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Abstract: Let G be a graph with maximum degree d ≥ 3 and ω(G) ≤ d,
where ω(G) is the clique number of the graph G. Let p1 and p2 be two
positive integers such that d = p1 + p2. In this work, we prove that G has
a vertex partition {S1, S2} such that G[S1] is a maximum order (p1 − 1)-
degenerate subgraph of G and G[S2] is a (p2 − 1)-degenerate subgraph,
where G[Si] denotes the graph induced by the set Si in G, for i = 1,2.
On one hand, by using a degree-equilibrating process our result implies a
result of Bollobas and Marvel [1]: for every graph G of maximum degree
d ≥ 3 and ω(G) ≤ d, and for every p1 and p2 positive integers such that d =
p1 + p2, the graph G has a partition {S1, S2} such that for i = 1, 2, �(G[Si]) ≤
pi and G[Si] is (pi − 1)-degenerate. On the other hand, our result refines
the following result of Catlin in [2]: every graph G of maximum degree
d ≥ 3 has a partition {S1, S2} such that S1 is a maximum independent set
and ω(G[S2]) ≤ d − 1; it also refines a result of Catlin and Lai [3]: every
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graph G of maximum degree d ≥ 3 has a partition {S1, S2} such that S1 is
a maximum size set with G[S1] acyclic and ω(G[S2]) ≤ d − 2. The cases
d = 3, (d, p1) = (4, 1) and (d, p1) = (4, 2) were proved by Catlin and Lai [3].
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1. INTRODUCTION

The clique number, ω(G), of a graph G is the largest integer k such that G contains
a complete subgraph of size k. A graph G is k-degenerate if every subgraph of G

contains a vertex of degree at most k (Lick and White in [5]). The coloring number
col(G), of a graph G is the smallest integer k such that G is (k − 1)-degenerate
(Erdös and Hajnal in [4]). Then, a graph G has no edge if and only if col(G) ≤ 1, and
it is acyclic if and only if col(G) ≤ 2. Clearly, if G has maximum degree d = �(G),
then G is d-degenerate; hence col(G) ≤ �(G) + 1. If G is not (d − 1)-degenerate,
then col(G) = �(G) + 1 and G contains a d-regular connected component.

In this work, we prove the following theorem.

Theorem 1.1. Let G be a graph with maximum degree d ≥ 3 and ω(G) ≤ d. Then,
for every p1 and p2 such that d = p1 + p2 the graph G has a partition {S1, S2}
such that G[S1] is a maximum order (p1 − 1)-degenerate induced subgraph of G

and G[S2] is a (p2 − 1)-degenerate induced subgraph.

This result generalizes some results relating the maximum degree of the orig-
inal graph G with the coloring numbers of its parts G[S1] and G[S2]. On one
hand, Catlin in [2] proved that any graph G with maximum degree d ≥ 3 and
ω(G) ≤ d, has a partition {S1, S2} such that S1 is a maximum independent set and
�(G[S2]), ω(G[S2]) ≤ d − 1. The case p1 = 1 of Theorem 1.1 corresponds to a
slightly refinement of this result. Later, Catlin and Lai in [3] proved the following.

Theorem 1.2. Every graph G with maximum degree d ≥ 3 and ω(G) ≤ d has a
partition {S1, S2} such that

1. For d = 3, S1 is a maximum independent set and G[S2] is acyclic.
2. For d = 4, G[S1] is a maximum acyclic induced subgraph and G[S2] is

acyclic.
3. For d ≥ 5, G[S1] is a maximum acyclic induced subgraph and ω(G[S2]),

�(G[S2]) ≤ d − 2.

The first two cases in Theorem 1.2 correspond to the cases (d, p1) = (3, 1) and
(d, p1) = (4, 2) in Theorem 1.1, respectively. The case d ≥ 5, p1 = 2 in Theorem
1.1 is a slightly improvement of the third case in Theorem 1.2. In the best of our
knowledge, all the remaining cases are new.

On the other hand, Bollobas and Marvel proved the following [1].



Theorem 1.3. Let G be a graph of maximum degree d ≥ 3 and ω(G) ≤ d. For
every p1 and p2 positive integers with d = p1 + p2, G has a partition {S1, S2} such
that, for i = 1, 2, col(G[Si]), �(G[Si]) ≤ pi.

Theorem 1.3 can be derived from Theorem 1.1 by using the following lemma.

