MINIMAL TIME SEQUENTIAL BATCH REACTORS WITH
BOUNDED AND IMPULSE CONTROLS FOR ONE OR MORE
SPECIES*

P. GAJARDOT, H. RAMIREZ C.f, AND A. RAPAPORT?

Abstract. We consider the optimal control problem of feeding in minimal time a tank where
several species compete for a single resource, with the objective being to reach a given level of the
resource. We allow controls to be bounded measurable functions of time plus possible impulses. For
the one-species case, we show that the immediate one-impulse strategy (filling the whole reactor
with one single impulse at the initial time) is optimal when the growth function is monotonic. For
nonmonotonic growth functions with one maximum, we show that a particular singular arc strategy
(precisely defined in section 3) is optimal. These results extend and improve former ones obtained for
the class of measurable controls only. For the two-species case with monotonic growth functions, we
give conditions under which the immediate one-impulse strategy is optimal. We also give optimality
conditions for the singular arc strategy (at a level that depends on the initial condition) to be optimal.
The possibility for the immediate one-impulse strategy to be nonoptimal while both growth functions
are monotonic is a surprising result and is illustrated with the help of numerical simulations.

Key words. minimal time problem, chemostat, Hamilton—Jacobi—Bellman equation, Pontrya-
gin’s minimum principle, impulse control

1. Introduction. Sequential batch reactors (SBR) are often used in biotechno-
logical industries, notably in waste-water treatment. Typically, a tank is filled with
activated sludge or biological microorganisms capable of degrading some undesirable
substrate. The method then consists of a sequence of cycles composed of three phases:

- Phase 1: Filling the reactor with water to be treated,

- Phase 2: Waiting for the concentration of the undesirable substrate to de-
crease until a given (low) concentration,

- Phase 3: Emptying the clean water from the reactor, leaving the sludge inside.

The time necessary to achieve such cycles can be substantially long and can have
an economic impact on the overall process. Manipulating the input flow during the
filling phase clearly has an influence on the total duration of the cycle (more precisely,
the duration of Phases 1 and 2, the duration of Phase 3 being fixed). But the nonlinear
kinetics of the biological reactions do not always make easy the determination of the
input flow strategy that minimizes the total time obvious.

Very similar problems (optimizing the production of biomass at a fixed terminal
time) have already been tackled with the help of optimal control theory [1, 11, 10],
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which has led to computational methods [30, 12]. For models with one biological
species, a solution of the minimal time problem has been proposed by Moreno in
[20] for monotonic as well as nonmonotonic kinetics. It has been proved that, for
monotonic growth functions, such as the Monod law (see [29]), the optimal solution
consists of a most rapid approach strategy, namely, filling the tank up to its maximum
capacity as fast as possible and then waiting. For nonmonotonic growths with one
maximum, such as the Haldane law (see [29]), a singular arc strategy which consists
of maintaining the resource level that maximizes the growth function for most of the
time, have been proved to be optimal. The optimality proofs are based on a technique
due to Miele [13] using Green’s theorem. More precisely, proofs rely on a reformulation
of the problem in a planar one.

In the present work, we consider minimal time problems where more than one
species can compete for the same substrate. For these cases, the problem cannot
be reformulated into a planar one, and the technique mentioned above does not ap-
ply. Nevertheless, we are interested in characterizing biological systems for which the
most rapid approach strategy is again optimal. We are also interested in identifying
conditions for which a singular arc strategy could be optimal.

We shall allow adding unbounded or impulsive controls to the usual measurable
bounded controls. The practical motivation for such a consideration comes from
the fact that a bounded measurable control can be incorporated into a device that
tunes the speed of a pump over a certain range, while an unbounded control can be
assimilated to an instantanecous dilution of a positive volume, as in [9]. A similar
optimal control problem for fed-batch processes has been studied in [32] but for a
fixed terminal time and a final cost. A characterization of minimal time functions
with impulse controls and state constraints has been proposed in [7, 26]. In [7], some
restrictive conditions are considered on the jumps that do not apply to the present
problem. In [26], the minimal time function is characterized but as a function of a
bound on the total variation allowed on the unbounded control. For related results
concerning the regularity of the value function for minimal time problems, see [24]
and the references therein.

For our problem with a scalar control, we use a smooth time parameterization
in the spirit of [33] and [34], which differs from more general approaches that use
discontinuous time transformation (see, for instance, [3, 8, 14, 15, 16, 18, 19] or [35]).
The possibility of immediately reaching the target with a single jump has also led
us to extend the definition of the singular arc strategy to the framework of impulse
controls.

Even though the main contribution of this paper is the analysis of the two species
case, it is worth noting that the former results of Moreno [20] for the one-species case
without impulse controls did not consider the parametric configuration s* < s, (the
notation will be defined in section 3). This case leads to more complicated optimal
trajectories, as we shall show. Furthermore, we provide an explicit expression for the
value function for any parametric configuration.

The paper is organized as follows. In the next section, we state the minimal time
problem with impulse control and give an equivalent formulation with measurable
controls. In section 3, we define the one-impulse and singular arc strategies. Section 4
characterizes the cost of the one-impulse strategy, which plays an important role in the
following sections. Section 5 gives the Hamilton—Jacobi formulation of the problem
and states optimality results for the strategies presented in section 3. The use of the
minimum principle is presented in section 6. Finally, applications to the one- and
two-species cases are given in sections 7 and 8, respectively.



