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Abstract

The digits of the square root of any real number can be consecutively calculated by hand with the use of a very popular exact algorithm. We
show that the application of that algorithm defines a dynamic system in the sense that it can be reduced to the consecutive iteration of a map H
defined in the semi-closed interval [0, 100). We prove that H is chaotic and topologically conjugated to the shift map in the Bernoulli space on 10
symbols. We also exhibit a natural measure for H which is mixing and of maximum entropy. Finally, we adapt the cryptography method proposed
by Baptista [M.S. Baptista, Cryptography with chaos, Phys. Lett. A 240 (1998) 50–54] to the dynamics associated with H, advantageously due to
its dynamic properties.
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1. Introduction

In order to calculate the square root
√

x0 of a nonnegative
real number x0 ∈ R+ one must use some numerical or
arithmetical algorithm. There exists a very popular algorithm,
described in the next section, which permits the hand
calculation of

√
x0. In the course of its use, the consecutive

digits (always between 0 and 9 in decimal representation) are
calculated in a fashion similar to the one of the long-division
algorithm. As far as the algorithm is applied, the obtained
digits are always exact. Hereafter, we refer to that square root
algorithm as the exact algorithm.

In the case of rational results, the obtained sequence of digits
is periodic or eventually periodic while, for irrational results, it
is not. The fact that a perturbation (or error) in one of the digit
results in a completely different sequence of digits suggests
that, in some sense, the system defined by the algorithm exhibits
sensitive dependence on initial conditions and, therefore, is
chaotic. Besides, when applied to many rational numbers, the
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algorithm results in non periodic sequences, which suggests
that the exact algorithm efficiently produces information. The
goal of this paper is to study the dynamics associated with
the application of that algorithm and make those ideas more
precise. We show that the application of the exact algorithm can
be reduced to the consecutive iteration of an one-dimensional
map H, called the reduced square root map, defined in the semi-
closed interval [0, 100) (see Definition 5 below). The dynamic
system defined by H is studied under both, topological and
ergodic points of view.

Chaotic dynamics can produce information by deterministic
means. Because of that, some encryption/decryption method-
ologies based on chaotic dynamics have been proposed. Re-
cently, Baptista [1] proposed a methodology based on chaotic
dynamics given by logistic map. It begins with the definition
of a key composed by an association of the alphabetic symbols
to subintervals (sites) of [0, 1] and an initial condition x0. The
general idea is to follow the chaotic orbit γ defined by x0 to see
how many iterations are necessary for γ consecutively reach
the sites associated to the symbols which compose the plain
text. Further discussions on this kind of methodology can be
found in [3–5]. The method proposed in this paper falls within
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the same scope but with more analytical knowledge on the used
dynamics. This raises the efficiency of its use.

The paper is organized as follows. In Section 2, the
exact algorithm is described. In Section 3, we show that the
associated map H is topologically conjugated to the shift
map σ on the space Σ10 of sequences (see (1)), given by
σ(s1s2s3 . . .) = (s2s3s4 . . .). It is worthwhile to recall that σ is
chaotic on Σ10 under Devaney’s sense [2]. Besides, we exhibit
a natural measure for H and prove that H is conjugate to σ

in the ergodic sense. In Section 4, we propose an application
to cryptography. The conclusions are presented in Section 5.
We refer the reader to [2] and [6] for the basics on dynamical
systems and ergodic theory used here.

2. The exact algorithm for square root calculation

Let us denote the decimal representation of a positive
real number S as s1.s2s3s4 . . ., where s1 is any nonnegative
integer and si ∈ {0, 1, 2, . . . 9} for i = 2, 3, 4 . . .. We
take no representations ending in infinite strings of nines,
avoiding representation nonuniqueness. For example, the
number 1.00 . . . is to be represented in this form and not
as 0.99 . . .. Similarly, 53.23000 . . . is adopted instead of
53.229999 . . ., etc.

