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This paper focuses on the prediction of the dimensionless retention time of proteins (DRT) in hydrophobic interaction chromatograph
eans of mathematical models based on characteristics of the surface hydrophobicity distribution. We introduce a new parameter, calledc

mbalance (HI), obtained from the three-dimensional structure of proteins. This parameter quantifies the displacement of the superficia
entre of the protein when the effect of the hydrophobicity of each amino acid is considered. This parameter is simpler and less exp
hose reported previously. We use HI as a way to incorporate information about the surface hydrophobicity distribution in order to im
rediction of DRT. We tested the performance of our DRT predictive models in a set of 15 proteins. This set includes four proteins whos
nown as very difficult to predict. By means of the variable HI, it was possible to improve the predictive characteristics obtained by mo
n the average surface hydrophobicity (ASH) by 9.1%. Also, we studied linear multivariable models based on characteristics determin
I. By using this multivariable model, a correlation coefficient of 0.899 was obtained. With this model, we managed to improve the p
haracteristics shown by previous models based on ASH by 31.8%.

eywords: Mathematical modelling; Hydrophobic interaction chromatography; Hydrophobicity; Retention time prediction; Proteins; Protein surface disbution

. Introduction

Hydrophobic interaction chromatography (HIC) is a tech-
ique widely used for the purification of proteins. At present

ime, HIC is used in most industrial processes for protein purifi-
ation as well as in laboratory scale applications. Commonly, it
s used as a stage in the protein purification process following
n ion exchange chromatography stage. It has been shown that

he rational design of industrial protein purification processes
ormally requires an HIC stage[1].

Therefore, it is of great interest to have methodologies allow-
ng us to carry out rational designs of these operations, both

∗ Corresponding author. Tel.: +56 2 6784716; fax: +56 2 6991084.
E-mail address: jsalgado@ing.uchile.cl (J.C. Salgado).

at laboratory scale and at industrial scale. Within this
text, the availability of mathematical tools for simulating a
predicting the behaviour of proteins in HIC is of main imp
tance. Although the phenomenon of interaction between
teins and a stationary matrix is not entirely understood, se
efforts have been in order to develop predictive mathema
models.

Lienqueo et al. found that the dimensionless retention
(DRT) correlate well (correlation coefficient≈ 0.95) with the
average surface hydrophobicity which was calculated co
ering the relative contribution of each one of the amino a
present on the surface[2]. These models have been v
dated for several standard proteins (�-amylase, ovalbumin, co
canavalin A and�-lactoglobulin) and recombinant proteins fr
cell extracts (human superoxide dismutase from yeast a�-
glucanase fromE. coli), with satisfactory results[3]. The main
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disadvantage of these models is that they do not consider the
effect of the surface hydrophobicity distribution.

Mahn et al.[4,5] studied the effect of the surface hydropho-
bicity distribution in the prediction of the DRT of a set of
four proteins where the previous predictive models obtain bad
performances. In their first study, they proposed the use of
an hydrophobic contact area (HCA) to predict the DRT. This
HCA was determined through a thermodynamic model that
combined electrostatic and hydrophobic interactions[6]. The
adjustment of this model was carried out using variables mea-
sured at the laboratory. Then, it is possible to consider that the
HCA has an experimental nature. In their second study, they
defined a new parameter called local hydrophobicity (LH). The
LH corresponded to the average surface hydrophobicity cal-
culated considering only the amino acids located inside the
most probable interaction zone between the protein and the
stationary matrix. This interaction zone was determined using
molecular docking simulations and, therefore, this parameter
has a theoretical nature. The authors argue that by means of
both parameters the DRT can be predicted with an acceptable
performance.

However, the main disadvantage of these methodologies
is that they are very expensive in human and computational
resources. In the first case, the HCA determination requires
a substantial amount of laboratory time. In the second case,
the computational time needed to identify the most probable
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Therefore, the main objective of this paper is to investigate
the use of the hydrophobic imbalance (HI) as a way to incorpo-
rate information about the surface hydrophobicity distribution
in order to develop simple and computationally inexpensive
mathematical models which can improve the performance of
the prediction of DRT reported previously.

2. Materials and methods

Let S be the surface of a protein. We codeS by a set of points.
Each pointk ∈ S is, for us, a particular amino acid. For each of
these amino acidsk ∈ S, ASA(k) corresponds to its accessible
surface area. We also defineϕ(k) as the value of an intrinsic
aminoacidic property ofk. The value ofϕ(k) is given by an
amino acid property vector APV (for instance, APV could be a
hydrophobicity scale). The average surface property (ASP) of a
protein is given by:

ASP=
∑

k ∈ SASA(k)ϕ(k)∑
k ∈ SASA(k)

(1)

If the APV (from where the values ofϕ(k) are taken) is sim-
ply a hydrophobicity scale, then the calculated ASP corresponds
to the average hydrophobic contribution of each amino acid
weighted by its accessible surface area. This quantity has been
used to develop DRT predictive models previously[2,11,12].
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isregarded.

