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Abstract: Acoustic resonances are modified when objects are introduced
into a chamber. The magnitude of these changes depends on the object posi-
tion, size, and shape, as well as on its acoustic properties. Here, an experi-
mental study concerning the resonant frequency shifts induced by a solid
spherical object in a quasi-one-dimensional air-filled acoustic cavity is re-
ported. It is shown that Leung’s theory does not account quantitatively for the
observations. A novel and simple approach is proposed, based on the wave
equation in a cavity of variable cross section. The results fit more accurately
the measured frequency shifts.
1. Introduction

The acoustic resonances of a cavity are modified when objects are introduced into the chamber.
It is well understood that these changes are more pronounced when either the object size in-
creases or the object itself is a very efficient scatterer. Thus, large solid spheres in air-filled
cavities, as in this study, or gas bubbles in a liquid, can have considerable effects on the acoustic
properties of resonance chambers. These observations indicate that both volumetric and scat-
tering effects are important.

The inclusion of an object in a resonant chamber is analogous to the one-dimensional
problem of a mass attached to a string studied a long time ago by Rayleigh.1 More recently, the
two-dimensional version has also been studied by Laura et al.2 The interest in the use of acous-
tic levitation for space applications, the detection of blockage in nuclear reactors, and the mea-
surements of properties and volumes of objects, in particular rocks, has drawn attention to the
effect of introducing an object in acoustic resonant cavities.3–9 Most of these studies are theo-
retical, dealing with more or less elaborate techniques to predict the frequency resonance shifts
for various object shapes and sizes, as well for different boundary conditions. Experimental
results are scant, exceptions being the rather complete studies performed by Barmatz et al.5 and
Chen et al.9

In this letter, we present an experimental study of longitudinal mode resonant fre-
quency shifts induced by a solid spherical object in a quasi-one-dimensional air-filled acoustic
cavity. We compare our results with Leung’s theory, which does not account quantitatively for
the observations. We propose a novel and simple approach based on the wave equation in a
cavity of variable cross section. The results fit more accurately the measured frequency shifts.

2. Experimental setup

The experimental setup is composed of a square section quasi-one-dimensional cavity, of di-
mensions Lx�L=100 mm and Ly=Lz=6.8 mm. Two duraluminum walls allow rigidity and
hold two other static dissipative acrylic walls which in turn allow visualization (see Fig. 1).
Another two duraluminum end walls close the cavity on each side. One of them is attached to an
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electromechanical vibrator (Bruel & Kjaer mini-shaker 4810), which provides a maximum
force of 10 N in a large frequency range, typically between 100 Hz and 18 kHz, but provides a
constant acceleration amplitude in the 100–5000 Hz range. The cavity is placed such that both
acrylic walls are normal to gravity, hence the system is visualized from above. It oscillates
entirely in the direction of the vibrator’s axis, which has been shown to be an efficient way to
amplify resonant acoustic modes.10

A microphone and an accelerometer (PCB 130D20 and 340A65, respectively) allow
measurements of the cavity’s end side acoustic pressure and acceleration of the whole system.
The microphone is placed inside the cavity, flush with the end wall, and it has a 6.35-mm-diam
active surface. The accelerometer is placed at the external end side with its axis parallel to the
cavity’s axis. The electromechanical shaker is powered by an amplifier with a signal generated
by a spectrum analyzer (SR780). Experiments are performed in the analyzer’s swept sine mode.
The analyzer measures both the pressure and acceleration amplitude values.

At low frequencies, where the cavity is considered as quasi-one-dimensional, the
empty cavity resonant frequencies differ very little from those predicted theoretically. The pre-

dicted fundamental frequency is given by f̂0=c /2L, where c is the sound speed in air. c depends
on temperature,11

c = 331.5�1 +
TC

273
m/s, �1�

where TC is in degrees Celsius. Hence, f̂0 also has a temperature dependence. However, a tem-

perature variation of ±1 °C only induces a ±0.2% change in f̂0. Care was taken in order to
avoid larger temperature variations.

At the operating temperature TC=20.75±0.5 °C, we have c=343.9±0.3 m/s, and

thus the predicted resonant frequency is f̂0=1719.3 Hz. However, the measured value is f0

=1702.7 Hz, 1% lower than f̂0. We assume this difference is due to a slightly larger effective
length Leff=0.101 m, which is only 1 mm longer. Considering that the pressure sensor front—
active—surface is rather soft, it is reasonable to consider the real stiff element to be slightly
behind it.

