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Abstract

Let φ and θ be two increasing homeomorphisms from R onto R with φ(0) = 0, θ(0) = 0. Let f : [0,1] ×
R × R �→ R be a function satisfying Carathéodory’s conditions, and for each i, i = 1,2, . . . ,m − 2, let
ai : R �→ R, be a continuous function, with

∑m−2
i=1 ai(0) = 1, ξi ∈ (0,1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.

In this paper we first prove a suitable continuation lemma of Leray–Schauder type which we use to obtain
several existence results for the m-point boundary value problem:

(
φ(u′)

)′ = f (t, u,u′), t ∈ (0,1),

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
.

We note that this problem is at resonance, in the sense that the associated m-point boundary value prob-
lem
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(
φ
(
u′(t)

))′ = 0, t ∈ (0,1),

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi )

)
has the non-trivial solution u(t) = ρ, where ρ ∈ R is an arbitrary constant vector, in view of the assumption∑m−2

i=1 ai(0) = 1.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let φ and θ be two increasing homeomorphisms from R onto R with φ(0) = 0, θ(0) = 0.

Let f : [0,1] × R × R �→ R be a function satisfying Carathéodory’s conditions, and for each i,
i = 1,2, . . . ,m − 2, let ai : R �→ R be a continuous function such that

∑m−2
i=1 ai(0) = 1. We are

interested in the problem of existence of solutions for the m-point boundary value problem:

(P )

⎧⎪⎪⎨
⎪⎪⎩

(
φ(u′)

)′ = f (t, u,u′), t ∈ (0,1),

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
,

(1.1)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 are given.
We note the associated m-point boundary value problem(

φ
(
u′(t)

))′ = 0, 0 < t < 1,

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
(1.2)

has the non-trivial solution u(t) = ρ, where ρ ∈ R is an arbitrary constant. Because of this we
say that problem (1.1) is at resonance.

Problems of this kind have been recently dealt with in the literature. Thus in the case φ(u) =
θ(u) ≡ u, u ∈ R, ai(s) = constant, i = 1, . . . ,m−2, we refer to [1], for m = 3, and for general m

in [2,7–9]. For general φ and θ(u) ≡ u the boundary value problem (1.1) has been studied in [3,4]
for the boundary conditions u′(0) = 0, u(1) = u(η).

The authors continue in this paper the work initiated in [3,5,6] by generalizing the main results
in [2,3] in several respects. To illustrate this fact we state next a particular and simple case that
cannot be obtained from any of the results in [2,3].

Theorem 1.1. Let f : [0,1]×R×R �→ R be a continuous function in the boundary value problem

u′′ = f (t, u,u′), t ∈ (0,1), (1.3)

u′(0) = 0, φp

(
u(1)

) = 1

m − 2

m−2∑
i=1

φp

(
u(ξi)

)
e−(u′(ξi ))

2
, (1.4)

where ξi ∈ (0,1), i = 1, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and φp(s) = |s|p−2s, p > 1.

Suppose f satisfy the following conditions:
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• there exists M > 0 such that for all |u| > M , and all t ∈ [0,1], one has

uf (t, u,0) > 0,

• there exist a function ψ : [0,∞) �→ [0,∞), ψ non decreasing with ψ(s) → ∞ as s → ∞,
and continuous functions d1, d2 : [0,1]×R �→ [0,∞), such that for all u ∈ [−M,M], v ∈ R,
and for all t ∈ [0,1], it holds that∣∣f (t, u, v)

∣∣ � d1(t, u) + d2(t, u)ψ
(|v|),

• let C2 = max{d2(t, u), t ∈ [0,1], |u| � M}, and assume that

0 < lim sup
s→∞

ψ(s)

s
<

1

2C2
.

Then problem (1.3)–(1.4) has at least one solution u ∈ C1[0,1].

The proof of this theorem is a direct consequence of Theorem 3.2 below and is left to the
reader. Theorem 3.2 in turn follows from our main existence result in Section 3.

This paper is organized as follows. In Section 2 we state and prove a rather general continua-
tion lemma for the solvability of problem (1.1). Section 3 begins with our main existence result,
Theorem 3.1. This theorem as well as rest of the results in this section is consequence of the
continuation lemma derived in Section 2.

We shall denote by C[0,1] (respectively C1[0,1]) the classical space of continuous (respec-
tively continuously differentiable) functions with values in R defined on the interval [0,1]. The
norm in C[0,1] is denoted by | · |∞. Also, we shall denote by L1(0,1) the space of functions
(equivalence classes of) that are integrable on (0,1). The Brouwer and Leray–Schauder degree
shall be respectively denoted by degB and degLS .