For these reasons, we introduce a new parameter c
ydrophobic imbalance (HI). This parameter is simpler and
xpensive than those reported previously and is obtained
rom the characteristics of the protein surface. Briefly, it re
ents the displacement of the superficial geometric centre
rotein when the effect of a certain amino acidic hydrophob
cale is considered. Only two related, but very different, t
as been reported in the literature previously: the hydroph
elical moment, a vector with amplitude and direction wh
rovides a measure of the amphiphilicity of a helix perpen
lar to the helical axis[7] and the global hydrophobic mome
hich provides a measure of the degree and direction o
mphiphilicity or hydrophobic imbalance across the entire

ein tertiary structure[8].
At the time of submission of this paper and the paper

ollows it [9], a different methodology was proposed by
roup of Steven Cramer[10]. This methodology uses quanti

ive structure retention relationship (QSRR) modelling to s
nd predict the retention and selectivity in HIC using molec
escriptors based on the three-dimensional structure of pro

he primary structure information and a set of new hydropho
ty descriptors. Their results show that their models, base
upport Vector Machines (SVM) models, can predict the pro

etention quite well, considering four different chromatogra
ystems (different pairs of ligands and media) and a set
roteins. Although their models are more general than those
osed in this paper and the paper that follows, they require

arger number of variables and consequently they show a g
athematical complexity.
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otice that the ASP of a protein is computed assuming that
mino acid on the protein surface contributes proportional

ts abundance to the ASP value[13]. The ASA was calculate
sing the software STRIDE from the protein three-dimensi
tructure[14].

.1. Hydrophobic imbalance (HI)

In this study, each amino acid in a protein is represen
asically, by its location in the space, its accessible surface
ASA) and by its APV value given byϕ. To simplify the calcu
ations, the location of each amino acid was chosen to be
o the location of its�-carbon (except for glycine, where its�-
arbon was used). We chose the location of the�-carbon (instea
f �-carbon) since this atom gives a better idea of the amino
rientation with respect to the protein backbone.

The superficial geometric centre rC of a protein can be ca
ulated using the following expression:

C =
∑

k ∈ SASA(k) · r(k)∑
k ∈ SASA(k)

(2)

here the r(k) is the vector indicating the location of the am
cidk.

If we add to the previous equation the information given
ectorϕ, we get rϕ, which is the superficial geometric cen
orrected byϕ:

ϕ =
∑

k ∈ SASA(k) · ϕ(k) · r(k)∑
k ∈ SASA(k) · ϕ(k)

(3)

In the case thatϕ corresponds to an hydrophobicity scaleϕH,
he vector is denoted as rH. The hydrophobic imbalance (HI)
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Fig. 1. The hydrophobic imbalance rHI was defined as the substraction of rH and rC vectors and represents the displacement of the superficial geometric centre of
the protein when the effect of a certain amino acidic property is considered. rC is the superficial geometric centre of the protein and rH is the superficial geometric
centre corrected by an hydrophobicity scale (a). The hydrophobic cone (HC), shown in grey, is the set of all amino acids located inside a cone with vertex in rC and
with its axis parallel to the direction defined by rHI . The volume of this cone is defined by the angleθT (b).

defined as the subtraction of rH and rC as shown inFig. 1a and
in the following equation:

rHI = rH − rC (4)

The rHI vector represents the displacement of the superficial
geometric centre of the protein when the effect of a certain amino
acidic property is considered. Therefore, givenϕ, the magnitude
of the rHI vector can be interpreted as a measurement of the
characteristics of the distribution of that property in the protein
surface.

2.2. Hydrophobic hemisphere

The hydrophobic imbalance (HI) points towards the protein
hemisphere of greater hydrophobicity, as it is possible to appre-
ciate inFig. 1b. We define the hydrophobic cone (HC) as the
set of all amino acids located inside a cone with vertex located
in rC and with its axis parallel to the direction defined by rHI.
Clearly, the volume of this cone is defined by the angleθT.
In particular, whenθT = 90◦, it corresponds to the hydrophobic
hemisphere.

Any amino acid is included in the hydrophobic cone only if
its position r (seeFig. 1b) satisfies the following inequality:

c −1
(

(r − rC) · rHI
)

ose
a late
b ing
b

A

A

w ile
A

2.3. Materials

2.3.1. Protein set and DRT
Fifteen proteins with known dimensionless retention time

(DRT) and known three-dimensional structure were used:
Cytochrome C (1HRC), Myoglobin (1YMB), Conalbumin
(1OVT), Ovoalbumin (1OVA), Lysozyme (2LYM), Thau-
matin (1THV), Chymotrypsinogen A (2CHA),�-lactoglobulin
(1CJ5), �-amylase (1BLI), �-chymotrypsin (4CHA), �-
lactalbumin (1A4V), Ribonuclease S (1RBC), Ribonuclease A
(1AFU), Ribonuclease T1 wild type (1RGC) and Ribonuclease
T1 variant Y45W/W59Y (1TRP).

