m

κlκl+r � 2C

n−m∑
r=0

βr
n∑

l=m

κ2
l

� 2C

1 − β

n∑
l=m

κ2
l .

Since the series
∑

κ2
j converges, the partial sums of the series

∑
Yn form a Cauchy

sequence in L2(X,BX , µ).

The following lemma completes the proof of statement (1) of Theorem 1.

Lemma 11. Let f ∈ L2(X,BX , µ) be the limit of the sequence (fn ;n � 1). The
function exp(2iπf) is an eigenfunction of (X,T ) with respect to µ associated to the
eigenvalue exp(2iπα).



Proof. Remark that gn (x) = αrn−1(x) (mod Z). From relation (3.2),

fn (Tx) = fn (x) − α (mod Z)

holds outside of the roof B(n) and µ(B(n)) → 0 as n → ∞. We conclude using
Lemma 10.

5. Continuous eigenvalues of linearly recurrent systems

Let (X,T ) be a linearly recurrent dynamical system with constant L. The main
purpose of this section is to prove the necessary condition in statement (2) of
Theorem 1. We recall that the sufficient condition was proved in [1].

5.1. A necessary and sufficient condition to be a continuous eigenvalue

In this subsection we only assume that (P(n);n ∈ N) is a sequence of clopen
Kakutani–Rokhlin partitions describing the system (X,T ) which satisfies (KR1)–
(KR6). We give a general necessary and sufficient condition to be a continuous
eigenvalue.

Proposition 12. Let λ = exp(2iπα) be a complex number of modulus 1. The
following conditions are equivalent.

(i) λ is a continuous eigenvalue of the minimal Cantor system (X,T ).
(ii) (λrn (x);n � 1) converges uniformly in x, that is, the sequence (αrn (x);

n � 1) converges (mod Z) uniformly in x.

Proof. We start by proving that (1) implies (2). Let g be a continuous
eigenfunction associated to λ. For all n � 1 and all x ∈ X we have T rn (x)(x) ∈
B(n) ⊆ B1(n − 1) (the last inclusion is due to (KR6)). Hence, using (KR3), we
deduce that limn→∞ T rn (x)(x)= u uniformly in x, where u is the unique element
of

⋂
n�0 B(n). Because the eigenfunction g is uniformly continuous, λrn (x) =

g(T rn (x)(x))/g(x) tends to g(u)/g(x) uniformly in x.
Now we prove that (2) implies (1). We set φ(x) = limn→∞ λrn (x). Since the

convergence is uniform and rn is continuous, then φ is continuous.
Let x be such that x 	∈ B(n) for infinitely many n. Then, from (3.2), we obtain

φ(T (x)) = λ−1φ(x). Using the minimality of (X,T ) and the continuity of φ, we
obtain φ(T (y)) = λ−1φ(y) for all y ∈ X. Consequently λ is a continuous eigenvalue.

Corollary 13. Let λ be a complex number of modulus 1.

(1) If λ is a continuous eigenvalue of (X,T ), then

lim
n→∞

λhj n (n) = 1

uniformly in (jn ;n ∈ N) ∈
∏

n∈N
{1, . . . , C(n)}.

(2) If

∑
m�1

( supk∈{1,...,C (m+1)} hk (m + 1)
infk∈{1,...,C (m )} hk (m)

)
sup

k∈{1,...,C (m )}

∣∣λhk (m ) − 1
∣∣ < ∞,

then λ is a continuous eigenvalue of (X,T ).



Proof. Let g be a continuous eigenfunction of λ. Then it is uniformly continuous.
Let ε > 0. There exists n0 ∈ N such that |g(y) − g(u)| < ε/2 for all y ∈ B1(n0),
where {u} =

⋂
n∈N

B(n).
Let (jn ;n ∈ N) ∈

∏
n∈N

{1, . . . , C(n)}. For all n ∈ N we take x(n) ∈ Bjn
(n) and

we set y(n) = T−hj n (n)(x(n)) ∈ B(n). Hence, using (KR6), for all n � n0 + 1 the
points x(n) and y(n) belong to B(n) ⊆ B1(n0). Consequently∣∣λhj n (n) − 1

∣∣ =
∣∣g(

Thj n (n)y(n)
)
− g(y(n))

∣∣
� |g(x(n)) − g(u)| + |g(u) − g(y(n))| < ε.