2. Formulation of the problem. The dynamics of an SBR with several species
can be described by the following set of ordinary differential equations (see [29]):

&y = pi(s)w; — Ewi, zi(to) =yi (i=1---n),
v
. S F
(2.1) 5= = Zlﬂj(s)xj + ;(Sm —s), s(to) =2,
=

0=F, o(ty) =w,

where z;, s, and v stand, respectively, for the concentration of the ith species, the
concentration of the substrate, and the current volume of water present in the tank.
The parameter s;, > 0 is a constant which represents the substrate concentration in
the input flow. The growth functions p;(-) are nonnegative smooth functions such
that p;(0) =0, and the input flow F' is a nonnegative control variable.

Given a (desirable) substrate concentration Syt €]0, $in[ and a volume (of the
reactor) vmax > 0, consider the domain D = (R \ {0})x]0, sin]x]0, vmax| and the
target 7 = R’} x]0, Sout] X {Umax}. From any initial condition £ = (y,z,w) in D at
time to, the objective is to reach 7 in minimal time. Let us write V(-) the value
function of the problem

(2:2) V(&) = inf {t = to] 8”7 (1) < sour , v (1) = vmax}

where sto:&F (1) v0:8F (1) denote solutions of (2.1), with initial condition ¢ € D at
time ¢¢ and control F(-).

We allow here F(+) to be a nonnegative measurable function plus possible positive
impulses. The question of the proper treatment of optimal control problems with
unbounded or impulse controls has already been studied in the literature (see [5, 6,
8, 14, 15, 17, 18, 19, 21, 22, 23, 26, 27, 35]). Instead of an ordinary control F(-),
we consider a measure dF'(-) that we decompose into a sum of a measure absolutely
continuous with respect to the Lebesgue measure u(t)dt and a singular or impulsive
part do (see [33, 34]):

(2.3) dF () = u(t)dt + do.

Here, u(+) is a measurable nonnegative control that we impose to be bounded from
above by umax, because it corresponds to the use of a pump device. At time ¢, the
nonnegative impulse do corresponds to an (instantaneous) addition of volume from
v~ () to v™(t). When do is nonnull, it implies that the concentrations z; and s jump
as follows:

' vt (t)
_ v (1) v (t)
@) = s~ ()= 4 g (1 - .
S O R 0
Notice that such a jump is equivalent to integrate the dynamics
dz; u ds u dv
2.4 = Ly S = —\Sin—S8), S —U
(24) dr Ugc dr v (s 2 dr “

from 77 to 71, with any regular nonnegative control u(-) bounded from above by
Umax, provided that the integral constraint is fulfilled:

(2.5) /T u(r)dr = vt (t) — v (8).
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Fia. 2.1. Time parameterization.

Consider then a time parameterization 7 > to such that dt = r(7)dr (see Figure 2.1),
where

() = 1 when dF is absolutely continuous (a.c.) at t(7),
"T)=00  otherwise.

Then, dynamics (2.1) with dF regular, and dynamics (2.4) with nonnull do can be
gathered into the system

dz; ‘
= () — s (i =1--on),
ds - U

(2.6) = —T;M(S)x]‘ + = (sin = 9),
dr

where the controls u(-) and r(-) are sought among measurable functions w.r.t. 7, taking
values in [0, umax] and {0, 1}, respectively. Notice that, in this formulation, u(-) plays
both the role of an ordinary control when » = 1 and the control of the amplitude of
the jump (2.5) when r = 0, with the same single constraint u € [0, Umax]-

Remark 1. We could have considered two distinct controls, as in [18], for instance,
if we write the system (2.1) as

X(t) = f(X(1) + F()g(X (1)),

where X = (z;,s,v), ¢ = 1,...,n and functions f and g are suitably chosen to be
compatible with the dynamics (2.1), we could consider

X(t) = F(X(#) + (ur(t) + ua(t)g(X (1)),

with u; a measurable nonnegative bounded (by umax) control and us is an unbounded
nonnegative control.



In this framework, the time reparametrization dt = rdr, with r € [0, 1], leads to
the dynamics

(2.7) C;—): = r(T)[f(X(7)) + ua(T)g(X(T)] + (1 = r(7))w2(7)g(X (7)),

with u; and wy nonnegative bounded controls. One can also require ws to be bounded
by the same bounds umax as uy, where uy (7)r(7)dr = uq (t)dt and (1 —r(7))ws (7)dr =
dus(t). The dynamics (2.7) is equivalent to

ax
dr
where u = ruy + (1 — r)ws belongs to [0, Umax]-

Remark 2. Since one can always take r = 0 and v = 0 on an arbitrarily large
7-interval without modifying the total time ftTO r(0)df, the minimal time problem has
no unique solution. Hence, without loss of generality, we will be only interested in
controls that never take null values simultaneously, that is, satisfying r(7) # 0 or
u(r) # 0 for all time 7.