The three-dimensional structures were obtained from the
PDB database[15]. DRT values correspond to those used in
[2,5] and they are the DRTs observed in a hydrophobic interac-
tion column, calculated according to:

DRT = tR − t0

tf − t0
(8)

wheretR corresponds to the time where the peak of the chro-
matogram takes place,t0 to the time when the salt gradient starts
andtf to the time when the salt gradient finishes. The DRT val-
ues used in this work were obtained in a 1 ml Phenyl-Sepharose
Fast Flow column using 2 M ammonium sulphate as the eluent.
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os |r − rC| · |rHI | ≤ θT (5)

It is possible to calculate a “local” ASP considering only th
mino acids located inside the HC. This ASP can be calcu
y two ways (dividing by the total protein surface or divid
y the surface delimited by the HC):

SPHC(θT),T =
∑

k ∈ HC(θT)ASA(k) · ϕ(k)∑
k ∈ SASA(k)

(6)

SPHC(θT),P =
∑

k ∈ HC(θT)ASA(k) · ϕ(k)∑
k ∈ HC(θT)ASA(k)

(7)

here ASPHC(θT),T is referred to the total protein surface wh
SPHC(θT),P is referred to the surface delimited by the HC.
d

.3.2. Collection of amino acidic property vectors (APV)
A collection of 74 APVs was used. This collection covere

ide spectrum of physical, chemical and biological aminoac
haracteristics. Amongst them, molecular weight, bulkin
ydrophobicity scales, average solvent accessibility, seco
tructure preferences, codon numbers, etc.[13,16–57]. All mem-
ers in the APVs collection were numerically scaled in

nterval [0;1]. This scaling procedure was carried out so
alues 0 and 1 were associated to the minimum and maxi
alues in the original scale, respectively. The hydrophil
cales were transformed into hydrophobicity scales assign
o the most hydrophilic amino acid and 1 to the most hydro
ic (the values for the rest of the amino acids were determ

inearly). Vectors not associated to hydrophobicity scales
ot modified.
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2.4. Measurement of the performance of the predictive
models

The performance of the models was evaluated by means of
three parameters: the mean square error (MSE), the correlation
coefficient (Pearson) and the Jack Knife cross validation mean
square error (MSEJK). The MSE and the Pearson were calculated
using the following expressions:

MSE = 1

N

N∑
k=1

(DRTk − D̂RTk)
2

(9)

Pearson= N
∑N

k=1(DRTk − D̂RTk) − ∑N
k=1DRTk · ∑N

k=1D̂RTk√
N

∑N
k=1(DRTk)2 − (

∑N
k=1DRTk)2 ·

√
N

∑N
k=1(D̂RTk)

2 − (
∑N

k=1D̂RTk)2
(10)

where DRTk is the DRT of proteink, D̂RTk is the prediction
of the DRT for proteink andN is the number of proteins with
experimentally known DRT considered (N = 15).

The MSEJK was used to estimate the prediction error of the
models for proteins not considered in their determination. In this
case, the size of the data set is modest. Hence, other techniques
of re-sampling likek-folding cross validation or boostrap cannot
be used. The Jack Knife re-sampling method (leave-one-out) is
a well accepted methodology[58]. Actually, it is regarded as the
most objective and effective tool for the evaluation of predictor
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3.1.1. Calculation of HI using discreet hydrophobicity
scales

With the aim to facilitate an initial analysis, three discrete
scales of hydrophobicity were used:

• Hard binary scale: it assigns a value of 1 to the amino acids
widely accepted as hydrophobic (Ala, Ile, Leu, Phe, Pro, Val)
and 0 to the rest.

• Soft binary scale: as the previous one but it also considers
the amphipathic amino acids (Lys, Met, Thr, Trp, Tyr) as
hydrophobic (assigning a value of 1 to them).

• Trinary scale: it assigns a value of 0.5 to the amphipathic
amino acids, 1 to the hydrophobic and 0 to the rest.

Mahn et al.[4] observed that some proteins with similar aver-
age superficial hydrophobicity (ASH) had very different DRTs,
these proteins were: Ribonuclease S (1RBC), Ribonuclease A
(1AFU), Ribonuclease T1 wild type (1RGC) and Ribonuclease
T1 variant Y45W/W59Y (1TRP). The Ribonuclease T1 vari-
ant has two surface amino acids swaped, altering, in this way,
the distribution of hydrophobic amino acids without changing
t ients
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odels[59,60]. The mathematical principle and a compreh
ive discussion about this can be found in[61]. Briefly, this
ethod consists of repeating the fitting of the model as m

imes as the size of the data set, leaving in each occasio
lement out of the calculations. Thus, in each step, the er

he model for the prediction of the element that was left o
alculated. At the end of the process, the final prediction
f the model is estimated as the average of the prediction
f each element that was left out. In other words, this proce
arried out systematically so that in thekth adjustment, thekth
lement of the data is not considered. The model determin
eans of thekth adjustment is used to calculate the predic

f the DRT of proteink, denoted bŷDRTk

−k
, where−k means

hat thekth element has been left out. Therefore, the MSEJK is
btained calculating the average on the collection ofN proteins
s indicated in the following equation:

