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Abstract. Let G = (V, A) be an Eulerian directed graph with an
arc-labeling. In this work we study the problem of finding an Eulerian
circuit of lexicographically minimal label among all Eulerian circuits of
the graph. We prove that this problem is NP-hard by showing a reduction
from the Directed-Hamiltonian-Circuit problem.

If the labeling of the arcs is such that arcs going out from the same
vertex have different labels, the problem can be solved in polynomial
time. We present an algorithm to construct the unique Eulerian circuit of
lexicographically minimal label starting at a fixed vertex. Our algorithm
is a recursive greedy algorithm which runs in O(|A|) steps.

We also show an application of this algorithm to construct the mini-
mal De Bruijn sequence of a language.

1 Introduction

Eulerian graphs were an important concept in the beginning of graph theory.
The “Königsberg bridge problem” and its solution given by Euler in 1736 is
considered the first paper of what is nowadays called graph theory.

In this work, we consider Eulerian digraphs with an arc-labeling into a finite
alphabet, and we study the problem of finding the Eulerian circuit of lexico-
graphically minimal label among all Eulerian circuits in the digraph.

By the BEST theorem (see [1]), we can compute the number of Eulerian
circuits in a graph. This number is usually exponential in the number of vertices
of the graph (at least ((γ − 1)!)|V | where V is the set of vertices and γ is the
minimum degree of vertices in V ). Therefore, finding the Eulerian circuit of
lexicographically minimal label can be costly.

This problem can be stated as a Chinese postman problem with a kind of
priority over the streets: The postman must deliver mail in a network of streets
and return to his depot without walking any street more than once (minimizing
the walked distance) and at each corner he wants to choose the street of minimal
slope. Therefore, the post office needs to give an itinerary to the postman such
that at each corner he will choose the unvisited street of minimal slope unless it
produces an unfeasible itinerary.
� Partially supported by Programa Iniciativa Cient́ıfica Milenio P01-005 and Fun-
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To find an Eulerian circuit of lexicographically minimal label is also interesting
with respect to the problem of finding optimal encodings for DRAM address bus.
In this model, an address space of size 22n is represented as labels of arcs in a
complete digraph with 2n vertices. An Eulerian circuit over this digraph produces
an optimal multiplexed code (see [2]). If we want to give priority to some address
in particular, an Eulerian circuit of lexicographically minimal label give us this
code.

Eulerian digraphs with an arc-labeling are commonly employed in automata
theory: a labeled digraph represents deterministic automata where vertices are
the states of the automata, and arcs represent the transitions from one state to
another, depending on the label of the arc. Eulerian circuits over these digraphs
are related with synchronization of automata (see [3]).

Eulerian digraphs with an arc-labeling are also used in the study of DNA.
By DNA sequencing we can obtain fragments of DNA which need to be assem-
bled in the correct way. To solve this problem, we can simply construct a DNA
graph (see [4]) and find an Eulerian circuit over this digraph. This strategy is
already implemented and it is now one of the most promising algorithms for
DNA sequencing (see [5, 6]).

Another interesting application of these digraphs is to find De Bruijn se-
quences of a language. De Bruijn sequences are also known as “shift register
sequences” and were originally studied in [7] by N. G. De Bruijn for the binary
alphabet. These sequences have many different applications, such as memory
wheels in computers and other technological device, network models, DNA algo-
rithms, pseudo-random number generation and modern public-key cryptographic
schemes, to mention a few (see [8, 9, 10]). More details about this application are
discussed in Section 3.

Note that these last applications consider digraphs with an arc-labeling with
a particular property: Arcs going out from the same vertex have different labels.

In Section 2, we define the problem and we study its complexity. We prove
that the problem is NP-hard. In Section 3 we study the problem when the arc-
labeling has different labels for arcs going out from the same vertex. We show
that in this case the problem can be polynomially solved: we give a recursive
greedy algorithm that runs in linear time in the number of arcs of the digraph.
Finally, in Section 4 we show an application of this algorithm to construct the
minimal De Bruijn sequence of a language.

2 The Problem and Its Complexity

Let G be a digraph and let l : A(G) → N be a labeling of the arcs of G over an
alphabet N such that arcs going out from the same vertex have different labels.

A trail is a sequence T = a1a2 . . . ak of arcs aj such that the tail of ai is the
head of ai−1 for every i = 1, 2, . . . , k and all arcs are distinct. If the tail of a1 is
equal to the head of ak then T is a closed trail or circuit. A circuit is an Eulerian
circuit if the arcs of T are all the arcs of G. An Eulerian digraph is a digraph
with an Eulerian circuit. The label of T , l(T ), is the word l(a1) . . . l(ak).
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Our problem is the following: given an Eulerian digraph and a vertex r, we
intend to find the Eulerian circuit starting in r with the lexicographically minimal
label. We note that is important to fix a starting vertex r so as to define an order
in which vertices are visited, which allows us to define a lexicographical order
among Eulerian circuits.