Now we prove (2). It suffices to remark, by Lemma 4, that for all x ∈ X and all
0 < n < m,∣∣λrm (x) − λrn (x)

∣∣ =
∣∣1 − λrm (x)−rn (x)

∣∣
�

m−1∑
l=n

supk∈{1,...,C (l+1)} hk (l + 1)
infk∈{1,...,C (l)} hk (l)

sup
k∈{1,...,C (l)}

∣∣1 − λhk (l)
∣∣.

Hence, from Proposition 12, λ is a continuous eigenvalue.

Remark that for linearly recurrent systems, statement (2) gives the sufficient
condition for λ to be a continuous eigenvalue. This was proved in [1].

5.2. The linearly recurrent case

Now we assume that (X,T ) is linearly recurrent and we prove Theorem 1(2).
We also assume without loss of generality that the sequence of partitions verifies
(KR5′), that is, entries of M(n) are bigger than 2 for any n � 2 (see the discussion
in Subsection 2.3). To prove the result we introduce an intermediate statement
which gives a more precise interpretation to the necessary condition.

Proposition 14. Let λ = exp(2iπα) be a complex number of modulus 1. The
following properties are equivalent.

(1) λ is a continuous eigenvalue of the minimal Cantor system (X,T ).
(2) There exist n0 ∈ N, v ∈ R

C (n0), z ∈ Z
C (n0), such that αP (n0)H(1) = v + z,

P (n, n0)v → 0 as n → ∞ and the series∑
j�n0+1

〈sj (x), P (j, n0)v〉

converges for every x ∈ X.
(3)

∑
n�2 |||αP (n)H(1)||| < ∞.

Proof. In [1] it is proved that (3) implies (1).

We prove that (1) implies (2). Assume that λ is a continuous eigenvalue of (X,T ).
We deduce from statement (1) of Corollary 13 that |||αP (n)H(1)||| converges to 0 as
n tends to ∞. By Lemma 9, there are n0 ∈ N, v ∈ R

C (n0) and z ∈ Z
C (n0) such that

αP (n0)H(1) = v + z and P (n, n0)v → 0 as n → ∞. By modifying a finite number
of towers we can assume without loss of generality that n0 = 1.



By Lemma 4, for n � 1 and x ∈ X, rn (x) =
∑n−1

j=1 〈sj (x), P (j)H(1)〉 + s0(x),
where we put P (1) = I. Then

αrn (x) =
n−1∑
j=1

〈sj (x), P (j)v〉 +
n−1∑
j=1

〈sj (x), P (j)z〉 + αs0(x).

From Proposition 12,
∑n−1

j=1 〈sj (x), P (j)v〉+ αs0(x) → v(x) (mod Z) as n → ∞.
We distinguish two cases. If v(x) ∈ (0, 1), we write

∑n−1
j=1 〈sj (x), P (j)v〉 +

αs0(x)= Vn (x)+ vn (x) with Vn (x)∈Z and vn (x)∈ [0, 1); if v(x)= 0 we consider
vn (x)∈ [−1/2, 1/2). Then, in both cases, (vn (x);n∈N) converges and a fortiori
(vn+1(x) − vn (x);n� 1)→ 0 as n→∞. Moreover,

n∑
j=1

〈sj (x), P (j)v〉 −
n−1∑
j=1

〈sj (x), P (j)v〉

= 〈sn (x), P (n)v〉 = Vn+1(x) − Vn (x) + vn+1(x) − vn (x).

Since, for a linearly recurrent system {sn (x);x ∈ X,n ∈ N} is bounded, P (n)v → 0
and (vn+1(x)−vn (x)) → 0 as n → ∞. We conclude that Vn (x) is a constant integer
for all large enough n ∈ N. Consequently the series

∑
j�2〈sj (x), P (j)v〉 converges.