Let X = {0, 1, 2, . . . 9} and XN := {s = (s1, s2, s3, . . .)

| si ∈ X} be the Bernoulli Space of sequences on ten symbols.
Let Σ10 be the subspace of sequences on ten symbols not ending
in infinite strings of nines, i.e.:

Σ10 :=

{
(s1, s2, s3, . . .) ∈ XN | ∀n ∈ N, ∃ j > n with s j 6= 9

}
, (1)

with the usual metric. In order to simplify the notation, we
identify each s1.s2s3s4 . . . ∈ [0, 10) with its corresponding
sequence of digits (s1, s2, s3, s4, . . .) ∈ Σ10. This way, we can
make the identification Σ10 = [0, 10).

For a positive real number x0, let
√

x0 = s1.s2s3 . . . s j . . .

be the decimal representation of its positive square root. The
exact algorithm considered here gives the digits sn as the
greatest integers between 0 and 9, satisfying the following
inequalities:

s2
1 ≤ x0

(10s1 + s2)
2

≤ 100x0

(10s1s2 + s3)
2

≤ 1002x0

...

(10s1s2s3 . . . sn + sn+1)
2

≤ 100n x0,

...

These inequalities can be rewritten as

s2
n+1 + ynsn+1 ≤ xn, n = 0, 1, 2, . . . , (2)

where xn = 100n x0 − 100s1s2s3 . . . sn
2 and yn =

20s1s2s3 . . . sn . This makes the calculation of the digits sn of
√

x0 recursive. Denoting ∆(x, y) := (−y +

√
y2 + 4x)/2 and

bxc the integer part of x , the greatest natural solutions of those
inequalities are given by:
sn+1 = b∆nc, (3)

where ∆n := ∆(xn, yn).
The quantities yn and xn are directly related to the successive

approximations for
√

x0 and the corresponding remainders,
respectively. They can be expressed as:

xn+1 = 100[100n x0 − (10s1s2s3 . . . sn + sn+1)
2
]

= 100(xn − ynsn+1 − s2
n+1) (4)

and:

yn+1 = 20(10s1s2s3 . . . sn + sn+1) = 10(yn + 2sn+1). (5)

The substitutions of Eq. (3) into Eqs. (4) and (5) give the square
root map, defined below.

Definition 1. Let R2
+ :=

{
(x, y) ∈ R2

| x, y ≥ 0
}
. The square

root mapH : R2
+ → R2

+ is given by

H(x, y) := (100x − 100b∆(x, y)c2

− 100yb∆(x, y)c, 10y + 20b∆(x, y)c). (6)

The successive iterations of that bi-dimensional map from a
given initial condition (x0, 0), together with Eq. (3), give the
digits of

√
x0.

Proposition 2. Given (x0, y0) ∈ R2
+, let S0 be the positive root

of S2
+ y0S = x0 and (x1, y1) = H(x0, y0). Then the shift

S1 = 10(S0 − bS0c) is the positive root of S2
+ y1S = x1. In

other words, if S0 = ∆(x0, y0) then S1 = ∆(x1, y1).

Proof. Given (x0, y0) ∈ R2
+, the equation S2

+ y0S = x0
has only one positive solution which is given by S0 = ∆0.
Now, we use the expressions for x1, y1 and S1 to verify that
S2

1 + y1S1 = x1. Indeed, we have:

x1 = 100
(

x0 − b∆0c
2
− y0b∆0c

)
y1 = 10(y0 + 2b∆0c),

which implies:

S2
1 + y1S1 = 100 (S0 − bS0c)

2

+ 100 (y0 + 2bS0c) (S0 − bS0c)

= 100
(

S2
0 + y0S0 − y0bS0c − bS0c

2
)

.