2. Abstract formulation and deformation lemmas

In this section f ∗ : [0,1] × R × R × [0,1] �→ R will denote a function satisfying Carathéo-
dory’s conditions, i.e. (i) for all (s, r, λ) ∈ R × R × [0,1] the function f ∗(·, s, r, λ) is measur-
able on [0,1], (ii) for a.e. t ∈ [0,1] the function f ∗(t, ·, ·, ·) is continuous on R × R × [0,1],
and (iii) for each R > 0 there exists a Lebesgue integrable function ρR : [0,1] �→ R such that
|f ∗(t, s, r, λ)| � ρR(t) for a.e. t ∈ [0,1] and all (s, r, λ) ∈ R × R × [0,1] with |s| � R, and
|r| � R. We suppose, further, that f ∗(t, s, r,1) = f (t, s, r) for all (t, s, r) ∈ [0,1] × R × R.

Next we establish and prove a continuation lemma for the solvability of problem (1.1). To this
end we first introduce an operator B :C1[0,1] × [0,1] �→ R defined by

B(u,λ) = θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f ∗(τ,u(τ), u′(τ ), λ
)
dτ

)
ds

)

−
m−2∑
i=1

ai

(
u′(ξi)

)
θ

(
λu(ξi)+ (1−λ)

ξi∫
0

φ−1

( s∫
0

f ∗(τ,u(τ), u′(τ ), λ
)
dτ

)
ds

)
,

(2.1)

and then for λ ∈ (0,1] we define the family of boundary value problems:
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(Pλ)

⎧⎨
⎩

(
φ

(
u′

λ

))′
= f ∗(t, u,u′, λ),

u′(0) = 0, B(u,λ) = 0.

(2.2)

We note that for λ = 1 problem (2.2) coincides with problem (1.1). We also define F : R �→ R by

F(ρ) = θ

( 1∫
0

φ−1

( s∫
0

f ∗(τ, ρ,0,0) dτ

)
ds

)

−
m−2∑
i=1

ai(0)θ

( ξi∫
0

φ−1

( s∫
0

f ∗(τ, ρ,0,0) dτ

)
ds

)
(2.3)

and note that

B(ρ,0) = F(ρ). (2.4)

Let Ω ⊂ C1[0,1] be a bounded open set, we have the following continuation lemma.

Lemma 2.1. Assume that

(i) there is no solution u to (Pλ), 0 < λ < 1, such that u ∈ ∂Ω,

(ii) the equation

F(ρ) = 0 (2.5)

has no solution on ∂Ω ∩ R,

(iii) the Brouwer degree

degB [F,Ω ∩ R,0] �= 0. (2.6)

Then, problem (P ) has a solution in Ω.

Proof. If (1.1) has a solution in ∂Ω, then there is nothing to prove, hence we suppose that (1.1)
has no solutions belonging to ∂Ω . This assumption combined with (i) implies that there are no
solutions to (Pλ) in ∂Ω for 0 < λ � 1.

It can be easily proved that problem (Pλ), for λ ∈ (0,1] is equivalent to an abstract equation
of the form

u = Ψ ∗(u,λ), (2.7)

where Ψ ∗ :C1[0,1] × [0,1] �→ C1[0,1] is defined by

Ψ ∗(u,λ)(t) := u(0) + λ

t∫
0

φ−1

( s∫
0

f ∗(τ,u(τ), u′(τ ), λ
)
dτ

)
ds +B(u,λ). (2.8)

Standard arguments show that Ψ ∗ is a completely continuous operator. Furthermore setting
Ψ (u) := Ψ ∗(u,1), we observe that u is a solution of (P ) if and only if it is a fixed point of Ψ.

At this point it is clear that assumption (i) can now be restated as

u �= Ψ ∗(u,λ) for all u ∈ ∂Ω, and for all λ ∈ (0,1].
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We show next that this is also true for λ = 0. We note from (2.8) that

Ψ ∗(u,0)(t) = u(0) +B(u,0), t ∈ [0,1],
is a real constant for each u ∈ C1[0,1]. Thus, if for some u ∈ ∂Ω,

u = Ψ ∗(u,0), (2.9)

then, for all t ∈ [0,1], we have that u(t) = s ∈ R and hence, from (2.9), and (2.4), we obtain

s = s +B(s,0) = s + F(s).

But this implies that F(s) = 0, for s ∈ R∩∂Ω, contradicting (ii). In this manner we have verified
that

u �= Ψ ∗(u,λ) for all u ∈ ∂Ω, and for all λ ∈ [0,1].
Then, from the homotopy invariance property of the Leray–Schauder degree, it follows that

degLS

(
I − Ψ ∗(·,1),Ω,0

) = degLS

(
I − Ψ ∗(·,0),Ω,0

) = degB

(
I − Ψ ∗(·,0)|R,Ω0,0

)
= −degB(F,Ω0,0) �= 0,

where Ω0 = Ω ∩ R. Hence the mapping Ψ = Ψ ∗(·,1) has at least one fixed point in Ω and
therefore problem (1.1) has at least one solution in Ω . �
3. Existence theorems

Our main existence result is the following

Theorem 3.1. Let f : [0,1] × R × R �→ R be a Carathéodory function in the boundary value
problem(

φ(u′)
)′ = f (t, u,u′), t ∈ (0,1), (3.1)