Let us define the set of admissible controls by

() f(X (7)) + u(r)g(X (1)),

(2.8) C={(u,r):[0,400) — [0, umax] x {0,1}\ {(0,0)} Lebesgue measurable} ,

and let us write now V(-) the value function of the reformulated problem (2.6)

(29) V)= inf { )] 50600 () < s () - m} ,
(u,r)(-)eC to
where st (1), pto-£7 (L) denote solutions of (2.6), with initial condition £ € D at
time to and controls u(-) and r(-).
Remark 3. Any trajectory of the dynamics (2.6) with initial condition & =
(y, z,w) € D lies in the region defined by

(2.10) p&) =v Za:j—ks—sm =w Zyj—kz—sm
=1 =1

By using the above fact, one can write the variable s in terms of the other variables
as follows:

(2.11) s = @—;xj—i—sm.

This is a key step in the approach used in Moreno [20] that reformulates the problem
with one species in a planar one. However, since it does not simplify our results, we
shall work with all of the variables. In the proof of Proposition 7.4 only, equality
(2.11) will be used.

3. The one-impulse and singular arc strategies. From an initial state £ =
(y, z,w) € D at time tg, we define the immediate one impulse strategy (that we shall
denote I0I strategy in the following), which consists in making the following:
1. An impulse of volume vyax — w at to. This can be achieved by r(7) = 0,
U(T) = Umax, for T € [to, to + (Vmax — W)/Umax]-
2. A null control (no feeding) until the concentration s(7) reaches s,y:.



For convenience, we shall denote by ¢(§) and 2() the concentrations obtained
with an impulse of volume vy,ax — w from a state £ = (y,z,w) € D :

vm ax Umax vm ax

(3.1) 56 =y, a@:z“’+&n0— w).

Notice that, for the particular case Z(§) < Sout, the first step only is used.
A second strategy considered in this paper is defined as follows. Consider a time
to, a state £ = (y,z,w) € D, a level substrate 5 in ]0, s;,,[, and define the quantity

Umax

(3.2) ST(E, W) = Sin — (Sin, — max(s, Sout))

The singular arc strategy on the level 5, denoted by SA(S), consists of the following
steps.
1. First step:

a. If 2 > s7(5,w) and z < 5, make an impulse of volume w(5 — 2)/(sin — 3)
at to. This can be achieved by r(7) = 0 and w(7) = Umax, for 7 € [to, T],
where t = tg + w(5 — 2)/Umax(Sin — ) (then s and v jump to 5 and
0 =w(Sin — 2)/(Sin — 5) < Umax, respectively).

b. If z > 5 and z > s7(5,w), apply a null control (no feeding) until the con-
centration s(-) reaches the value max(3, s’ (3, w)), i.e., 7(7) = 1, u(r) = 0
for 7 € [tg,?], where f is such that s'¥%*(f) = max(s,s'(5,w)) and
st0:¥:2(.) is the solution of the free dynamics

dd?i .
dr pi(s)zi, xi(to) =yi (i=1---n),
(3.3) ds n
=2 ()T, slt) ==
j=1

c. If2< ST(§, w), make an impulse of volume vy,,x —w and go the the third
step.

2. Second step:

a. If the current state s is equal to 5, make a singular arc' by taking
(1) = 1 and a suitable control u(-) ensuring s(7) = 5 for any 7 € (£, T],
where T is such that v(T") = v'(5) and the volume v (5) is defined as
follows:

(3.4) v1(5) = Vpax min (1, M) .

Sin — S

If v7(5) < vmax (o1, equivalently, 5 < s,u¢), then make an impulse of
volume vpax — v (3), and the process is finished. Otherwise, go to the
third step.
b. If the current state s is equal to sf(5,w), make an impulse of volume
Umax — W, and the process is finished.
3. Third step: Apply r = 1 and a null control u until the concentration s(-)
reaches syy¢.

1See [4, Part III Chapter 2] for a formal definition.
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Fic. 3.1. The SA(S) synthesis when 3 > Sout-

Notice that z < s(5,w) implies that before reaching the substrate level 5 with an
impulse of volume, one reaches the volume vp,ax. When z > s'(3,w) and sf(5,w) > 5,
the variable s reaches the value s'(3,w) before 5, and then an impulse drives directly
to the target.

Observe also that, in order to apply the singular arc strategy on s, imposing
ds/dr = 0, the following constraint on the control u must be satisfied:

n
v _
Gy 2 (8 = 0 S
m ]:1

Since the maximum level of substrate on which one can apply a singular arc, starting
from £ € D, is given by Z(£) defined in (3.1), a sufficient condition, on the initial
condition &, in order to guarantee the above inequality is to have

(3.5) M (% + vmax) < Uax,

where p(§) is defined by (2.10) and

Indeed, from the definition of p(§), one has

L;M(sm SM_Lixj :M( -p(g—)sH)

(Sin - 5) (Sm - 5)

<M <m +Umax) .