SEJK = 1

N

N∑
k=1

(DRTk − D̂RTk

−k
)
2

(11)

. Results and discussion

.1. Models based only on the hydrophobic imbalance (HI)

This section details the results obtained when using
ydrophobic imbalance (HI) of a protein as an instrumen
athematically model its dimensionless retention time (D

n hydrophobic interaction chromatography (HIC). The HI r
esents the displacement of the surface geometric centre
rotein when it is corrected with the hydrophobic characteri
f the amino acids.
e
f

r
r
s

y

e

he average surface hydrophobicity. The correlation coeffic
Pearson) between DRT and HI is shown inTable 1. The Pear
ons between the DRT and local hydrophobicity (LH)
ydrophobic contact area (HCA) reported by Mahn et al[5]
re also shown inTable 1. The correlation coefficients obtain
y the hard binary and trinary scales are almost twofold t
btained for the LH and HCA, justifying in this way the study
I. The correlation coefficients for the hard binary and trin
cales are almost three times higher than the ones obtain
he soft binary scale. This indicates that the best results
btained defining the hydrophobicity of the amphipathic am
cids with an intermediate value (0.5) or as hydrophilic (0.

Fig. 2 shows a simplified plot of�-carbons location fo
ibonuclease A (1AFU). This plot indicates that the HI ve
ims toward the protein hemisphere of greater hydrophobici

able 1
orrelation coefficients (Pearson) between the dimensionless retentio

DRT) and the average surface hydrophobicity (ASH), local hydrophob
LH), hydrophobic contact area (HCA) and hydrophobic imbalance (HI)

arameter Pearson

SH −0.528
H 0.557
CA 0.483
I (HBS) −0.940
I (SBS) −0.247
I (TS) −0.930

he HI was calculated using three discreet hydrophobicity scales: hard
cale (HBS), soft binary scale (SBS) and trinary scale (TS). The ASH, LH
CA were reported in[4,5]. The calculations only considered the prote
ibonuclease S (1RBC), Ribonuclease A (1AFU), Ribonuclease T1 wild

1RGC) and Ribonuclease T1 variant Y45W/W59Y (1TRP).
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fact, the hydrophobicity of this hemisphere (measured as the sum
of the accessible area of all the hydrophobic amino acids) dou-
bles the hydrophobicity of the opposite hemisphere. On the other
hand, the sign of the correlation coefficients shown inTable 1
indicates that the HI calculated by means of the three discreet
scales is inversely proportional to the DRT. Certainly, the HI
magnitude is related to the surface hydrophobicity distribution,
but its direct interpretation is difficult, due to the great amount
of topological factors that participate in its determination.

The correlation coefficients between the HI calculated with
the three discreet hydrophobicity scales and the DRT of the 15
proteins considered in this study were calculated. Correlation
coefficients of−0.285, 0.297y −0.074 for the hard binary, soft
binary and trinary scale, respectively, were obtained. This cor-
relation coefficients are very low (less of 30% in all cases) in
comparison with the ones shown inTable 1. More likely, they
are originated by an artifact in the model; therefore, it is neces-
sary to optimise the hydrophobicity scale for the calculation of
the HI to capture the complexity of the complete protein set.

3.1.2. Calculation of HI using the collection of aminoacidic
property vectors (APV)

The HI was calculated using each one of the 74 aminoacidic
property vectors (APV), which allowed us to determine the aver-
age and standard deviation of HI as indicated inFig. 3. It is

F dots
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h
o
a
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t
a
b

Fig. 3. Average and standard deviation of the hydrophobic imbalance in the col-
lection of 74 amino acidic property vectors (APV), for each protein considered
in the study in ascending order with respect to their DRT.

interesting to notice that the standard deviation of HI is similar
for all the proteins and that it has great magnitude (ca. 70% of the
average) as well. In the case of 1RGC-1TRP and 1AFU-1RBC
proteins, the first pair presents similar averages with a differ-
ence of only 3%; however, in the second pair, this difference is
greater, being of almost 13%.

The prediction of the DRT by means of the HI calculated
using the 74 APVs, in comparison with those obtained when
using the ASP was investigated. For both predictors, a linear
model was used. The predictive characteristics of the mod-
els were characterised by means of the determination of the
Jack Knife cross validation mean square error (MSEJK) in the
set of 15 proteins.Tables 2 and 3show the results of these
calculations.