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
, (3.2)

where ai : R �→ (0,∞) is a continuous function, ξi ∈ (0,1), i = 1, . . . ,m − 2, 0 < ξ1 < ξ2 <

· · · < ξm−2 < 1. Suppose f satisfies the following conditions:

(i) There exist M > 0, continuous functions g1, g2 : [0,1] × R × R → R, with g1(t, u,0) > 0
for u > M and g2(t, u,0) > 0 for u < −M, and functions α1, α2 in L1(0,1), α1(t) > 0,
α2(t) < 0, for a.e. t ∈ [0,1], such that for all u > M , for all v ∈ R, and for a.e. t ∈ [0,1],
one has

f (t, u, v) � α1(t)g1(t, u, v),

and for all u < −M , for all v ∈ R, and for a.e. t ∈ [0,1], it holds that

f (t, u, v) � α2(t)g2(t, u, v).

(ii) There exist a continuous function ψ : [0,∞) �→ [0,∞), ψ non decreasing, with ψ(s) → ∞
as s → ∞, and functions d1, d2 ∈ L1(0,1), such that∣∣f (t, u, v)

∣∣ � d1(t) + d2(t)ψ
(|v|),

for a.e. t ∈ [0,1], all u ∈ [−M,M], and all v ∈ R.
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(iii) It holds that

0 < ‖d2‖L1(0,1) lim sup
s→∞

sψ(s)

Φ∗(φ(s))
< 1, (3.3)

where Φ∗(s) = ∫ s

0 φ−1(τ ) dτ, s ∈ R.

(iv) Suppose, further, that there exist constants bi � 0, i = 1,2, . . . ,m − 2, with
∑m−2

i=1 bi = 1,

0 < ai(v) � bi, for all v ∈ R, i = 1, . . . ,m − 2,

and
m−2∑
i=1

ai(0) = 1.

Then problem (3.1) has at least one solution u ∈ C1[0,1].

Proof. We consider the family of boundary value problems (Pλ) with f ∗(t, u, v,λ) = f (t, u, v)

for all (t, u, v,λ) ∈ [0,1] × R × R × [0,1], i.e. we consider the family of problems:(
φ

(
u′

λ

))′
= f (t, u,u′), t ∈ (0,1), λ ∈ (0,1],

u′(0) = 0, B(u,λ) = 0, (3.4)

with B(u,λ) as in (2.1).
We shall show that the family of problems (3.4) satisfies the conditions of Lemma 2.1 to

conclude that problem (3.1) has at least one solution in C1[0,1]. Our first step is to define an
open set Ω ⊂ C1[0,1] such that (i) of Lemma 2.1 holds. Thus let λ ∈ (0,1], and u be a solution
to (3.4).

We claim that |u(t)| � M, for all t ∈ [0,1], where M is as in assumption (i) of the theorem.
Let t0 ∈ [0,1) be such that u(t0) is a local maximum for u and suppose first that t0 ∈ (0,1),
then (t − t0)u

′(t) � 0, for t ∈ (0,1) close to t0. Also since u′(t0) = 0 by integrating the equation
in (3.4), we find that

φ

(
u′(t)

λ

)
=

t∫
t0

f
(
τ,u(τ), u′(τ )

)
dτ � 0, (3.5)

for all t > t0 and close to t0. Let us assume that u(t0) > M, and set C0 = g1(t0, u(t0),0) > 0. Let
ε > 0 be such that ε < C0/2, then there is δ > 0 such that for all (t, u, v) such that |t − t0| < δ,
|u − u(t0)| < δ, |v| < δ, it holds that∣∣g1(t, u, v) − g1

(
t0, u(t0),0

)∣∣ < ε,

implying that

g1(t, u, v) > g1
(
t0, u(t0),0

) − ε = C0 − ε > C0/2.

Now for the δ > 0, where δ is as above, there is a μ > 0, μ < δ, such that for all |t − t0| < μ, it
holds that∣∣u(t) − u(t0)

∣∣ < δ and
∣∣u′(t)

∣∣ < δ.
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Hence for t0 < t < t0 + μ we have that

g1
(
t, u(t), u′(t)

)
> C0/2,

which implies that for all t0 < t < t0 + μ,

φ

(
u′(t)

λ

)
=

t∫
t0

f
(
τ,u(τ), u′(τ )

)
dτ �

t∫
t0

α1(τ )g1
(
τ,u(τ), u′(τ )

)
dτ

> C0/2

t∫
t0

α1(τ ) dτ > 0,

which contradicts (3.5).
Assume next that t0 = 0, and that u(0) > M. Then, by integrating the equation in (3.4) we

first find that

φ

(
u′(t)

λ

)
=

t∫
0

f
(
τ,u(τ), u′(τ )

)
dτ,

for all t > 0. Then, as in the previous argument, by using the continuity of the function g1, we
find that

φ

(
u′(t)

λ

)
> 0,

for t > 0 small. Hence u′(t) > 0 for t > 0 small, implying that u is strictly increasing near zero,
yielding again a contradiction. Thus if t0 ∈ [0,1) is such that u(t0) is a local maximum for u,
then it must be that u(t0) � M.