The synthesis of the SA(S) strategy is depicted on Figures 3.1 and 3.2, depending
on the position of § relatively to s,y¢.
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F1G. 3.2. The SA(3) synthesis when 3 < Sout-

Remark 4. An impulse of volume dw at time 7 can be achieved by any control
law u(-) such that there exists d7 > 0 satisfying

T4+6T
/ u(0)df = dw,

with 7(0) = 0 for 6 € [r,7 + d7]. For the sake of simplicity, we shall systematically
take u(0) = umax for 0 € [7,7 + dw/Umax]-

4. The cost of the one-impulse strategies. We consider a family of functions
@c(+) defined on (R} \ {0}) x Ry and parameterized by ¢ > 0:

(4.1) ¢ely, z) = inf {t —to|s"V*(t) < cf,

where s0-¥%(-) is the solution of the free dynamics (3.3). A standard analysis of mini-
mal time problems shows that ¢.(-) are Lipschitz-continuous functions and solutions,
in the viscosity sense, of the partial differential equation (see, for instance, [2])

(4.2)

(8yj ‘Pc(?J, Z) - 8z§0c(y7 Z)),Uj(z)yj +1=0
=1

J

on the domain (R’ \ {0}) x (¢, +-00), with boundary conditions
(4.3) ve(.,2) =0 Vze (0,

The time cost of the IOl strategy can then be simply written in terms of the
above functions as follows:

(4.4) Tror (5) = Psout (Q(&), 2(5))7

where (&) and Z(§) are given by (3.1).

Remark 5. Observe that the suboptimal IOI strategy has a finite time cost
Tror(€) for a any initial condition ¢ in the domain D. Consequently, the optimal
value V() is finite for any ¢ in D.



5. The Hamilton—Jacobi characterization. Let us define the Hamiltonian
as the mapping H : R X [0, Sin] X [0, Umax] X [0, Umax] % [0,1] X R” x R x R — R given
by

(5.1)

n n
i U
H(x,s,v,u,m,p,k,q) = r+qutk ;(Sm —s)—r g 1 zipi(s) |+ g 1pjxj (r,uj(s) — 5) )
j= j=

The Hamilton—Jacobi-Bellman equation associated to minimal time problem with
dynamics (2.6) is

(5.2) Lhin | min H(y,z,w,u,r,0,V(€),0:V(£), 0,V (£)) = 0,

or equivalently

min | 0,370, V(€) = -V (€)s (2)y; +1
(5.3) a )
+ % min [ 0,—> 0y, V(y; + 0:V(E)(sin — 2) + 0V (Hw | =0,

Jj=1

for any ¢ € D, with the boundary condition
(5.4) V() =0 veeT.

Remark 6. Notice that the control variable r(-) does not take values in a convex
set. This does not a priori guarantee the existence of an admissible optimal trajectory
in C defined in (2.8). In the following, we prove the existence of optimal trajectories
by exhibiting particular strategies for which r(-) takes values 0 or 1.

It is straightforward to check that (5.3) is equivalent to a system of two partial
differential inequalities:

(5.5) AV(E) =D (0, V(€) = 0-V (&) (2)y; +1 > 0,
j=1
(5.6) AV (€)== 0, V(€)ys + 0V () (sin — 2) + 0wV (§w > 0,
j=1

independently of the upper bound tyax-

Remark 7. Note that the situation when A,V and A,V are both strictly positive
corresponds to controls u = 0 and r = 0. Since we consider only controls in C (defined
in (2.8)), we obtain that inequalities (5.5)—(5.6) are equivalent to

As it is well known from the theory of first order Hamilton—Jacobi partial differen-
tial equation (p.d.e.) [2], the differentiability of the value function is not guaranteed.
Furthermore, in the present case, the uniqueness of the solution of system (5.4)-
(5.5)-(5.6) among smooth functions is not guaranteed either (one can easily check
that V' = 0 is always a solution). Nevertheless, one has the following result, providing
sufficient conditions for the existence of an optimal trajectory in C and the smoothness
of the value function.



PRrROPOSITION 5.1. If there exist

(a) a nonnegative continuous function V (-) that fulfills the boundary condition
(5.4) and such that at any £ € D, with V(§) > 0, V(-) is C* and fulfills the
partial differential inequalities (5.5) and (5.6);

(b) two maps § — u*(§) >0, & — r*(§) € {0,1}, with

H(& ur(),r*(£),VV(€)) =0, V¢ e D such that (s.t.) V(§) >0,
() =0, VEeDs.t V() =0,
and such that the closed-loop dynamics

d/CEi

dr = r*( (T))Mi(s)fz - " T (l =1 n),
61 {2 =) m)e + D s, ),
=1
W (x()),

admits an absolutely continuous solution X (-) = (z(-), s(-),v(+)) that reaches
the target in finite time, for any initial condition X (to) = £ € D, then V(£)
is the value function (2.9) at any & € D such that the solution of (5.7) fulfills
w (X (7)) < Umax for any T > to such that X (0) ¢ T whatever is 0 € [to,T).
Proof. Fix an initial condition £ € D at time ¢y, and consider admissible controls
(r(+),u(-)) € C such that the trajectory X () = (z(-), s(-), v(+)) solution of system (2.6)
reaches the target in finite time, say, at time 7.. Define then the function

and consider the set N' = {7 € [to,7c] | V() > 0}. Clearly, V() is absolutely
continuous on N and one has

o e
/ H(x L o(7),u(T), (1), 0y V(X (7)), 0. V(X (7)), 0,V (X (1)) — r(T)dr.