Now we prove that (2) implies (3). We assume, without loss of generality, that
n0 = 1 and that for any x ∈ X the series∑

j�2

〈sj (x), P (j)v〉 ∈ R

converges. It suffices to prove that
∑

j�2 ‖P (j)v‖ < ∞.
For n � 2, define i(n) ∈ {1, . . . , C(n)} such that

|〈ei(n), P (n)v〉| = max
i∈{1,...,C (n)}

|〈ei, P (n)v〉|,

where ei is the ith canonical vector of R
C (n). Let

I+ = {n � 2; 〈ei(n), P (n)v〉 � 0}, I− = {n � 2; 〈ei(n), P (n)v〉 < 0}.

To prove that
∑

j�2 ‖P (j)v‖ < ∞ we only need to show that∑
j∈I+

〈ei(j), P (j)v〉 < ∞ and −
∑

j∈I−

〈ei(j), P (j)v〉 < ∞.

Since the arguments we will use are similar in both cases we only prove the first
fact.

To prove that
∑

j∈I+〈ei(j), P (j)v〉 < ∞ we only show that∑
j∈I+∩2N

〈ei(j), P (j)v〉 < ∞, (5.1)

and analogously it can be proved that∑
j∈I+∩(2N+1)

〈ei(j), P (j)v〉 < ∞.

We construct two points x, y ∈ X such that sn (x)− sn (y) = ei(n) if n ∈ I+ ∩ 2N

and sn (x) − sn (y) = 0 elsewhere. By hypothesis, from this fact we conclude (5.1).



To construct x and y, according to Lemma 3, we only need to produce sequences

(tn ;n ∈ N) ∈
∏
n∈N

{1, . . . , C(n)}, (jn ;n � 1) ∈
∏
n�1

{1, . . . , mtn
(n)}

and

(t̄n ;n ∈ N) ∈
∏
n∈N

{1, . . . , C(n)}, (j̄n ;n � 1) ∈
∏
n�1

{1, . . . , mt̄n
(n)}

such that

θtn
jn

(n − 1) = tn−1 and θt̄n

j̄n
(n − 1) = t̄n−1 for all n � 1. (5.2)

The point x is the unique one such that τn (x) = tn and ln (x) = jn . Point y is defined
analogously with respect to t̄n and j̄n . Given n ∈ (I+ ∩ 2N)c put tn = t̄n = 1.

For n ∈ I+ ∩ 2N, by property (KR5′), there exists k ∈ {1, . . . , m1(n + 1) − 1}
such that θ1

k+1(n) = i(n). Put

t̄n = i(n), j̄n = mt̄n
(n), tn = θ1

k (n) and jn = mtn
(n).

Using (3.3) we obtain θtn
jn

(n − 1) = 1 and θt̄n

j̄n
(n − 1) = 1. Then we set t̄n+1 =

tn+1 = 1, j̄n+1 = k+1 and jn+1 = k. Consequently, the relations (5.2) are satisfied
for n and n + 1.

Now we treat the remaining case: n ∈ (I+)c ∩ 2N. We recall that tn = t̄n =
tn+1 = t̄n+1 = 1. It suffices to set

jn = j̄n = m1(n) and jn+1 = j̄n+1 = m1(n + 1)

to fulfil relations (5.2).
For each n ∈ I+ ∩ 2N, the towers of level n visited by x and y after their first

entrance time to B(n) and before their first entrance time to B(n + 1) are

Sn (x) =
{
θ1

k+1(n), . . . , θ1
m1(n+1)(n)

}
and Sn (y) =

{
θ1

k+2(n), . . . , θ1
m1(n+1)(n)

}
,

respectively. Therefore, sn (x) − sn (y) = ei(n).
On the other hand, if n 	∈ I+ ∩ 2N, then Sn (x) and Sn (y) are the empty set.

Hence sn (x) = sn (y) = 0.

6. Example: measurable and non-continuous eigenvalues

We construct explicitly a system with a nontrivial Kronecker factor but having
a trivial equicontinuous factor. Let us consider the commuting matrices

A =
[
5 2
2 3

]
and B =

[
2 1
1 1

]
.