First, we prove that this problem is NP-hard. We define the decision problem:

MIN-LEX-Eulerian-Circuit

Instance: An Eulerian digraph G, a labeling l : A(G) → N of its
arcs, a starting vertex r and a word X ∈ N |A(G)|.
Question: Is there an Eulerian circuit T starting at r such that
l(T ) ≤ X?

Theorem 1. MIN-LEX-Eulerian-Circuit is NP-complete.

Proof. We present a transformation of a Directed-Hamiltonian-Circuit in-
stance (see [11]) into a MIN-LEX-Eulerian-Circuit instance, polynomially
bounded in the size of the input graph.

Let G be a digraph. We want to verify if G contains a directed Hamiltonian
circuit. We construct a digraph H in the following way: for each vertex v ∈ G,
we include two vertices v1 and v2 and an arc v1v2 in H . Additionally, for each
arc vw ∈ G we include the arc v2w1 in H (see Figure 1). Finally, we label all
arcs in H with the label 0.

It is easy to see that G has a Hamiltonian circuit if and only if H has a circuit
with label 02|V (G)|.

We can complete the digraph H to an Eulerian digraph H̄ with additional
vertices and arcs with label 1 in the following way: we add a vertex c and we
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Fig. 1. Transformation of a digraph G (Directed-Hamiltonian-Circuit instance)
into a labeled digraph H (MIN-LEX-Eulerian-Circuit instance)
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connect every vertex v in H to c with two arcs vc and cv of label 1. With these
connections, the resulting digraph is strongly connected even if we remove all
arcs in H . Finally, to each arc xy in H we add an arc yx with label 1. These arcs
provide the equality between the in-degree and the out-degree of each vertex in
H̄ . Hence, the resulting digraph is Eulerian. Moreover, if G has a Hamiltonian
circuit then we can remove the arcs of its associated circuit of label 02|V (G)| in
H̄ and the remaining graph is still Eulerian.

Therefore, G has a Hamiltonian circuit if and only if H̄ has an Eule-
rian circuit starting at any vertex r ∈ H with label smaller or equal to
02|V (G)|1|A(H̄)|−2|V (G)|.

3 A Linear Algorithm

In this section we assume that the arc-labeling gives a different label to each arc
going out from the same vertex. We note that if we fix an initial vertex r, then
there is a bijection between the trails starting at r and its labels.

We define the following greedy strategy to construct a circuit: Starting at a
given vertex r, follow the unvisited arc (if exists) of minimal label. This strategy
finishes with a trail, and this trail exhausts the vertex r. A trail constructed by
this strategy is called an alphabetic trail starting at r.

Let U be a subset of vertices in G. A cut defined by U is the set of arcs with
one end in U and the other in V (G)\U , and is denoted by δG(U). For simplicity,
for a trail T we write δG(T ) instead of δG(V (T )), where V (T ) is the set of the
tail and head vertices of the arcs in T .

A vertex v is exhausted by a trail T if δG\A(T )(v) = ∅. We note that an
alphabetic trail starting at r is the trail of lexicographically minimal label among
all trails starting at r and exhausting r. We denote by LastNotEx(T ) the last
vertex visited by T among all vertices not exhausted by T .

Let T = e1 . . . eM be a trail and let ei be an arc in the trail T . We denote by
Tei the subtrail e1 . . . ei, by eiT the subtrail ei . . . eM and by eiTej the subtrail
ei . . . ej for i < j.

Lemma 2. Let T be a circuit starting at r and exhausting r and let v =
LastNotEx(T ). If ei is the arc in T after the last visit to v then

δG\A(Tei−1) (ei+1T ) = {ei}

Proof. Let e be an arc of δG(ei+1T ). Since all vertices of ei+1T are exhausted by
T , e ∈ T . Hence either e ∈ Tei−1 or e ∈ eiT . Therefore e ∈ δG\A(Tei−1)(ei+1T )
if and only if e = ei.

We note that these properties are valid for any trail starting at r and exhaust-
ing r, it does not need to be an Eulerian circuit.