By an entirely similar argument, using this time the continuity of the function g2, it follows
that if t0 ∈ [0,1) is such that u(t0) is a local minimum for u, then it must be that u(t0) � −M.

Thus, in particular, a solution u to problem (3.4) can have neither a global maximum
u(t0) > M nor a global minimum u(t̃0) < −M , at points t0, t̃0 with t0, t̃0 ∈ [0,1).

Suppose next that u reaches a global maximum at t0 = 1 and that u(1) > M . Then u(1) � u(t)

for all t ∈ [0,1]. We observe that in this situation it cannot be that u(ξi) = u(1), for some i =
1, . . . ,m−2, because u(t) would reach a global maximum at t = ξi ∈ (0,1). Hence u(ξi) < u(1),

for all i = 1, . . . ,m − 2. Similarly u(0) < u(1). We will show that this implies

B(u,λ) > 0 (3.6)

yielding again a contradiction. Indeed, from (2.1),

B(u,λ) = θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

−
m−2∑
i=1

ai

(
u′(ξi)

)
θ

(
λu(ξi) + (1 − λ)

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)
.

Now, since u is a solution to (Pλ), we have that
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u(t) = u(0) + λ

t∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds, (3.7)

which together with the fact that u(1) > u(ξi) for all i = 1, . . . ,m − 2 implies that

1∫
ξi

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds > 0

for all i = 1, . . . ,m − 2. Then, from

λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

− λu(ξi) − (1 − λ)

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

= λ
(
u(1) − u(ξi)

) + (1 − λ)

1∫
ξi

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds > 0,

for all i = 1, . . . ,m − 2 and the fact that θ is an increasing function, we obtain that

m−2∑
i=1

ai

(
u′(ξi)

)
θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

>

m−2∑
i=1

ai

(
u′(ξi)

)
θ

(
λu(ξi) + (1 − λ)

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)
. (3.8)

Also, since u(0) < u(1), we see from (3.7) that

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds > 0.

This implies that

λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds > 0

which then gives

θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)
> 0.

Accordingly, we see that
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B(u,λ) >

(
1 −

m−2∑
i=1

ai

(
u′(ξi)

))
θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

�
(

1 −
m−2∑
i=1

bi

)
θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

= 0. (3.9)

Thus B(u,λ) > 0, which is a contradiction.
In conclusion if a solution u reaches a global maximum u(t0) at some t0 ∈ [0,1], then it must

be that u(t0) � M.

An entirely similar argument tells us that if a solution u reaches a global minimum u(t0) at
some t0 ∈ [0,1], then it must be that u(t0) � −M. Thus, any solution u of problem (3.4), satisfies
‖u‖∞ � M.

We next show that derivatives of the solutions are also a priori bounded. We have that the
function Φ∗ is even, increasing in [0,∞), and is such that Φ∗(s) → ∞ as s → ∞. Also it is
immediate that for any v ∈ C1 such that φ(v′) ∈ C1, it holds that

d

dt
Φ∗(φ(v′)

) = v′(φ(v′)
)′
. (3.10)

By multiplying the first equation in (3.4) by u′(t)
λ

we have that

u′(t)
λ

(
φ

(
u′(t)

λ

))′
= u′(t)

λ
f

(
t, u(t), u′(t)

)
,

which by (3.10) becomes

d

dt
Φ∗

(
φ

(
u′(t)

λ

))
= u′(t)

λ
f

(
t, u(t), u′(t)

)
.

Integrating this expression from 0 to t , we find

Φ∗
(

φ

(
u′(t)

λ

))
� 1

λ

1∫
0

∣∣u′(τ )f
(
τ,u(τ)

)
, u′(τ )

∣∣dτ

� 1

λ
‖u′‖∞

1∫
0

∣∣f (
τ,u(τ), u′(τ )

)∣∣dτ,

for all t ∈ [0,1]. Next by condition (ii)

1∫
0

∣∣f (
τ,u(τ), u′(τ )

)∣∣dτ �
1∫

0

(
d1(τ ) + d2(τ )ψ

(∣∣u′(τ )
∣∣))dτ

� β1 + β2ψ
(‖u′‖∞

)
,

where β1 = ‖d1‖L1(0,1), β2 = ‖d2‖L1(0,1). Combining the last two expressions we find that

Φ∗
(

φ

(‖u′‖∞
))

� ‖u′‖∞ (
β1 + β2ψ

(‖u′‖∞
))
λ λ
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and thus

1 � β1

‖u′‖∞
λ

Φ∗(φ( ‖u′‖∞
λ

)) + β2

‖u′‖∞
λ

ψ(‖u′‖∞)

Φ∗(φ( ‖u′‖∞
λ

))
� β1

‖u′‖∞
λ

Φ∗(φ( ‖u′‖∞
λ

)) + β2

‖u′‖∞
λ

ψ
( ‖u′‖∞

λ

)
Φ∗(φ( ‖u′‖∞

λ

)) . (3.11)

Since by (3.3), lims→∞ s
Φ∗(φ(s))

= 0, we find from (3.11) and by using again (3.3), that there
must exist an R0 > M such that ‖u′‖∞ � R0. This implies that there exists an R1 > R0, such
that for λ ∈ (0,1] the family of problems (3.4), or equivalently the equation u = Ψ ∗(u,λ), has no
solution on the boundary of the bounded open set Ω = B(0,R1) ⊂ C1[0,1]. Hence condition (i)
of Lemma 2.1 is satisfied.