Lemma 1.4. Let G be a graph of maximum degree d ≥ 3. Let p1 and p2 be positive
integers with d = p1 + p2. If G has a partition {S1, S2} where col(G[Si]) ≤ pi for
i = 1, 2, then G has a partition {S′

1, S
′
2} such that col(G[S′

i]), �(G[S′
i]) ≤ pi for

i = 1, 2.

Proof. Let {S1, S2} be a partition of G such that col(G[Si]) ≤ pi, for i =
1, 2 and minimizing p2‖S1‖ + p1‖S2‖, where ‖Si‖ denotes the number of
edges of G[Si], for i = 1, 2. Let us denote by di(v) the number of neigh-
bors of a vertex v in Si, for i = 1, 2. If �(G[S1]) > p1 or �(G[S2]) >

p2, then we can assume that a vertex v ∈ S1 exists with d1(v) > p1. Then
d2(v) < p2. Hence S′

1 := S1 − {v} and S′
2 := S2 ∪ {v} satisfy col(G[S′

i]) ≤
pi, for i = 1, 2. Moreover, p2‖S1‖ + p1‖S2‖ − p2‖S′

1‖ − p1‖S′
2‖ = p2d1(v) −

p1d2(v) > p2p1 − p1p2 = 0 which gives the contradiction. �

2. PROOF OF THE MAIN RESULT

Let G = (V, E) an undirected graph. Let p be a positive integer. Let us say that a
subset S of V is p-stable in G if G[S] is (p − 1)-degenerate. A 1-stable set S in G

is precisely an independent set of G. A set S ⊆ V is 2-stable in G if and only if the
graph induced by S is acyclic.

Theorem 1.1 will be proved in the following manner.

Theorem 2.1. Let G = (V, E) be a connected graph with maximum degree d ≥ 3.
Let p1 and p2 be positive integers such that d = p1 + p2. If for every maximum
p1-stable set S1 in G and every maximum p2-stable set in G − S1 the union S1 ∪ S2

is not V , then G = Kd+1.

Proof. Let H be the set of all tuples S = (S1, S2, v) with S1 a maximum p1-
stable set in G, S2 a maximum p2-stable set in G − S1 and v /∈ S1 ∪ S2. Then
H �= ∅. For each S = (S1, S2, v) in H and i = 1, 2 the following properties hold.

1. Let Li(v) be the set of all neighbors of v in Si. Then |Li(v)| = pi.

2. Let Ci(v) the connected component containing v in G[Si ∪ {v}]. Then, for every
w ∈ Ci(v) the tuple Sv

w ∈ H , where

Sv
w =

{
((S1 ∪ {v}) − {w}, S2, w) if w ∈ S1

(S1, (S2 ∪ {v}) − {w}, w) if w ∈ S2

3. The subgraph Ci(v) is pi-regular and each vertex in Ci(v) has exactly p3−i

neighbors in S3−i.



Property 1 follows immediately from the definition of H , while Property 2 can
be proved by induction on the distance between v and w in Ci(v). Property 3 is
obtained by combining Properties 1 and 2.

Let S = (S1, S2, v) ∈ H . A subset D of S1 ∪ S2 is a piece of S if G[D] is
a connected component of G[S1] or a connected component of G[S2]. Let H∗

denote the set of all elements in H with minimum number of pieces. For each
S = (S1, S2, v) ∈ H∗ and each i = 1, 2 the following properties hold.

4. Let Di(v) := V (Ci(v)) − {v}. Then Di(v) is a piece of S.

5. If a vertex in Li(v) has a neighbor in L3−i(v), then it is adjacent to each vertex
in L3−i(v).

6. If a vertex in Li(v) has a neighbor in L3−i(v), then G[L3−i(v)] is a complete
subgraph of G.

Property 4 is a consequence of the definition of H∗. Property 5 is proved as
follows. Let z ∈ Li(v) be a vertex having a neighbor u in L3−i(v). From Property 2,
the tuple Sv

z ∈ H . By applying Property 3 to Sv
z we get that the connected component

C′ containing z in G[S3−i ∪ {z}] is p3−i-regular. We know that L3−i(v) is contained
in V (C′), since by Property 4 we have that G[D3−i(v)] is connected. Therefore, the
regularity of C′ implies that each vertex in L3−i(v) is adjacent to z.