For a trail T = e1 . . . eM over G, we define a failure of T as a pair of arcs
ei = vw, ej = vx in the trail such that i < j but l(ei) > l(ej) and such that
∀k < i with ek = vy, l(ek) < l(ej). The vertex v is called a failure vertex. Note
that an alphabetic trail is a trail with no failures.
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Our strategy to construct the Eulerian circuit starting at r of lexicographi-
cally minimal label is the following: Start at r with an alphabetic trail T0. Let
v = LastNotEx(T0) and let ei be the arc in T after the last visit to v. Start
at v an alphabetic trail T1 over G \ A(T0). If the trail T1 exhaust all its ver-
tices, merge both trails obtaining T2 = (T0ei−1)T1(eiT0) and repeat the process
over LastNotEx(T2). If T1 does not exhaust all its vertices, repeat the strategy
recursively.

We note that if T1 exhausts all its vertices, the trail T2 = (T0ei−1)T1(eiT0) is
the trail of minimal label exhausting r and having one failure.

This strategy can be stated as in Algorithm MinLex. Note that we include a
global counter s and a bound MaxSteps in order to count the number of failures
of the resulting trail.

MinLex(A,r) : Compute the lexicographically minimal Eulerian circuit
starting at r on (V (G), A)

Require: A an arc-subset of A(G), r a vertex of G.
1. s ← s + 1
2. T ← AlphabeticTrail(A, r)
3. while NotEx(T ) �= ∅ and s ≤ MaxSteps
4. v ← LastNotEx(T )
5. ei ← the arc in T after the last visit to v
6. T ← (Tei−1)(MinLex(A \ A(T ), v))(eiT )
7. end while

Return: T

Where AlphabeticTrail(A, r) returns the alphabetic trail starting at
r over (V (G), A), NotEx(T ) is the set of not exhausted vertices in T ,
MaxSteps is a fixed integer and s is a global counter initialized in 0.

In order to prove the correctness of our algorithm, we define Ok as the circuit of
minimal label starting at r, having k failures and exhausting r and its failures
vertices. In the following, we will define the trail Ok−1 in terms of Ok.

First, we study the position of failures over Ok. The following lemma can be
proved:

Lemma 3. Let 〈ei, ej〉 and 〈ei′ , ej′〉 be two different failures of Ok. Then it is
not possible that ei′ ∈ eiO

kej and ej′ ∈ ejO
k.

The previous lemma state that two failures of Ok are either nested or in different
subtrails of Ok. A failure 〈ei, ej〉 will be called simplicial if and only if there is
not another failure in eiO

kej . Therefore, there exist simplicial failures of Ok.
Let 〈ei, ej〉 be the first simplicial failure of Ok. We define Õ = (Okei−1)(ejO

k).
We will prove that Õ = Ok−1. In order to prove this equality, we will prove some
intermediate lemmas. All the proofs have the same idea: if the statement of the
lemma is not fulfilled, then we can construct a trail with k failures with a label
smaller than the label of Ok.
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Lemma 4. Let 〈ei, ej〉 be the first simplicial failure of Ok and let v be the vertex
LastNotEx(Ok). Then v is last visited in Okej.

Proof. (sketch) By contradiction, suppose that v is last visited by an arc em ∈
ej+1O

k and let W be the alphabetic trail starting at v over G \ A(Õ). Hence,
the trail (Õem−1)(W )(emÕ) is a trail with k failures and a label smaller than
the label of Ok, which is a contradiction.

Corollary 5. Let 〈ei, ej〉 be the first simplicial failure of Ok and let v be the
vertex LastNotEx(Õ). Then v is the failure vertex of 〈ei, ej〉.

Proof. By contradiction, let x be a vertex in ejÕ not exhausted by Õ and let
en be the last visit of Õ to x. By Lemma 4, the vertex x is exhausted by Ok,
then there exists an arc em ∈ eiO

kej such that x is the head of em−1 and the
tail of em.

Therefore, the trail (Õen−1)(emOkej−1)(eiO
kem−1)(enÕ) uses the same arcs

that Ok but its label is smaller than the label of Ok.

Lemma 6. The trail Õ is the trail Ok−1.

Proof. (sketch) The trail Õ starts and exhausts the vertex r and it has k − 1
failures. By Corollary 5, Õ exhausts all its failure. We only need to compare the
label of Õ with the label of Ok−1.

If the label of Ok−1 is smaller than the label of Õ then the arc producing this
difference needs to be in a failure of Õ. Its corresponding failure vertex cannot
occur before v, then Õei−1 = Ok−1ei−1 = Okei−1.

Let x = LastNotEx(Ok−1). If x is last visited after ej then we can
merge an alphabetic trail starting at x over G \ A(Ok−1) and we obtain a
trail with k failures and with a label smaller than the label of Ok, therefore
LastNotEx(Ok−1) = v.