Table 2shows the results obtained by the linear model based
on the ASP sorted by the MSEJK value. Interestingly enough, the
three better models were constructed using APVs which corre-
spond to hydrophobicity scales and those were determined from
the protein behaviour in high-performance liquid chromatogra-
phy (HPLC). The best model was constructed using the APV
proposed by Browne[16]. The hydrophobicity scale of Browne
was calculated from the protein retention coefficients observed
in HPLC with trifluoroacetic acid (TFA). The results detailed in
Table 3indicate that the best linear model based on the HI has
predictive characteristics slightly better than the one based on the
ASP, shown as a decrease of 9.2% in the MSE. In this case, the
b e
a o
h t
n ega-
t

ig. 2. Simplified plot of the Ribonuclease A (1AFU). The circles and the
n the figure represent the location of the�-carbons of each amino acid in t
rotein. The dots (grey and black) represent the amino acids widely acce

ydrophobic (Ala, Ile, Leu, Phe, Pro, Val) and the circles indicate the hydrophilic
nes. In the case of the hydrophobic amino acids, the size of the dots are equi
lent to the product between the ASA and the amino acid hydrophobicity (in

his case 1 for all the hydrophobic amino acids). If the dots are located inside
he hydrophobic hemisphere they are coloured black and if they are outside the
re coloured grey. The hydrophobic imbalance vector rHI has been drawn as a
lack arrow.

i found
p

e HI,
a n the
A ion
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s

v-

y

JK
est APV was the one of Zimmerman[17], which quantifies th
mino acids polarity. The others APVs inTable 3correspond t
ydrophobicity scales, in the same way that inTable 2. We mus
otice that the sign of the slope between HI and the DRT is n

ive (DRT = (0.908± 0.181)− (0.235± 0.112)× HI), maintain-
ng an inverse relationship between these magnitudes
reviously.

The performance obtained by the models based on th
lthough better than the observed in the models based o
SP, is still insufficient for practical applications (correlat
oefficient > 0.8). In fact, the correlation coefficient for
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Table 2
Effect of the aminoacidic property vectors (APV) on the performance indexes of the linear model based on an average surface property (ASP) in the prediction of
the experimental DRT of the 15 proteins

No. APV Description MSE× 103 Pearson MSEJK × 103

1 Browne[16] Retention coefficient in HPLC and TFA 23.267 0.745 31.054
2 Meek[49] Retention coefficient in HPLC, pH 2.1 25.280 0.719 34.288
3 Parker[50] Hydrophilicity scale derived from HPLC peptide retention times 27.384 0.690 34.815

The three best APV (out of 74) in ascending order with respect to the Jack Knife cross validation mean square error (MSEJK) are listed. The correlation coefficient
(Pearson) and the mean square error (MSE) are also shown. MSEJK values have been highlighted in bold.

Table 3
Effect of the aminoacidic property vectors (APV) on the performance indexes of the linear model based on the hydrophobic imbalance (HI) in the prediction of the
experimental DRT of the 15 proteins

No. APV Description MSE× 103 Pearson MSEJK × 103

1 Zimmerman[17] Polarity 20.168 0.784 28.222
2 Hopp[22] Hydrophilicity 28.607 0.673 40.877
3 Cowan and Whittaker[21] Hydrophobicity indexes at pH 7.5 determined by HPLC 28.520 0.674 40.974

The three best APV (out of 74) in ascending order with respect to the Jack Knife cross validation mean square error (MSEJK) are listed. The correlation coefficient
(Pearson) and the mean square error (MSE) are also shown. MSEJK values have been highlighted in bold.

model based on HI was 0.784. Consequently, the models need
the incorporation of more information to improve their perfor-
mance.

3.2. Models based on the characteristics of the
hydrophobic hemisphere

The ASP calculated in the hydrophobic hemisphere was
determined by the amino acids located in the protein hemisphere
indicated by the HI vector. This ASP was calculated in two ways:
partially (ASPHC(90◦),P) refers to the surface of the hydrophobic
hemisphere; and, more generally (ASPHC(90◦),T), refers to the
total surface of the protein. In both cases the angleθT was equal
to 90◦.

The performance in the prediction of the DRT by both magni-
tudes was evaluated.Table 4shows the results of the evaluation
of both predictors sorted by their MSEJK. The best results were
obtained when using the ASPHC(90◦),T calculated using the APV
of Wilson[18], this APV corresponds to hydrophobic constants
derived from HPLC retention times for peptides. The MSE
obtained by this model was located between the MSE given
by the ASP and HI models. However, the predictive characteris-
tics of the model were inferior to the ones observed previously.

Nevertheless, the better APVs were associated to hydrophobicity
scales again. It is necessary to highlight that the first appearance
of a model based on the variable ASPHC(90◦),P is in the fifth place
of the table. The MSEJK of this model was 17.4% worse than the
best model based on ASPHC(90◦),T. This is explained by the fact
that the calculation of the ASPHC(90◦),T considers all the amino
acids on the protein surface, quantifying, in this way, the rela-
tion between the hydrophobic characteristics of the hydrophobic
hemisphere and the total protein surface.