Next, we have that F(ρ) given by (2.3), for this case, becomes

F(ρ) = θ

( 1∫
0

φ−1

( s∫
0

f (t, ρ,0) dρ

)
ds

)
−

m−2∑
i=1

ai(0)θ

( ξi∫
0

φ−1

( s∫
0

f (t, ρ,0) dρ

)
ds

)
.

Then, since from assumption (i), for all ρ > M (and hence for ρ = R1), it holds that

f (t, ρ,0) � α1(t)g1(t, ρ,0) > 0 for a.e. t ∈ [0,1],
and that for all ρ < −M (and hence for ρ = −R1 ),

f (t, ρ,0) � α2(t)g2(t,−ρ,0) < 0 for a.e. t ∈ [0,1],
by using that

∑m−2
i=1 ai(0) = 1, we conclude that F(ρ) is strictly positive for ρ = R1 and strictly

negative for ρ = −R1, implying that condition (ii) of Lemma 2.1 is satisfied. We note that this
argument also implies that condition (iii) of Lemma 2.1 is fulfilled (actually in this case, we have
degB [F,Ω ∩ R,0] = 1). �

The following theorem is a direct consequence of Theorem 3.1 and generalizes Theorem 3.2
in [2]. Also under condition (3.14) below it improves the conditions we used in the particular
case of Theorem 3.1 in [3], in the sense that condition (3.2) in that theorem is not needed.

Theorem 3.2. Let f : [0,1]×R×R �→ R be a continuous function in the boundary value problem(
φ(u′)

)′ = f (t, u,u′), t ∈ (0,1), (3.12)

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
, (3.13)

where ai : R �→ (0,∞) is a continuous function, ξi ∈ (0,1), i = 1, . . . ,m − 2, 0 < ξ1 < ξ2 <

· · · < ξm−2 < 1. Suppose f satisfies the following conditions:

(i) There exists M > 0 such that for all |u| > M , and all t ∈ [0,1], one has

uf (t, u,0) > 0. (3.14)
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(ii) There exist a function ψ : [0,∞) �→ [0,∞), ψ non decreasing with ψ(s) → ∞ as s → ∞,
and continuous functions d1, d2 : [0,1]×R �→ [0,∞), such that for all u ∈ [−M,M], v ∈ R,
and for all t ∈ [0,1], it holds that∣∣f (t, u, v)

∣∣ � d1(t, u) + d2(t, u)ψ
(|v|).

(iii) Let C2 = max{d2(t, u), t ∈ [0,1], |u| � M}, we assume that

0 < C2 lim sup
s→∞

sψ(s)

Φ∗(φ(s))
< 1, (3.15)

where Φ∗(s) = ∫ s

0 φ−1(τ ) dτ, s ∈ R.

(iv) Suppose, further, that there exist constants bi � 0, i = 1,2, . . . ,m − 2, with
∑m−2

i=1 bi = 1,

0 < ai(v) � bi, for all v ∈ R, i = 1, . . . ,m − 2,

and

m−2∑
i=1

ai(0) = 1.

Then problem (3.12) has at least one solution u ∈ C1[0,1].

Proof. We notice that the function f (t, u, v) in this theorem satisfies the assumption (i) of
Theorem 3.1 with g1(t, u, v) ≡ f (t, u, v), g2(t, u, v) ≡ −f (t, u, v), α1(t) ≡ 1, α2(t) ≡ −1 in
view of our assumption that f is a continuous function and satisfies the condition (i) of this
theorem. It satisfies the assumption (ii) of Theorem 3.1 with d1(t) = max{d1(t, u), |u| � M},
d2(t) = max{d2(t, u), |u| � M} for all t ∈ [0,1]. Also it is clear that assumption (iii) of Theo-
rem 3.1 is implied by (3.15). Finally noticing that the assumption (iv) of this theorem is the same
as the assumption (iv) of Theorem 3.1, we see that the result is an immediate consequence of
Theorem 3.1. �
Corollary 3.1. Let f : [0,1]×R × R �→ R in problem (1.1) be a continuous function that satisfies
the following conditions:

(i) There exist non-negative functions d̃1(t), d̃2(t), and r(t) in L1(0,1) such that∣∣f (t, u, v)
∣∣ � d̃1(t)φ

(|u|) + d̃2(t)φ
(|v|) + r(t),

for a.e. t ∈ [0,1] and all u,v ∈ R.
(ii) There exists u0 > 0 such that uf (t, u, v) > 0 for u ∈ R, with |u| > u0 and v ∈ R.