Since S2
0 = ∆2

0 = −y0∆0 + x0 = −y0S0 + x0, it follows that:

100
(

S2
0 + y0S0 − y0bS0c − bS0c

2
)

= 100
(
−y0S0 + x0 + y0S0 − y0bS0c − bS0c

2
)

= 100
(

x0 − b∆0c
2
− y0b∆0c

)
= x1. �

Note that, even though S0 = s1.s2s3 . . . is an arbitrary
nonnegative real number, S1 = 10 (S0 − bS0c) = s2.s3s4 . . .

is less than 10. Then, for any initial condition (x0, y0), we have
that 0 ≤ sn ≤ 9 for n = 2, 3, . . .. Therefore, the orbits ofH are
rapidly attracted to:

R =

{
(x, y) ∈ R2

+ | x − 10y < 100
}

,
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which is invariant under H. The following corollary of
Proposition 2 generalizes the square root digit-by-digit
algorithm to any second degree algebraic equation of the form
S2

+ y0S = x0.

Corollary 3. The positive root S0 = s1.s2s3 . . . of equation
S2

+ y0S = x0, with x0 ≥ 0 and y0 ≥ 0, can be obtained
by iterating H from the initial condition (x0, y0), i.e., sn+1 =

b∆nc, n = 0, 1, 2, . . . where (xn, yn) = Hn(x0, y0).

Proof. Given (x0, y0) ∈ R2
+, let S0 = s1.s2s3s4 . . . = ∆0 the

positive root of S2
+ y0S = x0. Then, from Proposition 2,

S1 = s2.s3s4s5 . . . = ∆1 is the positive root of S2
+ y1S = x1.

By induction, we obtain Sn = sn+1.sn+2sn+3 . . . = ∆n , for any
n ∈ N. Then, sn+1 = bSnc = b∆nc. �

3. Dynamical properties of the exact algorithm

Proposition 4. ∆ : R → Σ10 = [0, 10) is a topological semi-
conjugacy betweenH and the shift map σ .

Proof. The continuity of ∆ is obvious since it is a composition
of continuous operations. Let (x0, y0) ∈ R and (x1, y1) =

H(x0, y0). If ∆(x0, y0) = s1.s2s3 . . . then, from Proposition 2:

(∆ ◦H)(x0, y0) = ∆(x1, y1) = (s2, s3, s4, . . .)

= σ(s1, s2, s3, . . .) = (σ ◦ ∆)(x0, y0).

In addition to this, for each S ∈ [0, 100), the solutions of
∆(x, y) = S in R2

+ are the points of the straight semi-line
given by x − Sy = S2, contained into R. Those solutions have
itinerary S, i.e. ∆(x, y) = S. Therefore, we conclude that ∆ is
onto but not one-to-one. �

If (x0, y0) and (x ′

0, y′

0) are such that: ∆(x0, y0) =

∆(x ′

0, y′

0) = (s1, s2, s3, . . .), then the equations S2
+ y0S = x0

and S2
+ y′

0S = x ′

0 have the same positive root S = s1.s2s3 . . ..
Accordingly, we define the equivalence relation ∼ on R, given
by:

(x, y) ∼ (x ′, y′) ⇔ ∆(x, y) = ∆(x ′, y′).

Therefore, for each (u, v) ∈ R, we define: [(u, v)] =

{(x, y) ∈ R| (x, y) ∼ (u, v)} and quotient R /∼ = {[(u, v)]|

(u, v) ∈ R}. Note that, for each (u, v) ∈ R, [(u, v)] is
composed of the points (x, y) ∈ R of the straight semi-line
given by:

x − Sy = S2, (7)

where S = ∆(u, v).
Considering S as a parameter, Eq. (7) defines a family of

disjoint straight semi-lines covering R. Then, for (x, y) ∼

(x ′, y′) we have that (x, y) and (x ′, y′) are over the same
straight semi-line determined by the mentioned parameter S
(see Fig. 1). Since there exists only one point (u′, 0) ∈ [(u, v)]

with 0 ≤ u′ < 100 we can identify [(u, v)] to u′
∈ [0, 100).

Then we can identifyR /∼ to [0, 100). The equivalence relation
∼ defines a projection Π : R → [0, 100) along that family of
straight semi-lines (7),

Π (x, y) = x ′ such that (x ′, 0) ∼ (x, y). (8)
Fig. 1. The depicted region R ⊂ R2
+

. Two points of R are equivalent if they
both belong to the same straight semi-line of the family defined by the Eq. (7).
The map H takes one of those straight semi-line to another, as it is illustrated
in the figure:H(x0, y0) = (x1, y1) andH(x ′

0, y′
0) = (x ′

1, y′
1).