From (5.2), one deduces the inequality

V(1e) = V(o) > — /Nr(T)dT,

and with the boundary condition (5.4),
V(€)= Vito) < / r(r)dr < / Cr(7)dr.
N to

This last inequality being valid for any admissible controls (u(-),r(+)), one deduces
that

(i)nf( ) {/ r(6)do | st"’g’"’r(T) < Sout » vto’g’"’r(T) = Umax} > V().
u(+), r(- to



Consider now the trajectory X*(-) solution of (5.7) that reaches the target at
time 7. The function V*(-) = V(X*(-)) and the set N* = {7 € [to, 7] | V*(7) > 0}
verify that

VH() = V (k) — / P (r)dr = VA(to) - / "y,

We finally obtain

> mf( {/ T(G)d@ | StO’f’u’T(T) < Sout » 'Utg’f’u’r(T) = Umax} )

to

which proves that V(+) is the value function.

Remark 8. For a function V(-) that fulfills condition (a) of Proposition 5.1
independently of uy.x, the existence of a pair of admissible feedbacks u*(-), 7*(-) that
leads to the target is related to the value of Uy ax.

On the other hand, the above result establish that there exists at most one func-
tion V' (the value function of our problem) satisfying the conditions of Proposition 5.1.
Nevertheless, one cannot conclude the uniqueness of the optimal trajectory.

Remark 9. One can easily check that the function V = 0 is a C! solution of the
Hamilton-Jacobi-Bellman equation (5.3) that fulfills the boundary condition (5.4).
But (5.2) imposes to have r = 0. Clearly, such controls do not allow one to reach the
target, and the conditions of Proposition 5.1 are not fulfilled.

For technicalities, we shall assume in the following that functions ¢.(-) defined in
(4.1) possess some regularity.

Assumption AO. For any ¢ > 0, the function ¢.(+) is C* on (R \ {0}) x (¢, +00).

LEMMA 5.2. Under Assumption AO, at any § € D such that Tror(§) > 0, one
has

(5.8)
ArT101(€) =Y (Dy, s (5(), (€)) = 0=pan (5(€), 2(9))) 1 (15 (2) — 11 (2(6)))-

Jj=1

Proof. At £ = (y,z,w) € D such that T;o7(§) > 0, Assumption AO guarantees
that Tror(+) is Ct. Let us write its partial derivatives as follows:

0y, T101() = ——0y,00,, (), 2 (=1--n),
0:T101(€) = ——0:tpu, (§(6), Z(E)),

0uTro1(€) =Y 20, s, (3(6).5(€)) —

j max Umax




Then, one has

(5.9)  ATr0r(€) = Y (9y, 00 (F(6), 2(€)) = 0205, (§(€): 2(6))) 11 (2)7;(€) + 1.

J
Equation (4.2) with ¢ = sou: at (§(£), 2(€)) provides the equality

(5.10) D (04500 (F(6), 2(6)) = 005, (§(), 2(8))) 15 (2(6))55(6) = —1.

J

Combining (5.9) and (5.10) gives, finally,

ArTr01() = Y (01 900 (5(6). 5()

— 0250, ((8), 5(5)))%‘ () (2) = 3 (2(5))). O

We then obtain the following result concerning the optimality of the 101 strategy
for any initial condition.

ProposITION 5.3. Under Assumption AO, the IOI strategy is optimal for any
& €D if and only if

(5.11) ATT]O[(f) >0 Vf €D s.t. Tjoj(f) > 0.

Proof. We proceed to show that the function T7o; () fulfills conditions of Propo-
sition 5.1.

If £ € T, one has Tror(§) = 0, thus boundary condition (5.4) is fulfilled. At £ € D
such that Tro7(€) > 0, Troz(+) is C' under assumption AO.

Notice that condition (5.11) is exactly the first partial differential inequality (5.5).
The verification of the second partial differential inequality (5.6) is easy:

AuT101(€) = = 3 By, P (BE), 2 + 0-0,0, (96, 2€)) 5= (sin — 2)
D2 00,000t (BE), HE; = 0o (FE), 2(E) (s = 2) =

So, condition (a) of Proposition 5.1 is fulfilled.

Finally, the IOl strategy, as defined in section 3, straightforwardly fulfills condition
(b) of Proposition 5.1. O

Let us now consider the function

V(€ c) = @y, 2) + Tror(we,c,w), £€D, ce(0,2),

where x, = x'0¥3(t,) such that s'©¥2(t.) = ¢, with (z'0¥2(.), st0-¥#(.)) solution of
the free dynamics (3.3). Concerning the optimality of the IOI strategy, the study of
the function (-) allows us to show that condition (5.11) is also necessary for a given
initial condition & € D such that Tjor(€) > 0. For this purpose, the next technical
lemma will be useful.

LEMMA 5.4. Under Assumption AO, one has

- ATr01(8)

5&#(&2) = )
> ni(2)y
j=1

R 6 €D s.t. T[O](é-) > 0.



Proof. From (3.3), one has

Ox;(tc) _ wi(c)z(te) Depu(y,2) = — 1
dc " Poereeml '
3 w0t 3wyt

Then, one can write

86"/)(57 Z) = [actpc(yv Z)]c:z

¥ Z;%ﬂhnwﬁamﬂwg%gd+%Lﬂodﬂ%%aw)

c=z

> 0y s (56 H() s (2D
1

1 Umax =
> n(2)y > (2)y;
Jj=1 j=1

0.0, (), 2(6))

vm ax

_|_

L Y 0y P50 (§(6), (€)= 005, (§(6): 2(6)) )11 (2)55(€)
j=1

Using the property (4.2) for ¢ = soue at (§(£),2(§)), and the expression (5.8) given by
Lemma 5.2, finally gives

(&) = ———— O

Proposition 5.3 states that if (5.11) is not satisfied, then there exists an initial
condition ¢ € D for which the IOI strategy is not optimal. The following proposition
characterizes some initial conditions for when this occurs.