(iii) d̃2 satisfies

‖d̃2‖L1(0,1) < lim inf
s→∞

Φ∗(s)
sφ−1(s)

, (3.16)

where as before Φ∗(s) = ∫ s

0 φ−1(τ ) dτ, s ∈ R.

(iv) Suppose, further, that there exist constants bi � 0, i = 1,2, . . . ,m − 2, with
∑m−2

i=1 bi = 1,

0 < ai(v) � bi, for all v ∈ R, i = 1, . . . ,m − 2,
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and
m−2∑
i=1

ai(0) = 1.

Then problem (1.1) has at least one solution u ∈ C1[0,1].

Proof. It is an immediate consequence of Theorem 3.2. Indeed setting in Theorem 3.2,
d1(t, u) = d̃1(t)φ(|u|) + r(t), d2(t, u) = d̃2(t), and ψ(s) = φ(s), s ∈ [0,∞), it is immediate
that conditions (i)–(iv) of this corollary imply that conditions (i)–(iv) of Theorem 3.2 are satis-
fied. �

In the following theorem we replace the assumption (ii) of Corollary 3.1 by the assumption
“there exists u0 > 0 such that uf (t, u, v) < 0 for t ∈ [0,1], u ∈ R, with |u| > u0 and v ∈ R.”
In this case we assume that the continuous functions ai : R �→ (0,∞), i = 1, . . . ,m − 2, in
problem (1.1) are constant functions, i.e. there exist constants bi � 0, i = 1,2, . . . ,m − 2, with∑m−2

i=1 bi = 1, and 0 < ai(v) ≡ bi, for all v ∈ R, i = 1, . . . ,m − 2.

Theorem 3.3. Let f : [0,1]×R × R �→ R in problem (2.2) be a continuous function that satisfies
the following conditions:

(i) There exist non-negative functions d1(t), d2(t), and r(t) in L1(0,1) such that∣∣f (t, u, v)
∣∣ � d1(t)φ

(|u|) + d2(t)φ
(|v|) + r(t),

for a.e. t ∈ [0,1] and all u,v ∈ R.
(ii) There exists u0 > 0 such that uf (t, u, v) < 0 for t ∈ [0,1], u ∈ R, with |u| > u0 and v ∈ R.

(iii) Suppose ‖d2‖L1(0,1) < 1, and the function Γ : [0,∞) �→ [0,∞), defined for z ∈ R by

Γ (z) = φ−1
( ‖d1‖L1(0,1)

1 − ‖d2‖L1(0,1)

φ(z) + ‖r‖L1(0,1)

1 − ‖d2‖L1(0,1)

)
,

satisfies the condition

lim sup
z→∞

Γ (z)

z
< 1. (3.17)

(iv) Suppose, further, that there exist constants bi � 0, i = 1,2, . . . ,m − 2, with
∑m−2

i=1 bi = 1.

Then problem(
φ(u′)

)′ = f (t, u,u′), t ∈ (0,1),

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

biθ
(
u(ξi)

)
(3.18)

has at least one solution u ∈ C1[0,1].

Proof. Let us set f ∗(t, u, v,λ) = f (t, u, v), in Theorem 3.1. We shall show that for all
(t, u, v,λ) ∈ [0,1] × R × R × (0,1), and 0 < ai(v) ≡ bi , for all v ∈ R; i = 1, . . . ,m − 2, the
family of problems
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(
φ

(
u′

λ

))′
= f (t, u,u′), t ∈ (0,1), λ ∈ (0,1],

u′(0) = 0, B(u,λ) = 0, (3.19)

with B(u,λ) as defined in (2.1), satisfies conditions (i)–(iii) of Lemma 2.1.
Let u(t) be a solution of (3.19) for some λ ∈ (0,1). We claim that there exists a t̃ ∈ [0,1] such

that

−u0 � u(t̃) � u0. (3.20)

Indeed let us assume that u(t) > u0 > 0 for all t ∈ [0,1] then we see from assumption (ii) that
f (t, u(t), u′(t)) < 0 for all t ∈ [0,1]. We then get, for all t ∈ [0,1],(

φ(u′)
)′

< 0 (3.21)

and since u′(0) = 0 we obtain that u(t) is strictly decreasing and in particular u(1) < u(ξi) for
all i. Further, we see that

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds �

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

for all i, since f (t, u(t), u′(t)) < 0 for all t ∈ [0,1]. Hence, we obtain

λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

< λu(ξi) + (1 − λ)

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

for all i. We, next, use B(u,λ) = 0 and the above inequality to obtain first that

θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

=
m−2∑
i=1

biθ

(
λu(ξi) + (1 − λ)

ξi∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

>

m−2∑
i=1

biθ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)
,

and then use the assumption
∑m−2

i=1 bi = 1, to yield the contradiction

θ

(
λu(1) + (1 − λ)

1∫
0

φ−1

( s∫
0

f
(
τ,u(τ), u′(τ )

)
dτ

)
ds

)

> θ

(
λu(1) + (1 − λ)

1∫
φ−1

( s∫
f

(
τ,u(τ), u′(τ )

)
dτ

)
ds

)
.