By Lemma 2, there is no arc between the vertices of subtrails eiO
kej−1 and

ejO
k−1. Hence, if the label of ejO

k−1 is smaller than the label of ejÕ, the trail
(Ok−1ei−1)(eiO

kej−1)(ejO
k−1) has k failures and a label smaller than the label

of Ok. Therefore, Õ = Ok−1.

Now we are ready to prove the correctness of our algorithm.

Theorem 7. The trail Ok is the trail obtained by the MinLex(A(G), r) algo-
rithm after k steps (MaxSteps = k).

Proof. We prove this result by induction on the number of steps.
For k = 0, the algorithm produces the alphabetic trail starting at r, which is

the minimal trail exhausting r with no failures.
Now we assume that k > 0. By Lemma 6, Ok is equal to merge Ok−1 with the

alphabetic trail over G \ A(Ok−1) starting at v, where v = LastNotEx(Ok−1).
By induction hypothesis, Ok−1 is obtained by the algorithm after k − 1 steps.
Moreover, the next step in the algorithm is an alphabetic trail starting at v
over G \ A(Ok−1). Therefore, the resulting trail of the algorithm after k steps is
exactly Ok.
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Corollary 8. The algorithm MinLex(A(G), r) with a sufficient large integer
MaxSteps finishes with the Eulerian circuit of minimal label starting at r

The complexity of our algorithm is linear in |A(G)|. We can use an adjacency
list (see [12]) to represent the digraph, where each vertex v has a list with the
head of each arc starting at v in the alphabetical order of its labels. Knowing
this structure of a digraph, the algorithm can easily construct the alphabetic
trails over G \Oi for every i, removing the visited arcs from the list and keeping
track of exhausted vertices. Since this algorithm visits each arc at most twice, it
can be implemented in O(|A(G)|), which is best possible.

4 An Application: Minimal De Bruijn Sequence

Given a set D of words of length n, a De Bruijn sequence of span n is a periodic
sequence B such that every word in D (and no other n-tuple) appears exactly
once in B. Historically, De Bruijn sequence was studied in an arbitrary alphabet
considering the language of all the n-tuples. In [13] the concept of De Bruijn
sequences was generalized to restricted languages with a finite set of forbidden
substrings and it was proved the existence of these sequences and presented an
algorithm to generate one of them. Nevertheless, it remained to find the minimal
De Bruijn sequence in this general case.

In [14] was studied some particular cases where an alphabetic trail obtains
the minimal De Bruijn sequence. Using Algorithm MinLex we can solve this
problem efficiently in all cases.

A word p is said to be a factor of a word w if there exist words u, v ∈ N∗ such
that w = upv. If u is the empty word (denoted by ε), then p is called a prefix of
w, and if v is empty then is called a suffix of w.

Let D be a set of words of length n + 1. We call this set a dictionary. A De
Bruijn sequence of span n + 1 for D is a (circular) word BD,n+1 of length |D|
such that all the words in D are factors of BD,n+1. In other words,

{(BD,n+1)i . . . (BD,n+1)i+nmod (|D|)|i = 0 . . . |D| − 1} = D

De Bruijn sequences are closely related to De Bruijn digraphs. The De Bruijn
graph of span n, denoted by GD,n, is the digraph with vertex set

V (GD,n) = {u ∈ Nn|u is a prefix or a suffix of a word in D}

and arc set
A(GD,n) = {(αv, vβ)|α, β ∈ N, αvβ ∈ D}

Note that the original definitions of De Bruijn sequences and De Bruijn graph
given in [7] are the particular case of D = Nn+1.

We label the arcs of the digraph GD,n using the following function l: if
e = (αu, uβ) then l(e) = β. This labeling has an interesting property: Let
T = v0e0 . . . emvm+1 be a trail over GD,n of length m ≥ n. Then T finishes in
a vertex u if and only if u is a suffix of l(T ) = l(e0) . . . l(em). This property
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explains the relation between De Bruijn graphs and De Bruijn sequence: BD,n+1

is the label of an Eulerian circuit of GD,n. Therefore, given a dictionary D, the
existence of a De Bruijn sequence of span n+1 is characterized by the existence
of an Eulerian circuit on GD,n.

Let D be a dictionary such that GD,n is an Eulerian digraph. Let z be the
vertex of minimum label among all vertices. Clearly, the minimal De Bruijn
sequence has z as prefix. Hence, the minimal Eulerian circuit on GD,n starts at
an (unknown) vertex and after n steps it arrives to z. Therefore if we start our
Algorithm MinLex in the vertex z we obtain the Eulerian circuit of minimal
label starting at z which have label B = B′ · z. Hence z · B′ is the minimal De
Bruijn sequence of span n + 1 for D.
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