PROPOSITION 5.5. At states £ € D such that Tror(§) > 0 and A Tro1(§) < 0,
the 101 strategy cannot be optimal.

Proof. When T7o;(§) > 0 and A, Tr0r(§) < 0 at £ € D, Lemma 5.4 gives the
existence of ¢* < z such that (&, ¢*) < ¥(§,2) = Tro1(§). Consequently, there is a
strategy (consisting in applying a null control until the time t.« such that s(t.«) = ¢*
and then the IOI strategy) which has a better cost than the IOI strategy. O

6. Derivation from the minimum principle. In this section we apply the
Pontryagin’s minimum principle (PMP) (see [4, 25]) to the minimal time problem
with dynamics (2.6).

The PMP states that when (z, s, v, u,r)(+) is a solution of the minimal time prob-
lem associated to the system (2.6), then there exists an n-dimensional multiplier p(-)



and scalar multipliers ¢(-) and k(-) such that

dp;
o = piu/v —r(pi = k)ui(s), pi(T) =0,
dk "
(6.1) ar =772 TRl ko, KT) =1,
dq U -
g~ (M9 mma |

where T is the optimal terminal time. In addition, the Hamiltonian (defined in (5.1))

(u,r) — H(2(7), (1), v(7), u, 7, p(7), k(7), 4(7))

is minimized in u(7) and r(7), at any 7 € [to, T].
Define the auxiliary variables p; = p; — k, who play an important role in what
follows.

First, we observe that the dynamics of p = (p1,...,py,) can be written as follows:
dp
2 Lo Ap, BT = -1,
(6.2) o =Amp, 1)
where A(7) is an n X n time dependent matrix. Consequently, one has p(7) # 0 for
any 7 € [to, T

On another hand, one has

(6.3) argmin H(x,s,v,u,r,p,k,q) = argminud,(z, s,v,p, k, q) + ro,(z, s,p, k),

u,r w,r

where

k
¢U($757U7Pak7Q):(I+ Sln_ Zp]x.]’
(6.4)
ér(x,5,p, k) _1+Z MJ CCJ —1+ijﬂj
Jj=1

If we derive with respect to the fictitious time 7, we obtain
doy (8in —8) -
dT - r v <p7m>a

(6.5)

dr v

LT

where m = m(7) is given by

pa(s(7))x1 (1)
(6.6) m(r) = s
fi (8(7)) 20 (T)

and (-, -) is the Euclidean inner product in R™. Finally, it is straightforward to check
that (see (6.2))

67) L pom) = (pATm+ 2.



The next result links the optimal value function V(-) to Pontryagin’s multipliers
(p,q. k) ().

PROPOSITION 6.1. Let V(-) be the optimal value function defined in (2.2). Con-
sider an initial vector £ = (y,z,w) € D and denote by (p,q,k)(-) the corresponding
Pontryagin’s multipliers. If the value function V is C1 at &, it holds that

(6.8) AV (E) = dp(x,s,p, k) and  AV(E) =vdu(z,s,p,k,q),

where AV (E) and A,V (E) are defined by (5.5) and (5.6), respectively.
Proof. See Theorem 12.5.1 in [31]. 0
We end this section by introducing our second assumption and a lemma whose
proof is direct.
Assumption Al. The functions p;(-) are nondecreasing.
LEMMA 6.2. Under Assumption Al, the following assertions hold:
i. The matriz A() has nonnegative off-diagonal terms, i.e., the dynamical sys-
tem (6.2) is cooperative (see [28]);
ii. The vector m(-), defined in (6.6), lies in R}.

7. The one-species case. For this case, it is straightforward to check that, for
any ¢ > 0, the partial differential equation (4.2) with boundary condition (4.3) admits
the (unique) nonnegative continuous solution that is C! on (R, \ {0}) x (¢, +00), given
by the expression

/Z L for z > ¢,
(7.1) woly,z) = | Je () (y + 2z —¢)
0 for z <e.

Hence, Assumption A0 is fulfilled. We give a technical lemma that will be useful in
the following.

LEMMA 7.1. Let z > ¢ > 0. If u(:) is nonincreasing on [c, z], then the following
inequalities are satisfied:

1
(7.2) 0x0c(y,2) > MOEEEDk
(7.3) D2pc(y, 2) < L PN

we)y+z—c)  ulzy  wley

Proof. Notice first that the partial derivative of function ¢, given in (7.1) verifies
I / i d¢
w2y e wQy+2z-0*

Since p(+) is nonincreasing, one can write

3z<pc(y, Z) =

17 d¢ _ 1
Oepelun?) 2 105, / pE)y+2-02%  u@)(y+z-c)

and

0xpc(y,2) < ! —/ZMC)(L




7.1. Increasing growth functions.
PrOPOSITION 7.2. Under Assumption Al, the IOI strategy is optimal for any
initial condition £ in D, and the value function is

(7.4) V(&) = @500, (9(6), 2(£)),

where ps,,, (+) is given by (7.1) and (§(£), 2(£)) by (3.1).
Proof. For (§(€), 2(€)) such that 2(£) > seut, the map & — ¢, (5(£), 2(€)) is C
at &, and from (4.2), one has

(Oy s (9(6); 2(6)) = 025, (9(8), 2(€)))(2(£))5(€) = —1.