In addition, the effect of the reduction of the surface covered
by the hydrophobic hemisphere in the prediction of the DRT
was investigated. By doing that the total and partial ASP were
calculated in a cone with an angleθT moving in the interval
15–90◦, in 5◦ steps. The results of these experiments are shown
in Fig. 4. The plot inFig. 4shows the minimum value of MSEJK
found when considering the models constructed using each one
of 74 APVs. Also, the plot includes the average and standard
deviation of the five better values of MSEJK. It is observed that
the main tendency corresponds to a smaller value of the MSEJK
as the angleθT increases. This is, the predictive characteristics
of the models improve as the section of the hydrophobic hemi-
sphere that is considered increases, and higher is the amount of
information available for the model. It is important to notice that

Table 4
E xes o
h : in p d
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1 d from
2 m HP
3 with h
4 cid pr
5 f tran

T Knif nt
( e be
ffect of the aminoacidic property vectors (APV) on the performance inde
emisphere in the prediction of the experimental DRT of the 15 proteins
ay (T), referred to the total surface of the protein

o. Model APV Description

T Wilson[18] Hydrophobic constants derive
T Parker[50] Hydrophilicity scale derived fro
T Browne[16] Retention coefficient in HPLC
T Hellberg[39] Statistical analysis of amino a
P Bull and Breese[29] Hydrophobicity (free energy o

he five best APV (out of 74) in ascending order with respect to the Jack
Pearson) and the mean square error (MSE) are also shown. MSEJK values hav
f the linear model based on the average surface property calculated in the hydrophobic
artial form (P) referred to the surface of the hydrophobic hemisphere; an, in a total

MSE× 103 Pearson MSEJK × 103

HPLC peptide retention times 22.981 0.749 33.019
LC peptide retention times 28.129 0.680 35.125
eptafluorobutyric acid (HFBA) 27.054 0.695 35.781

operties z1 28.863 0.670 36.208
sfer to surface in kcal/mol) 27.293 0.692 36.465

e cross validation mean square error (MSEJK) are listed. The correlation coefficie
en highlighted in bold.
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Fig. 4. Effect of the size of the hydrophobic cone on the performance indexes
of the linear model based on the average surface property calculated in the
hydrophobic cone at angleθT in the prediction of the experimental DRT of the
15 proteins: minimum Jack Knife cross validation mean square error (MSEJK)
observed in the APV collection (�) and average MSEJK and standard deviation
for the five best linear models ().

the standard deviation of MSEJK tends to decrease regularly as
the angleθT is increased. This behaviour can be interpreted as
a stabilisation of the performance of the predictive model as the
amount of information available is increased.

On the other hand, the plot inFig. 4shows that there exists a
remarkable lowering of the minimum MSEJK at 85◦ of almost
25% with respect to the value observed at 90◦. It is possible to
notice that as an average amongst all proteins and considerin
to all the APVs, the band between 85 and 90◦ is equivalent to
7.4± 4.1% of the total surface of the hydrophobic hemisphere
(90◦). This behaviour could be explained as a steric adjustmen
of the model caused by a natural impossibility of the molecule to
use all the surface available in its hydrophobic hemisphere fo
the interaction with the hydrophobic matrix. However, in this
case, the APV associated to the minimum MSEJK at 85◦ was not
related to an hydrophobicity scale directly. The APV selected a
85◦ was the proposed by Deleage and Roux[19], which corre-
sponds to a�-turns conformational parameter. This APV has low
correlations with others APV related to hydrophobicity scales:
−0.768 with Miyazawa and Jerningan[20]; −0.570 and−0.603
with those of Cowan and Whittaker[21]; −0.519 with the one
of Wilson [18]; and−0.554 with the proposed by Hopp[22];
to mention a few. This fact and the great standard deviation
observed in that point forces to disregard this observable fac
Nevertheless, the calculations that follows will include the deter-
mination of the predictors at 85◦.

3

f the
f the
p esti-
g ould
i ere
c e su

face properties (ASP), hydrophobic imbalance (HI), partial and
total ASP in the hydrophobic hemisphere and partial and total
ASP in a cone at 85◦. All the linear combinations were investi-
gated as well as a few nonlinear ones, that consisted, basically,
in the product of the variables.

Table 5shows the performance of the five best models found
by means of this procedure. In the first two places, we found
models that use APVs associated to hydrophobicity measures.
The rest of the models in the table are based on APVs related
to the analysis of conformational properties of the amino acids,
specially with respect to their relation with specific secondary
structures. Although it is widely accepted that the hydrophobic-
ity is one of the main factors that determine the behaviour of an
amino acid in a protein, these models were discarded because
they are not based on direct measurements of the hydrophobicity.

The best model inTable 5(model 1) corresponded to a linear
combination of the predictors: HI, ASP and ASPHC(85◦),T. These
variables were determined using the APV of Rao and Argos[23]
that corresponds to a membrane buried helix parameter. The
second model was constructed using the APV of Hopp[22] also
based on a hydrophobicity scale. The ASPHC(85◦),T in the best
model confirms the superiority of this variable with respect to
the partial version and the fact that this variable was calculated
for an angle of 85◦, it confirms the validity of the approach
discussed previously.