We set ϕ = (1 +
√

5)/2. Let e = (ϕ, 1)T , f = (−1, ϕ)T , αA = 3 + 2ϕ, βA = 5 − 2ϕ,
αB = 1+ϕ and βB = 2−ϕ. Observe that αA > αB > βA > 1 > βB > 0 and {e, f}
is a base of R

2 made of the common eigenvectors associated to eigenvalues αA, βA

of A and αB , βB of B respectively.
We define recursively the sequence (vn ;n � 1) of real numbers by v1 = 1 and for

all n > 1,

vn+1 =
{

βAvn if nvn � 1
βB vn if nvn > 1.



Notice that the sequence (nvn ;n � 1) is uniformly bounded and uniformly bounded
away from 0. Now let H(1) = M(1) = (1, 1)T and for n � 1,

M(n + 1) =
{

A if nvn � 1
B if nvn > 1.

Note that M(n) = A for infinitely many values of n.
Define the words in {1, 2}∗, θ1(A) = 2211111, θ2(A) = 22211, θ1(B) = 211 and

θ2(B) = 21. Let(X,T ) be a minimal Cantor system such that there is a sequence
of clopen Kakutani–Rokhlin partitions (P(n);n ∈ N) verifying (KR1)–(KR6) with
associated sequence of matrices (M(n);n � 1). Moreover, we require that for n � 1
and t ∈ {1, 2}, θt(n) = θt(M(n + 1)) holds (see (3.4) for the definition of θt(n)).
This is possible by [5], using Bratteli diagrams. It is clear that (X,T ) is linearly
recurrent. We call µ its unique ergodic measure.

A symbolic way to see this system is by considering the substitutions σA :
{1, 2} → {1, 2}∗, σA (1) = 2211111, σA (2) = 22211, and σB : {1, 2} → {1, 2}∗,
σB (1) = 211, σB (2) = 21. Define a sequence of substitutions (σn ;n � 1) by σ1 = Id
and, for all n > 1, σn+1 = σn ◦ σM (n). It follows that . . . 111σn (1).σn (2)222 . . .
converges to some ω ∈ {1, 2}Z, where the dot indicates the position to the left of 0
coordinate. We set X = {Tn (ω), n ∈ Z}, where T is the shift map.

Before studying the system (X,T ) defined by this sequence of matrices, we need
a general property. We keep the notations of previous sections.

Lemma 15. Let v ∈ R
C (1). If limn→∞ ‖P (n)v‖ = 0, then v is orthogonal to the

vector µ(1) = (µ(Bk (1)); 1 � k � C(1))T .

Proof. Let v ∈ R
C (1) be such that limn→∞ ‖P (n)v‖ = 0. Then, for n > 1,

|〈µ(1), v〉| = |〈PT (n)µ(n), v〉|
= |〈µ(n), P (n)v〉|
� ‖P (n)v‖,

and the last term converges to 0 as n → ∞. Thus v is orthogonal to µ(1).

Proposition 16. Let (X,T ) be the linearly recurrent system defined above.
The set of eigenvalues of (X,T ) is

Eµ =
{
exp (2iπα) ∈ C;α = (ϕ − 1, 2 − ϕ) A−lw, l � 0, w ∈ Z

2
}
.

None of these eigenvalues is continuous except the trivial one.

Proof. Let v = −(ϕ − 2)f = (ϕ − 2, ϕ − 1)T and n � 2. Hence P (n)v =
P (n)(ϕH(1)) (mod Z

2). Also, since v is an eigenvector of A and B, from the
definition of vn we get

P (n)v = βM (n) . . . βM (2)v = vnv.

The sequence (vn )n�1 was constructed so that nvn is uniformly bounded and
uniformly bounded away from 0. It follows that∑

n�2

vn = ∞ and
∑
n�2

v2
n < ∞, (6.1)



and ∑
n�2

‖P (n)v‖ = ∞ and
∑
n�2

‖P (n)v‖2 < ∞. (6.2)

In particular, limn→∞‖P (n)v‖ = 0 and, by Lemma 15, v is orthogonal to µ(1) =
(µ(B1(1)), µ(B2(1))T .