Then, condition (5.11) of Proposition 5.3 simply becomes p(2(§)) — p(z) > 0, which
is fulfilled when p(-) is nondecreasing and z > z. 0

Remark 10. This proposition extends to impulse controls a result obtained by
Moreno [20] for measurable control (with a different technique based on Green’s the-
orem). It states that, for a monotonic growth functions p, the one bang control

F— {Fmax ifv < Umax;

0 if ¥ = Vmax,

is optimal.

It is clear that there is no uniqueness of optimal control laws (see Remarks 2
and 4). Eventually, we could have another control (u(-),r(-)) that implies a strategy
different to the IOI one, with the same value function defined in (7.4). The following
proposition shows that the IOI strategy is, in fact, the unique admissible optimal one.
This result is obtained using PMP.

PROPOSITION 7.3. Under Assumption Al, one has that, for any initial condition
& in D, the IOI strategy is the unique optimal control law.

Proof. From the PMP, there exist multipliers p and k solutions of system (6.1),
which, in this case (n = 1), satisfies (p, m) = pp/(s)x < 0 for m defined by (6.6) and
p = p—k. Then, from (6.5), one has that % < 0and % > 0 along all of the optimal
trajectories. Also, relations (6.8), (5.5), and (5.6) imply that ¢, > 0 and ¢, > 0.

Since the admissible controls (u,r) are in C defined by (2.8) (see Remark 2) and
the states of the system (2.6) must reach the target 7, the only possibilities for ¢,
and ¢, are as follows:

i. ¢, = 0 at the beginning and then ¢, > 0;

ii. ¢, > 0 at the beginning and then ¢, = 0.
Indeed, the admissible control set C allows us to consider only configurations such
that ¢y, - ¢, = 0, and u # 0 or  # 0. This, together with (6.5), discards the choices
¢u > 0 or ¢ =0, at the beginning.

On the other hand, (6.5) implies also that u # 0 until the time when ¢,, switches
from ¢, = 0 to ¢, > 0. This time coincides with the time when v = vy and,
consequently, also with the time when ¢, switches from ¢, > 0 to ¢, = 0 (because u
becomes null at such time). Therefore, one has the following;:

i. % = Umax until v reaches vy, and then u = 0;
il. r = 0 until v = Vpax and then v = 0 and » = 1 until the concentration s
reaches syy¢.
This proves the optimality of the 101 strategy, and, by construction, we have unique-
ness.



7.2. Nonmonotonic growth functions with one maximum. In this section
we consider a continuously differentiable growth function u(-), which is nonmonotonic
and attains a unique isolated maximum point s* € (0, s;,). More precisely, this growth
function satisfies p/(s) > 0 for all s € [0,s*), p/(s) <0 for all s > s*, and p/(s*) = 0.

One instance of such functions is typically the Haldane law, given by the expres-
sion

_ s
His) = K+s+s%/R’

where K is the affinity constant and R is the inhibition constant. This kind of growth
function occurs in bioprocesses where the substrate is a toxic substance and, for big
concentrations, inhibits the activity of the microorganisms [29].

The following proposition solves our minimal time problem for this type of growth
function. This solution has been previously obtained in [20] for the class of measurable
and bounded controls, and under the assumption s* > s,,:. Furthermore, we give the
expression of the value function V'(+). For convenience, we define the number

50 = max(s*, Sout)-

PROPOSITION 7.4. For any initial condition & = (y,z,w) € D that satisfies (3.5),
the SA(s*) strategy (defined in section 3) is optimal. Furthermore, the value function
at & is given by the expression

(7.5)
Ps* (y7 Z) + 7(5) + Psout (Zj/(g) + 2(5) - S<>a 8<>) )
for z > s* > sT(s*, w),
v (yssn __SZ 5%, w;"__sz) F Qo (9(6) + 2(8) — 59,59),
V(¢ = for z < s* and z > sT(s*, w),
Psour (1(8): 2(6)), for z < st (s*,w),
@s*(s*,w)(yaz) fOT’ z > ST(S*,’UJ) > 8*,

where ¢.(+) is given by (7.1), §(-) and Z(-) by (3.1), sT(-) by (3.2), and

w(y +z — Szn) + Umax (Szn - SO)
wly + z — s%) '

1
(7.6) (€)= o) log <

Proof. First, observe that if the initial condition £ is in the target, i.e., z < Sout
and W = VUnmay, then sT(s*,w) = s¢ > s,,s > z and 2(¢) = z and, therefore it
corresponds to the third case in the definition of V' obtaining ¢, ., (7(£),2(§)) = 0,
and hence the boundary condition (5.4) is satisfied. We prove now that V(-) is C* and
fulfills the Hamilton—Jacobi inequalities (5.5) and (5.6), concluding the result from
Proposition 5.1 because one can easily check that V() is the cost associated to the
SA(s*) strategy from initial condition &.