On the other hand, model 1 decreased the MSEby 24.9%
w odel
b n the
A ach
v
c al of
e city.
I f
1 iable
i ant
a the
c
a fact

F iable
m Knife
c

.3. Multivariable models based on the ASP, HI and ASPHA

As was shown, the predictive capacity of each one o
eatures presented in this work is not sufficient to capture
henomenon complexity. Therefore, it is interesting to inv
ate if a linear or nonlinear combination of these features c

mprove the models performance. Multivariable models w
onstructed using the features described previously: averag
g

t

r

t

t.

r-

JK
ith respect to the best model found previously (linear m
ased on HI) and 31.8% with respect to the model based o
SP. So, it is of interest to know the relative importance of e
ariable in the model. For that purpose, the plot inFig. 5 was
onstructed. This plot shows the effect that has the remov
ach one of the variables of the model 1 in its predictive capa

t was measured as the observed value of MSEJK in the set o
5 proteins. This plot indicates that the most important var

n model 1 is HI. The removal of HI from the model 1 me
n increase of the MSEJK to 3.8 times the observed one in
omplete model. HI was followed by ASPHC(85◦),T and ASP with
n increase to 2.4 and 2.0 times, respectively. Clearly, this

ig. 5. Effect of the removal of each one of the variables of the multivar
odel in its predictive capacity, measured as the observed value of Jack

ross validation mean square error (MSEJK) in the set of 15 proteins.
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Table 5
Performance indexes of the linear multivariable models based in the prediction of the experimental DRT of the 15 proteins

N◦ Model APV Description MSE× 103 Pearson MSEJK × 103 θT (◦) DF R2adj
(%)

1 HI, ASPHC(85
◦

),T, ASP Rao and Argos[23] Membrane buried helix parameter 10.005 0.899 21.169 85 11 75.7
2 HI, ASPHC(90

◦
),T, ASP Hopp[22] Hydrophilicity 13.814 0.858 27.085 90 11 66.4

3 ASPHC(85
◦

),P, ASP Chou and Fasman
[31]

Conformational parameter for�-sheet
(computed from 29 proteins)

18.595 0.803 27.571 85 12 58.5

4 ASPHC(85
◦

),P, ASP Chou and Fasman
[31]

Conformational parameter for�-sheet
(computed from 29 proteins)

18.954 0.799 27.665 90 12 57.7

5 ASPHC(85
◦

),P, ASP Meek[49] Retention coefficient in HPLC, pH 2.1 16.137 0.832 27.817 90 12 64.0

The five best models in ascending order with respect to the Jack Knife cross validation mean square error (MSEJK) are listed. The correlation coefficient (Pearson),
the mean square error (MSE), the angleθT of the hydrophobic cone, the degrees of freedom (DF) and the adjusted determination coefficient (R2adj) are also shown.

confirms the importance of the variable HI for the prediction of
the DRT.

3.4. Final discussion

The best DRT predictive model found in this work was the
linear multivariable model that follows:

DRT = (0.853± 0.486)− (0.502± 0.168)× HI

+ (14.707± 6.297)× ASPHC(85◦),T

− (6.484± 3.323)× ASP (12)

where DRT is the dimensionless retention time of the protein, HI
is its hydrophobic imbalance, ASPHC(85◦),T is its ASP referred
to the total protein surface calculated in a cone at 85◦ and ASP is
its average surface property. All these variables were calculated
using the APV of Rao and Argos[23] which is shown inTable 6.

The confidence intervals at 95% determined for the parame-
ters of the model did not exceed a 60% of their nominal values.
The greatest uncertainty in the coefficients determination was
observed in the case of the constant of the model, reaching a

Table 6
Amino acidic property vector (APV) of Rao and Argos[23]

aa Original Scaled to (0;1)

A
A
A
A
C
G
G
G
H
I
L
L
M
P
P
S
T
T
T
V

magnitude of 57%. On the contrary, the coefficient with the
narrowest confidence interval was the associated to HI, with
33.4%. It is interesting to highlight that the sign of the coef-
ficient for HI is negative maintaining therefore the behaviour
observed previously. Also, it is remarkable that the coefficient
associated to ASPHC(85◦),T be almost two-fold the obtained for
ASP and that the sign of this last one is negative. In fact, we can
approximate both coefficients so the Eq.(12)could be rewritten
as c0 + c1 × HI + c2 × (2× ASPHC(85◦),T − ASP). Clearly, the
third component can be interpreted as the difference between
the hydrophobicity of the hydrophobic cone and the rest of the
protein, and then, as a measurement of the difference between
the hydrophobicity of both hemispheres. On the other hand, the
interpretation of the sign of the HI coefficient is not so clear.
As it was discussed previously, this parameter quantifies the
characteristics of the surface hydrophobicity distribution, but
the amount of effects that could take part in the calculation
of its magnitude prevent a clear interpretation. This suggests
the necessity of a specific parameter, as for example a direct
measurement of the homogeneity of the surface hydrophobicity
distribution.