Definition 5. The reduced square root map H : [0, 100) →

[0, 100) is given by

H(x) = Π ◦H(x, 0) = x ′
⇔ (x ′, 0) ∼ H(x, 0),

whose analytical expression is

H(x) = 100
(√

x − b
√

xc
)2

.

It is easy to verify that H is continuous at all points of [0,100)
except at those of

{
n2

| n ∈ N, 1 ≤ n ≤ 9
}
.

The map H is nothing more than the square of ten- times the
fractional part of

√
x . Therefore, it can be written as H(x) =

r−1
◦ T ◦ r(x), with T (x) = 10x(mod 10) and r(x) =

√
x

which is a topological conjugacy between T and H. Notice that,
the measure λ defined as:

λ([a, b)) =
|
√

b −
√

a|

10
, (9)

is the r -projection onto [0, 100) of the uniform Bernoulli
measure on Σ10.

Therefore, we have the following proposition:

Proposition 6. The map H is chaotic. Furthermore, the
measure λ is mixing for H and the unique maximal entropy
measure. �

It is important to notice that the orbit of H from an initial
condition x0 is closely related to the sequence of digits of

√
x0.

In fact, let x0 ∈ [0, 100) and
√

x0 = s1.s2s3 . . .. It is easy to see
that if xn = Hn(x0) then

√
xn = sn+1.sn+2sn+3 . . .. If [0, 100)

is divided into 10d sub-intervals Ik :=

[
k2

102(d−1) ,
(k+1)2

102(d−1)

)
for

k = 0, 1, . . . , 10d
− 1, then, x0 ∈ Ik implies that k

10d−1 ≤
√

x0 < k+1
10d−1 , which means that

√
x0 = s1.s2s3 . . . is such

that s1s2 . . . sd = k. Therefore we have proved the following
proposition.

Proposition 7. Let [0, 100) be divided into 10d sub-intervals

Ik :=

[
k2

102(d−1) ,
(k+1)2

102(d−1)

)
for k = 0, 1, . . . , 10d

− 1. Then, the
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d-block of digits sn+1 . . . sn+d of
√

x0 determines the sub-
interval Ik to which xn = Hn(x0) belongs, i.e., xn ∈ Isn+1...sn+d .

4. Encryption method

In this section, we propose a symmetrical encryption method
based on the dynamics of the exact algorithm, given by H,
analogous to that proposed in [1]. Let A be a finite alphabet
with ]A units (symbols) and Kd := {0, 1, . . . , 10d

− 1} for
some d ≥ 1. Consider the languages LA :=

⋃
n≥1 An and

LN :=
⋃

n≥1 Nn . In this section, we propose an encryption
function ε : [0, 100) × LA → LN. Usually, the elements of
A are associated to numbers in order to make some algebraic
operations possible or easy to be implemented in computers.
In what follows M = (M j )1≤ j≤L is the original message
with length L and m = (m j )1≤ j≤L its numerical version;
m̃ = (m̃ j )1≤ j≤L is the encrypted version of M ; the initial
condition x0 is the key.

Divide the interval [0, 100) into 10d semi-open intervals

Ik :=

[
k2

102(d−1) ,
(k+1)2

102(d−1)