0 0
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Similarly, if we assume that u(t) < −u0 < 0 for all t ∈ [0,1] we shall arrive at a contradiction.
Accordingly, there exists a t̃ ∈ [0,1] such that −u0 � u(t̃) � u0, proving the claim (3.20).

As an immediate consequence of (3.20) we obtain that

‖u‖∞ � u0 + ‖u′‖∞. (3.22)

Next, we see from assumption (i) of the theorem that∣∣f (
t, u(t), u′(t)

)∣∣ � d1(t)φ
(∣∣u(t)

∣∣) + d2(t)φ
(∣∣u′(t)

∣∣) + r(t),

and hence by integrating the equation in (3.19) from 0 to t ∈ [0,1] and using that u′(0) = 0, we
obtain that

φ
(‖u′‖∞

)
� φ

(‖u‖∞
)‖d1‖L1(0,1) + φ

(‖u′‖∞
)‖d2‖L1(0,1) + ‖r‖L1(0,1). (3.23)

Thus, solving for ‖u′‖∞, and then combining with (3.22) we find that

‖u′‖∞ � φ−1
( ‖d1‖L1(0,1)

1 − ‖d2‖L1(0,1)

φ
(‖u‖∞

) + ‖r‖L1(0,1)

1 − ‖d2‖L1(0,1)

)
, (3.24)

and then

‖u‖∞ � u0 + Γ
(‖u‖∞

)
.

Accordingly, we get using our assumption

lim sup
z→∞

Γ (z)

z
< 1,

that there must exist a z0 > 0 such that

‖u‖∞ � z0. (3.25)

Finally, by (3.24) and (3.25) there is a positive constant R0 > u0 (where u0 is as in assump-
tion (ii)) such that

‖u‖C1[0,1] � R0.

Thus for any fixed R > R0 if Ω = B(0,R) ⊂ C1[0,1], then for each 0 < λ < 1 the family of
problems (3.19) has no solution on ∂Ω . Thus (i) of Lemma 2.1 is satisfied.

Next, we observe that for our case

F(ρ) = θ

( 1∫
0

φ−1

( s∫
0

f (τ,ρ,0) dτ

)
ds

)
−

m−2∑
i=1

biθ

( ξi∫
0

φ−1

( s∫
0

f (τ,ρ,0) dτ

)
ds

)

and note that

B(ρ,0) = F(ρ).

Then assumption (ii) implies that for all ρ ∈ R, with |ρ| � u0,

ρF(ρ) < 0. (3.26)

Since this holds when ρ = R, we have that (ii) of Lemma 2.1 is satisfied. That (iii) of that lemma
holds is immediate from (3.26). We have thus proved that the family of problems (3.19) satisfies
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all the conditions of Lemma 2.1 and hence existence of a solution for problem (3.18) follows
from that lemma. This completes the proof of the theorem. �

Next consider the problem(
φ(u′)

)′ + f (t, u,u′) = q(t), t ∈ (0,1),

u′(0) = 0, θ
(
u(1)

) =
m−2∑
i=1

θ
(
u(ξi)

)
ai

(
u′(ξi)

)
, (3.27)

where f : [0,1] × R × R �→ R is continuous, and q ∈ L1(0,1). We define

q = sup

{
1

s

s∫
0

q(τ) dτ

∣∣∣∣ s ∈ (0,1]
}

,

and

q = inf

{
1

s

s∫
0

q(τ) dτ

∣∣∣∣ s ∈ (0,1]
}

.

We have

Theorem 3.4. Let q ∈ L1(0,1) and f : [0,1] × R × R �→ R in problem (3.27) be a continuous
function satisfying the following conditions:

(i) There exist non-negative functions d1(t), d2(t), and r(t) in L1(0,1) such that∣∣f (t, u, v)
∣∣ � d1(t)φ

(|u|) + d2(t)φ
(|v|) + r(t),

for a.e. t ∈ [0,1] and all u,v ∈ R.
(ii) There exists a d > 0 such that

f (t, u, v) < q for u � d,

f (t, u, v) > q for u � −d,

for a.e. t ∈ [0,1] and all v ∈ R.
(iii) Suppose ‖d2‖L1(0,1) < 1, and the function Γ : [0,∞) �→ [0,∞), defined by

Γ (z) = φ−1
( ‖d1‖L1(0,1)

1 − ‖d2‖L1(0,1)

φ(z) + ‖r̃‖L1(0,1)

1 − ‖d2‖L1(0,1)

)
,

where r̃(t) = r(t) + q(t), satisfies the condition

lim sup
z→∞

Γ (z)

z
< 1. (3.28)

(iv) Suppose, further, that there exist constants bi � 0, i = 1,2, . . . ,m − 2, with
∑m−2

i=1 bi = 1,

0 < ai(v) � bi, for all v ∈ R, i = 1, . . . ,m − 2,

and
m−2∑
i=1

ai(0) = 1.