In order to study the resonant frequency shifts induced by a spherical object, a
6.35-mm-diam metallic, magnetic sphere is placed inside and held fixed by means of a similar
magnetic sphere placed outside the cavity. Once the intruder is fixed and its position deter-
mined, a pressure spectrum is obtained between 1 and 10 kHz, with a roughly constant dimen-
sionless peak acceleration ��0.5 g�, resulting in a maximum pressure of �10 Pa. This was
performed for 90 different positions, separated by 1 mm, from X0=4 mm to X0=94 mm. Be-
cause of the magnetic nature of the spheres, no measurements were possible for X0�4 mm or
X0�94 mm.

3. Experimental results and comparison with Leung’s theory

The measured resonant frequencies as functions of X0 are presented in Fig. 2. Results are shown
3

Fig. 1. Experimental setup. �1� Electromechanical vibrator, �2� quasi-one-dimensional square section cavity, �3�
microphone, and �4� accelerometer. A metallic magnetic sphere is placed inside and held fixed by another magnetic
sphere from outside. The origin is chosen at the wall close to the vibrator.
from the first to the fifth longitudinal resonant mode. As previously observed by Leung et al.,



the resonant frequencies depend on the sphere’s position, varying in an oscillatory way as a
function of X0, such that the number of oscillations is equal to the mode number, n=1, . . . ,5. In
our case, however, variations are stronger, of the order of 10% peak-to-peak, due to the larger
sphere-to-cavity volume ratio. Notice that all except one mode show relatively smooth varia-
tions; the third mode indeed presents some noise due to the difficulty in measuring the resonant
frequencies from pressure spectra in this case as it was of particularly low amplitude, i.e., with
a small signal-to-noise ratio.

Fig. 2. Normalized resonant frequencies f / f0 vs X0 for the first five longitudinal modes �a� n=1, �b� n=2, �c� n
=3, �d� n=4, and �e� n=5: Experiments ���, Leung’s prediction �dashed line�, and solution of the variable cross-
section model �continuous line�. Both theoretical predictions are computed using Leff=0.101 m.



We can qualitatively understand the fact that the resonant frequencies vary roughly
periodically with X0 with a very simple argument: By integrating the Helmholtz equation, the
wave number is given by3

k2 =

1

2
� ��p�2dV

1

2
� p2dV

�
K

V
, �2�

where integration is performed in the available volume. K and V stand for the kinetic and po-
tential energy, respectively. Thus, when the sphere is located near a pressure maximum, for
example at a cavity end wall, which in turn is a velocity node ��p�0�, the kinetic energy does
not change much but the potential energy is reduced. The final result is an increase in the
corresponding wave number, hence an increase in the resonant frequency is expected. The in-
verse argument can be made when the intruder is near a velocity maximum, for example, at
X0 /L�1/2 for the first mode. In this case k, and thus f, is expected to decrease.

An analytical expression was obtained by Leung et al.3 From a Green’s function scat-
tering calculation they obtained the resonant wave number as a function of three parameters: the
sphere to cavity volume ratio Vs /V, the sphere to cavity length ratio R /L, and the sphere’s
relative position X0 /L. Assuming small spherical scatters, such that kR�1 where R is the
sphere radius and k is the wave number, they performed their calculation for longitudinal modes
in a rectangular cavity of length L. The predicted wave number shift is

�k

kn
=

Vs

V
�− 	1

4
+

67

360
�knR�2
� +

Vs

V
�	5

4
−

229

360
�knR�2
cos�2knX0�� , �3�

where �k=k−kn. The calculation is done up to order �knR�2, kn=n� /L being the nth longitudi-
nal mode wave number for the empty cavity. Vs�V� is the sphere �cavity� volume, and X0 is
the sphere’s position. From Eq. �3� we obtain the resonant frequencies

f =
ckn

2�
	1 +

�k

kn

 .

The comparison made in Fig. 2 shows that this expression does follow qualitatively the mea-
sured resonant frequencies for all modes although important differences are present. In fact, Eq.
�3� considers both volumetric and scattering effects �
�knR�2�, being the volumetric effects
dominant. The discrepancies between Leung’s prediction and our measurements are probably
due to the breakdown of the single spherical scattering approximation �no wall contributions�.
It is also important to note that Leung et al. did not observe differences in resonant frequencies
for scatterers made of different solid materials, as expected when both the density and com-
pressibility differences are so large between solids and air. We also verified this in our setup
with plastic spheres.

In order to compare quantitatively the predicted resonant frequencies and the mea-
sured ones, we define the difference parameter, or error estimator, for the nth mode as

�n
2 = �

i=1

N
�ft

n�i� − fm
n�i��2

Nf0
2 , �4�

where ft
n�i� and fm

n�i� are the theoretical and measured resonant frequencies, respectively, for
the sphere at the ith position, and N=90 is the number of positions �i.e., measured resonant

2
frequencies�. The �n parameters calculated for n=1, . . . ,5 are presented in Table 1.