)
, k ∈ Kd . These subintervals have

the same length 1/10d , according to the natural measure λ

given in (9). Define I = {Ik | k ∈ Kd} and a rather uniform
association of the sites Ik to the symbols of A, given by an onto
map ϕ : I → A. We can associate each Ik to the number k
and, therefore, identify I with Kd . Let x0 ∈ [0, 100) be the
encryption/decryption key, and M = (M j )1≤ j≤L a message to
be transmitted. The encrypted version of M is defined as the
sequence of numbers of iterations of H, necessary for the orbit
xn = Hn(x0) to visit a site associated to the consecutive letters
of M . More precisely, m̃ is the sequence of natural numbers
m̃ = (m̃ j )1≤ j≤L such that Hm̃ j (xm̃ j−1) falls, for the first time,
in an interval Ik associated to M j . This way, the encryption
function ε is defined as (x0, M) 7→ m̃. The decryption of m̃
is done using the same key, in the obvious way: read each m̃ j
as the alphabet symbol M j associated to the sub-interval Ik to

which H
∑ j

i=1 m̃i (x0) belongs.
Because of the sensitivity of H on initial conditions, the

use of (even slightly) wrong keys for decryption gives results
with negligible correlation with the original message. Since λ

is mixing for H, this encryption method is well defined for λ-
almost any key x0. In opposition to the method proposed by [1],
every site Ik is equiprobable for λ-almost all initial condition
x0 ∈ [0, 100). This prevents the detection of any correlation
between the frequency at which the symbols are used in a
specific language and the statistical properties of the algorithm,
given by the associated natural measure λ. Another advantage
of our method is that it is machine-independent, since it only
depends on the computation of the square root of a real number
with the necessary precision.

An equivalent formulation for the algorithm, based on
Proposition 7, is as follows. Let M = (M j )1≤ j≤L be the
message to be transmitted. Let s1.s2s3 . . . be the decimal
representation of

√
x0 ∈ [0, 100). Then, putting m̃0 = 0 we

can find m̃ = (m̃ j )1≤ j≤L recursively by

m̃ j = min
{

n − m̃ j−1| n > m̃ j−1, sn+1 . . . sn+d ∈ ϕ−1(M j )
}

.

In other words, to encrypt and decrypt it is only necessary to
follow the d-blocks of the decimal expansion of

√
x0.

As an example, let d = 2 and suppose that the units of
the usual alphabet A = {a, b, c, . . . , z} are associated, in their
usual sequence, to the sub-intervals Ik, k = 0, 2, . . . , 99, until
each one of the 100 sites is assigned,

(a, b, c, . . . , z, a, b, c, . . . , z, a, b, c, . . . , z, a, b, c, . . . , v).

Suppose that the message to be encrypted is M = H I .
Therefore, m ∈ ϕ−1(H) × ϕ−1(I ) where ϕ−1(H) =

{I7, I33, I59, I85} and ϕ−1(I ) = {I8, I34, I60, I86}. The
encrypted version of M is m̃ = (34, 55) if x0 = 2, m̃ = (8, 17)

if x0 = 3, and m̃ = (7, 8) if x0 = π . Another way to describe
the method is by the use of Proposition 7. For example, for
x0 = 2, notice that the first time the digits corresponding to
‘H ’ (07, 33, 59 or 85) appear in the decimal expansion of

√
2 is

at the 34th place; a digit string corresponding to ‘I ’ (34 in this
case) next appears 55 places later.

Because of the sensitivity of H to the initial conditions,
the use of wrong keys for decryption give results with
negligible correlation with the original message. For example,
for xwrong

0 = 2.00001 we have H34(xwrong
0 ) ≈ 6.802 ∈ I26 7→

A and H89(xwrong
0 ) ≈ 0.595 ∈ I7 7→ H which gives Mwrong

=

AH .
Implementing the algorithm by the direct use of H is

much more computationally expensive than extracting a square
root and examining its digits. The proposed algorithm has a
drawback concerning the number of digits (precision) required
for square root extraction of the key x0 in order to cipher
the plain text. The number of digits grows with the number
of characters of the plain text and the encryption becomes
increasingly slow as the length of the message increases. In
fact, if we associate with each letter of A the same quantities
of subintervals of I, then due to the mixing property of H we
have for λ-almost any x0 a time average ]A to reach any letter.
This implies that, to encrypt a given message M with length L ,
we need to compute the square root of λ-almost any x0 with
approximately L · ]A decimal precision. Therefore, the use of
efficient methods to extract square roots with arbitrary precision
is required. Obviously, this drawback can easily be worked
around in practice. One solution is just to calculate more digits
of the square root when the known digits are used up. Another
obvious alternative would be to agree upon a fixed (but large)
precision in advance, and then switch to another key when the
limit is reached.