Claim. Let α ∈ R and λ = exp (2iπα): |||P (n)(αH(1))||| → 0 as n → ∞ holds
if and only if λ ∈ Eµ . Moreover, if λ ∈ Eµ , then |||P (n)(αH(1))||| = c‖P (n)v‖, for
some positive constant c.

Proof of the claim. First assume that |||P (n)(αH(1))||| → 0 as n → ∞ holds.
By Lemma 9, there exist m � 2, an integer vector w ∈ Z

C (m ) and a real vector
v′ ∈ R

C (m ) with P (m)(αH(1)) = v′ + w and ‖P (n)P (m)−1v′‖ → 0 as n → ∞.
From Lemma 15, vector P (m)−1v′ is orthogonal to µ(1). Hence there exists k ∈ R

such that P (m)−1v′ = kv and

P (m)(αH(1)) = kP (m)v + w. (6.3)

Suppose that k =0. It is not difficult to show by induction that
gcd(h1(m), h2(m))= 1. Then, since w is an integer vector, α ∈ Z and λ = 1 which
belongs to Eµ .

Suppose that k 	= 0. Then, k = W1 − W2, where P (m)−1w = (W1,W2)T . This
gives

αH(1) =
(

ϕ − 1 2 − ϕ
ϕ − 1 2 − ϕ

)
P (m)−1w. (6.4)

The determinants of the matrices A and B are respectively equal to 11 and 1.
Therefore, since P (m) = Alm Bkm for some lm , km � 0,

α = (ϕ − 1, 2 − ϕ)A−lm w′,

with w′ ∈ Z
2. Hence λ ∈ Eµ .

Conversely, let λ ∈ Eµ . Then, since M(n) = A for infinitely many n � 2, for n
large enough we get

P (n)(αH(1)) = P (n)
[
ϕ − 2 −(ϕ − 2)
ϕ − 1 −(ϕ − 1)

]
+ w,

where w ∈ Z
2. Therefore, |||P (n)(αH(1))||| = c‖P (n)v‖, for some positive constant

c, which proves the claim.

Finally, the proposition follows from Theorem 1 and property (6.2).

This proposition gives an example of a minimal dynamical system with a
nontrivial Kronecker factor and a trivial maximal equicontinuous factor.

Acknowledgements. We would like to thank Claude Dellacherie for the reference
[7] concerning the convergence of ‘almost’ Martingale processes that was at the base
of the proof of the measure-theoretical statement of the paper, and François Parreau
for illuminating discussions.

The first and second authors thank the CMM–CNRS, which made this
collaboration possible. Part of this version of the paper was written while the second
and third authors visited the Max Planck Institute of Mathematics (Bonn). The
support and hospitality of both institutions are very much appreciated.



We also thank the referee of this paper for many valuable comments which
improved the proof of Theorem 1(1) and the presentation of the paper.

References

1. M. I. Cortez, F. Durand, B. Host and A. Maass, ‘Continuous and measurable eigenfunctions
of linearly recurrent dynamical Cantor systems’, J. London Math. Soc. 67 (2003) 790–804.

2. F. Durand, ‘Linearly recurrent subshifts have a finite number of non-periodic subshift factors’,
Ergodic Theory Dynam. Systems 20 (2000) 1061–1078.

3. F. Durand, ‘Corrigendum and addendum to: Linearly recurrent subshifts have a finite number
of non-periodic subshift factors’, Ergodic Theory Dynam. Systems 23 (2003) 663–669.

4. F. Durand, B. Host and C. Skau, ‘Substitutional dynamical systems, Bratteli diagrams and
dimension groups’, Ergodic Theory Dynam. Systems 19 (1999) 953–993.

5. R. H. Herman, I. Putnam and C. F. Skau, ‘Ordered Bratteli diagrams, dimension groups
and topological dynamics’, Internat. J. Math. 3 (1992) 827–864.
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Matemática
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