Then problem (3.27) has at least one solution u ∈ C1[0,1].
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This theorem improves the conditions of Theorem 3.2 in [3], in fact conditions (3.22) and
(3.23) in that theorem are no longer needed for its validity.

Proof. We shall show that for f ∗(t, u, v,λ) = q(t) − f (t, u, v) for all (t, u, v,λ) ∈ [0,1] ×
R × R × (0,1], the family of problems(

φ

(
u′

λ

))′
= q(t) − f (t, u,u′), t ∈ (0,1), λ ∈ (0,1],

u′(0) = 0, B(u,λ) = 0, (3.29)

with B(u,λ) as defined in (2.1), satisfies conditions (i)–(iii) of Lemma 2.1.
Let u(t) be a solution of (3.29) for some λ ∈ (0,1). Then, by integrating the equation in (3.29)

from 0 to t ∈ (0,1] and using that u′(0) = 0, we obtain that

φ

(
u′(t)

λ

)
=

t∫
0

(
q(τ) − f

(
τ,u(τ), u′(τ )

))
dτ

>

t∫
0

(
q − f

(
τ,u(τ), u′(τ )

))
dτ > 0, (3.30)

for all t ∈ [0,1]. Similarly

φ

(
u′(t)

λ

)
< 0 if u(t) < −d for all t ∈ [0,1]. (3.31)

Next we claim that there exists a t̃ ∈ [0,1] such that

−d � u(t̃) � d. (3.32)

Indeed assume first that u(t) > d for all t ∈ [0,1]. Then we see from (3.30) that u′(t) > 0 for all
t ∈ [0,1] and hence that u(t) is strictly increasing. Thus as in the proof of Theorem 3.1, repeating
the argument that goes from (3.6) to (3.8), it follows that B(u,λ) > 0, yielding a contradiction.
Similarly, if we assume that u(t) < −d for all t ∈ [0,1] we arrive to a contradiction. Hence the
claim (3.32) is proved.

As an immediate consequence of (3.32) we obtain that

‖u‖∞ � d + ‖u′‖∞. (3.33)

Next, we see from assumption (i) of the theorem that∣∣q(t) − f
(
t, u(t), u′(t)

)∣∣ � d1(t)φ
(∣∣u(t)

∣∣) + d2(t)φ
(∣∣u′(t)

∣∣) + r̃(t),

and hence by (3.30), we obtain that

φ
(‖u′‖∞

)
� φ

(‖u‖∞
)‖d1‖L1(0,1) + φ

(‖u′‖∞
)‖d2‖L1(0,1) + ‖r̃‖L1(0,1). (3.34)

Thus, solving for ‖u′‖∞,

‖u′‖∞ � φ−1
( ‖d1‖L1(0,1)

1 − ‖d2‖L1(0,1)

φ
(‖u‖∞

) + ‖r̃‖L1(0,1)

1 − ‖d2‖L1(0,1)

)
, (3.35)

and combining with (3.33), we find that

‖u‖∞ � d + Γ
(‖u‖∞

)
.
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Accordingly, using our assumption

lim sup
z→∞

Γ (z)

z
< 1,

we get that there must exist a z0 > 0 such that

‖u‖∞ � z0. (3.36)

Finally, by (3.35) and (3.36) there is a positive constant R0 > d (where d is as in assumption (ii))
such that

‖u‖C1[0,1] � R0.

Thus for any fixed R > R0 if Ω = B(0,R) ⊂ C1[0,1], then for each 0 < λ < 1 the family of
problems (3.29) has no solution on ∂Ω . Thus (i) of Lemma 2.1 is satisfied.

Next formula (2.3), applied to our present situation, yields that

F(ρ) = θ

( 1∫
0

φ−1

( s∫
0

(
q(τ) − f (τ,ρ,0)

)
dτ

)
ds

)

−
m−2∑
i=1

ai(0)θ

( ξi∫
0

φ−1

( s∫
0

(
q(τ) − f (τ,ρ,0)

)
dτ

)
ds

)
, (3.37)

where we note that

B(ρ,0) = F(ρ). (3.38)

Then, for all ρ ∈ R, with |ρ| � d , assumption (ii), together with
∑m−2

i=1 ai(0) = 1, implies that

ρF(ρ) > 0. (3.39)

Since this holds when ρ = R, we have that (ii) of Lemma 2.1 is satisfied. That (iii) of that lemma
holds is immediate from (3.39). We have thus proved that the family of problems (3.29) satisfies
all the conditions of Lemma 2.1 and hence existence of a solution for problem (3.27) follows
from that lemma. This completes the proof of the theorem. �
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