The same extensions considered in [1] can be implemented.
For instance, the association ϕ can be considered as a
component of the key (x0, ϕ). A transient m̃0 = T
can be defined in order to postpone the beginning of the
cryptography/decryptography, which raises the contribution of
the sensitive dependence on initial condition to the method
security. In this case, the key is (x0, ϕ, T ). Also, a stochastic
component can be added to the encrypting part of the method
by the use of random numbers ηi to decide which turn among
the many times a chosen trajectory crosses the aimed sites, is
to be considered as the encryption of each unit. In such cases,
for random numbers in the interval [0, 1], if a condition such
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as ηi < 1/2 is verified, then the corresponding m̃i is adopted.
Otherwise, the transmitter continues to follow the orbit until
another valid site is achieved and that condition is satisfied. The
parameters ηi need not to be transmitted to the receiver (see [1]
for details).

5. Conclusion

In this paper, we studied topological and ergodic properties
of the exact algorithm for square root calculation of x0 ∈ R. The
algorithm defines a two-dimensional dynamic system given by
the map H : R2

+ → R2
+, which is a function of the remainders

and the partial approximations for
√

x0, with an attractor R ⊂

R2
+. Inside R, H can be reduced to a one-dimensional system

given by the map H : [0, 100) −→ [0, 100). The orbit of H
from an initial condition x0 determines the order in which the
digits of

√
x0 appears in its decimal representation.

H is topologically conjugated to the shift map σ on Σ10,
implying that H is chaotic under Devaney’s definition. In
this sense, the exact algorithm for

√
x0 calculation is chaotic.

Moreover, the decimal representation of
√

x0 is a chaotic
sequence for almost all x0 ∈ R, in the sense that it is associated
with a chaotic orbit of H for almost all initial condition x0 ∈

[0, 100).
Under the ergodic point of view, we exhibit a probability

measure λ, which is mixing for H. This allows us to consider
the system under a statistical point of view. For example,
the probability for a subset of [0, 100) to be visited by the
orbit associated to a generic condition can be estimated using
Birkhoff’s theorem. This gives an alternative way to conclude
that the distribution of the decimal digits of the square root of
a real number is almost always uniform. More precisely, for
a fixed d ∈ N, the groups of d digits appear with the same
frequency in the decimal representation of

√
x , for almost all

x ∈ R.
Under the application scope, the dynamics defined by the

exact algorithm can be used to define an encryption/decryption
method, similar to the one proposed in [1], where the logistic
map is used. However, because of its exactness, the proposed
method has some advantages. The first is the fact that it is
machine independent. Also, since we know the appropriate
mixing measure, we can divide the domain of H in equiprobable
sites to be associated with the alphabetic symbols. This
overcomes the drawback of assigning alphabetic symbols to
least probable sites, which would imply large numbers of
iterations to the encryption/decryption. This may happen in the
method proposed in [1], unless a previous numerical study of
the natural measure of the logistic map is done.

The present study seems to be generalizable to p
√

x, p ∈

N, x ∈ R+. The extension would begin from the corresponding
inequalities, (10s1s2s3 . . . sn + sn+1)

p
≤ 10pn x0, but further

details are out of the scope of this paper. In addition, similar
studies can be developed for other exact algorithms, concerning
the digit-by-digit calculation of other algebraic operations.
They probably will define other kinds of dynamics or, at
least, different conjugations to the shift map. However, the
application to cryptography depends also on the information
production of the algorithm as well as on the possibility of
production of nonperiodic orbits from initial conditions with
finite or periodic decimal representations. In our algorithm,
this last issue is supported by experimental evidence for the
conjecture that all irrational p-roots of rational numbers are
normal, i.e. the distribution of d-blocks of digits in their
decimal representation is uniform, for any d = 1, 2, 3, . . ..
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