We now prove Property 6. Let z ∈ Li(v) and u ∈ L3−i(v) such that zu ∈ E. We
prove that z is adjacent to every vertex w in Li(v). From property 5, we know that
u and w are adjacent. The same property applied to w implies that w is adjacent to
every vertex in L3−i(v). Hence, w has exactly p3−i − 1 neighbors in S3−i − {u}. By
using Property 2 twice, we know that T := Sv

z ∈ H and T z
u ∈ H . Since the vertex w

belongs to the connected component containing u in G[Si ∪ {v, u} − {z}], Property
3 applied to T z

u implies that the vertex w has p3−i neighbors in S3−i ∪ {z} − {u}.
Therefore, w and z are adjacent.

7. If there exists S = (S1, S2, v) ∈ H∗ such that a vertex in Li(v) has a neighbor
in L3−i(v), then G is complete.

By applying Property 5 first to z and then to any vertex in L3−i(v) we deduce that
every vertex in Li(v) is adjacent to every vertex in L3−i(v). The conclusion follows
from Property 6.

In the rest of the proof we show the existence of S = (S1, S2, v) ∈ H∗ such that
a vertex in Li(v) has a neighbor in L3−i(v) by constructing a maximal structure in
G as follows. We say that w blocks a piece D of S = (S1, S2, v) ∈ H if w /∈ D, it
has exactly pi neighbors in Si and G[D ∪ {w}] is pi-regular, where i is the index
such that D ⊆ Si.

Let k be the largest integer such that there exist S = (S1, S2, v) ∈ H∗ and non
empty pairwise disjoint pieces B1, . . . , Bk of S such that v blocks Bk and for every
j = 1, . . . , k − 1, there exists z ∈ Bj+1 such that z blocks Bj.

By using the maximality of k, we first prove that there is j such that Bj = D2(v)
and Bk = D1(v) or Bj = D1(v) and Bk = D2(v). Let us assume that Bk ⊆ S1 (the



case Bk ⊆ S2 is similar). Since v blocks Bk, from Property 3 we know that Bk =
D1(v). Let us consider Bk+1 = D2(v) ∪ {v} − {w}, for w ∈ D2(v) such that G[Bk+1]
is connected. This choice of w and Property 2 imply that S′ = (S1, S

′
2, w) ∈ H∗,

where S′
2 := (S2 ∪ {v}) − {w}. From Property 1, w has exactly p2 neighbors in S′

2.
Moreover, Bk+1 ⊆ S′

2 is a piece of S′ and it is blocked by w. By the maximality of k

and since v blocks Bk, there exists j < k such that Bj ∩ Bk+1 �= ∅. Since v /∈ S1 ∪ S2

and Bj is a piece of S we get that Bj ∩ (D2(v) − {w}) �= ∅. Finally, Bj and D2(v)
are pieces of S. Therefore, Bj = D2(v).

We now prove that there is a vertex in L2(v) having a neighbor in L1(v). Let
z ∈ Bj+1 be a vertex such that z blocks Bj. Then z has exactly p2 neighbors in S2.
Since v also blocks Bj, the set of all neighbors of z in S2 is L2(v). To finish the
proof we show that z ∈ L1(v). Let w ∈ L2(v). From Property 2 the tuple Sv

w ∈ H .
Since w is adjacent to z, Property 3 applied to Sv

w implies that z has p2 neighbors
in S2 ∪ {v} − {w}. Hence z ∈ L1(v) �

It is worth to mention that the following analogous of Theorem 1.1 can be proved.

Theorem 2.2. Let G be a graph with maximum degree d ≥ 3 and ω(G) ≤ d. Then,
for every p1 and p2 such that d = p1 + p2 the graph G has a partition {S1, S2}
such that G[S1] is a maximum order (p1 − 1)-colorable induced subgraph of G

and G[S2] is a (p2 − 1)-degenerate induced subgraph.

The proof follows the same steps as those of Theorem 1.1, when we consider
H as the set of all tuples (S1, S2, v) with G[S1] a maximum order (p1 − 1)-
colorable induced subgraph of G, G[S2] a maximum order (p2 − 1)-degenerate
induced subgraph of G − S1 and v /∈ S1 ∪ S2. Both results can be presented jointly
in terms of an induced subgraph hereditary graph property P . The requirement
for the property P is the following: a positive integer p exists such that the
addition of a new vertex v to a graph G ∈ P generates a new graph G′ ∈ P ,
whenever the degree of v in G′ is less than p. Hence a possible extension of
our result is the following. For each property P as above, every non complete
graph G has a partition {S1, S2} where G[S1] is a maximum order induced sub-
graph with property P and G[S2] is a (n − p − 1)-degenerate induced subgraph
of G.
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