4. Resonant frequecy shifts obtained from the wave equation in a cavity of variable cross
section

We assume that we have an acoustic cavity of cross section S�x�, in which a homogeneous fluid
sustains acoustic waves. In this case the wave equation is modified. Using the usual linear ap-
proximation �=�0+�� and P=P0+p, in the quasi-one-dimensional limit of interest, one
obtains12

1

c2

�2p

�t2 =
1

S

�

�x
	S

�p

�x

 . �5�

We can identify three regions in the cavity: Regions I, II and III, for x�X0−R, X0
−R�x�X0+R, and x�X0+R, respectively. The transverse section then is written

S = �S0 if x � X0 − R

S0 − ��R2 − �x − X0�2� if X0 − R � x � X0 + R

S0 if x � X0 + R ,
� �6�

where S0=Ly	Lz. Notice that the exact sphere position in the �y ,z� plane does not matter in this
framework.

Now, let us impose wave solutions of the form p�x , t�=p�x�e−i
t. We obtain two equa-
tions that must be solved. First, the Helmholtz equation

k2p +
d2p

dx2 = 0, �7�

which must be solved in regions I and III. The second equation, valid for region II, is

k2p +
1

Ŝ�x�

d

dx
�Ŝ�x�

dp

dx
� = 0, �8�

where Ŝ�x�=S0−��R2− �x−X0�2�. In addition to the rigid termination conditions �dp /dx=0� at
x=0 and x=L, the solutions of these equations have to satisfy pressure and acoustic velocity
continuity conditions at x=X0−R and x=X0+R.

The solutions in regions I and III are the usual plane wave solutions

p�x� = �P0 cos kx �Region I�
P1 cos k�L − x� �Region III� ,

� �9�

which satisfy the rigid conditions in the ends of the cavity. Here we put P0 and P1 as the �un-
known� pressure amplitudes at the left and right sides of the sphere.

Table 1. Error estimator �n
2 for the first five modes, using Leung’s formula and the results obtained considering a

variable section cavity. All values are 	10−3. The ratio between both parameters is given in the third row.

n=1 n=2 n=3 n=4 n=5

Leung 0.68 1.57 2.49 2.21 2.50
Wave Eq. �8� 0.14 0.21 0.62 0.64 1.03
Ratio 5.0 7.6 4.0 3.5 2.4
In order to solve Eq. (8), we make the change of variable z= �x−X0� /R, obtaining



d2p

dz2 +
2z

� − 1 + z2

dp

dz
+ �kR�2p = 0 �10�

with −1�z�1 and �=s0 /�R2. The solution of this equation can be expressed in terms of the

confluent Heun function13 HC�� ,
 ,� ,� ,� ;x�:
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The boundary conditions (continuity of both pressure and acoustic velocity) can then
be written as an homogeneous linear system with four unknowns, P0, P1, A, and B. Imposing the
determinant of the system to be equal to zero it is possible to find a trascendental equation for k.
The results obtained with this procedure are also presented in Fig. 2. We observe that for all
modes the comparison is better than the results obtained with Leung’s calculation. As before,
the parameter �n

2 is computed for each mode. Table 1 shows that overall, despite its simplicity,
our model performs much better that Leung’s calculation.

5. Conclusions

In summary, we have performed an experimental study of the resonance frequency shifts of
longitudinal modes in a quasi-one-dimensional air-filled acoustical cavity of rectangular cross
section induced by the inclusion of a spherical solid object of diameter comparable to the cross-
section length. Measurements were performed for the first five longitudinal modes. Depending
on the object position, the measured resonant frequencies vary in an oscillatory way.

Leung’s theory, which is valid in the small sphere limit, does account qualitatively for
the observations, although important differences are observed. Surprisingly these predictions
are not so bad quantitatively, even when the single sphere—no wall—approximation does not
hold in our setup. This is probably due to the fact that for a solid sphere in air and for long
wavelengths, single scattering effects are small. The question about how the sphere wall inter-
action (multiple scattering) modifies this remains an open question.

We have developed a simple quasi-one-dimensional model where we consider the cav-
ity with the intruder as a chamber of variable cross section. Hence, this model solely considers
volumetric effects. For the well-known wave equation (5) we impose a given form of S�x� from
which we can compute the resonant wave numbers, and therefore the resonant frequencies. The
global performance of each model is quantified through a difference parameter �n

2 for each
longitudinal mode. The new predictions agree much better with measurements than Leung’s
theory.
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