Fig. 6shows the scatter plots between the experimental DRT
and the predictions carried out by the models. In the case of
the model based on the ASP of Browne[16], it is possible to
notice that the difference is considerable at least in two pro-
teins; in addition the greater magnitude errors are concentrated
i ul-
t ay
t
b

ive
m he
g f pro-
t e
S
p , the
p hin-
d t al.
[ ulti-
v took
i ahn
e was
0 oeffi-
la 1.360 0.858
rg 0.150 0.041
sn 0.330 0.162
sp 0.110 0.014
ys 1.270 0.797
ln 0.330 0.162
lu 0.250 0.108
ly 1.090 0.676
is 0.680 0.399

le 1.440 0.912
eu 1.470 0.932
ys 0.090 0.000
et 1.420 0.899
he 1.570 1.000
ro 0.540 0.304
er 0.970 0.595
hr 1.080 0.669
rp 1.000 0.615
yr 0.830 0.500
al 1.370 0.865
n the proteins with DRT < 0.6. However, in the case of the m
ivariable model, the error is distributed in a most uniform w
hroughout all the scale, explaining the inferior MSEJK shown
y this model and its best predictive characteristics.

The distribution of the residual error for DRT predict
odels is shown inFig. 7. In the case of the model ASP, t
reater magnitude residuals are observed in the case o

eins cytochromec (1HRC), myoglobin (1YMB) and RNAs
(1RBC). It is possible to notice that cytochromec is a hard

rotein for both models; however, in the case of RNAse S
roblem is presented exclusively for the model ASP. This
ering in its modelling was reported previously by Mahn e

4] and attributed to its great flexibility. Nevertheless, the m
ariable model does not present this problem. In fact, if we
n consideration only the four ribonucleases reported by M
t al., the correlation coefficient for the multivariable model
.906, this is 62.7 and 87.6% greater than the correlation c
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Fig. 6. Scatter plots between the experimental dimensionless retention time (DRT) and DRT predicted by the models based on the average surface properties (ASP)
and the multivariable model.

Fig. 7. Plot of the residual error between the experimental dimensionless reten-
tion time (DRT) and DRT predicted by the ASP model (�) and the multivariable
model ( ). The experimental DRT (�), and the dimensionless length (�) are
also shown. The proteins are arranged in ascending order with respect to their
DRT.

cients of the models based on the LH and HCA, respectively. On
the other hand, it was not observed a direct relation between the
residual magnitude and the protein length or with the value of
the DRT, in fact, the correlation coefficient between these mag-
nitudes was inferior to 0.300 and 0.540, for the length and the
DRT, respectively.

4. Conclusions

In this paper, the use of surface amino acid distribution to
predict the behaviour of proteins in hydrophobic interaction
chromatography (HIC) was investigated. The main contribution
of this work was the hydrophobic imbalance (HI). This param-
eter, obtained from the characteristics of the protein surface
represents the displacement of the superficial geometric centr
of the protein when the effect of the hydrophobicity of each
amino acid is considered.

The HI was calculated for a set of four ribonucleases reported
in [4] with similar ASP and very different DRTs and therefore
with a DRT hard to predict using only the ASP. The HI cal-

culations were carried out using simple hydrophobicity scales.
These calculations showed that the HI obtained correlation coef-
ficients remarkably better (al least 67%) than the models based
on the local hydrophobicity (LH) and the hydrophobic contact
area (HCA). The DRTs of 15 proteins and a predictive linear
model based on the HI were correlated, we obtained a correla-
tion coefficient of 0.784, slightly superior (5%) to those observed
in models based on an average surface hydrophobicity (ASH). In
addition, this model decreased the MSEJK by 9.1% with respect
to the model based on the ASH.

The linear combination of the HI, ASP and the ASPHC(85◦),T
(ASP calculated in an hydrophobic cone (HC) at 85◦) allowed
the development of a multivariable model that decreased the
MSEJK by 24.9% with respect to the best model found previously
(the linear model based on HI) and 31.8% with respect to the
model based on the ASH. The correlation coefficient obtained
for the multivariable model was 0.899. We observed that the
coefficients associated to HI in all the models were negative and
that the coefficients associated to the measures of the protein
hydrophobicity were positive. The interpretation of the sign of
the HI coefficient is not trivial because the amount of effects
that take part in the calculation of its magnitude prevent a direct
interpretation.

Although the best predictive model developed in this article
was a multivariable model, this improvement did not justify,
necessarily, the reduction of the degrees of freedom (from 13 to
1 pect
t

A

ing
t this
s 031
a

R

02)
,
e

1) and the increase in the complexity of the model with res
o the linear model based on HI.
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