For z > s* and s* > sf(s*,w), V() is C! and its partial derivatives are
(7.7)

1 w 1
81/‘/(5) = 81/@5* (y,Z) + ‘LL(S*) <w(y 4oz — Sin) + (Szn _ 3<>)'Umax - y+z— S*)
0y prne (§(6) +2(6) —5°.5%) -
1 w 1
azv(f) = 0, (yvz) + M(s*) <w(y Ao Sin) + (Sin — So)vmax - y+2— S*)
FOypaue (BE) +2(6) = 5°,5%) —

vt = (o vt 1)

,LL(S*) w(y + z — Sin) + (Szn - So)vmax w

Oy (F(E) + 5(€) — 50, 50) LTEZ in,

vm ax

Then, one has straightforwardly
AV (E) = (834‘:05* (y,2) = 005 (y,2)) u(2)y + 1,
1 Y+ 2 — Sin
ALV = =Dy 2 + O () s — )+ = -1).

e A
Using the property (4.2) fulfilled by the function @g«, one obtains
AT’V(&) = 07
1
Aqu = Sin_S* (az s*\Y,2) — )
(©) = (sin = ") (000 (02) = sy
1
+y+z—5)| ————— — 05 ,Z)-
Rl e e RS

Consequently, inequality (5.5) is fulfilled. For the second inequality (5.6), we distin-
guish two cases:
i y+ 2z — 8in <0. Since pu(z) < p(s*), one can write the inequality

1
W)y Tz —5) —32905*(2/72)) )

and with inequality (7.2) given by Lemma 7.1 with ¢ = s*, one deduces that

ALV(E) > (5 + 2 — 5in) (

— 9in 1 1
AV(g) > LIE ( o ) >0,
y+z—s* \u(s*)  wz)
il. y+ 2z — 8, > 0. With inequality (7.3) given by Lemma 7.1 with ¢ = s*, one
can write
Sin — 8~

BuV() = (sin =y = D0upe (0:2) + 3 = Trye 5 e

1 1 1
2 (sin =y —2) (u(z)y + w(s)(y +2z—s%) ,u(s*)y) - n(z)
1 Sin —Y — 2
u(s*)  p(s*)(y + 2z —s%)




For z < s* and z > s'(s*,w), V(-) is C! and its partial derivatives are
(7.8)

1 w !
8yV(f) = ‘LL(S*) <w(y + 2z — Sin) + (Szn — 3<>)'Umax - ;)
+ Oy Psgue (H(E) +2(6) — 59, 59) vw ’
1 w
an(g) = ILL(S*) w(y + 2z — Szn) —+ (Sin — S<>)’Umax
+ Oy Psgue (H(E) +2(6) — 59, 59) vw ’
B 1 Y+ 2z— Sin - l
0wV (&) = p(s*) <w(y + 2 = 8in) + (8in = 59 )Vmax w)

Q)y—’—z_sin.

Umax

+ 0yPspus (ﬂ(f) +2(§) - 507 S

One has clearly, from (7.1),

Oyps+(y,8%) =0 and 0.¢s(y,s") =

)

p(s*)y
which implies, from expressions (7.7) and (7.8),

lim VV(¢) = lim VV(&).

Z—8* 4 z—8% —

Consequently, V(-) is C! at points ¢ such that z = s*. From the expressions (7.8),
one can straightforward check the following equalities:

EPRICY) an _
AV(E) =1 u(z)zo d AV(E)=0.

Consider now points ¢ such that z < s'(s*,w) and V(¢) > 0. At such points, V(-) is
C' and its partial derivatives are

O,V (€) = yn,u, (9(6), 5€)
0V () = D, (3(6), 2(6)) 7
0wV (€) = Dypanus (36), 2(0)) 17— = D (36), 2(6))

Notice that when z = sf(s*,w), with sf(s*,w) > s*, one has V(¢) = 0. One can
easily check that V(-) is also C! at points ¢ such that z = sf(s*,w) and V(¢) > 0,
because, at such points, one has Z(¢) = s¢ = s*, and furthermore, function ¢, , (+)
fulfills the property (from (4.2))

o
p(s*)a(§)

Notice that one has also V(£) = Tror(€). Since ATror(€) = 0 (see the proof of
Proposition 5.3), the function V(-) is a solution of the Hamilton-Jacobi equation

020500 (U(E),8™) = Oyps,,, (4(£),8") +



(5.3) at £ when the single condition A, Tror(§) > 0 is fulfilled. Here, this condition
simply becomes p(2(£)) — u(z) = pu(s*) — u(z) > 0, which is fulfilled because s* is the
maximum of the function pu.

Finally, we consider situations for which z > sf(s*,w) > s*. This case occurs
only when s* < s,,:. At such points £ = (y, z,w), the function V(-) is C! and its
partial derivatives are

8@!‘/(5) = 8@1()03*(5*,10) (y7 Z)v
8ZV(€) = 82(1057(3*7111) (y7 Z)v

(Sin - Sout)vmax
(st (s w))(y + 2 — sT(s*, w))w?’

8wv(§) -

One can easily check that the first inequality A,V (£) > 0 is fulfilled. For the second
one, let us write

(7.9)
AUV(f) = _ay(psT(s*;w) (ya Z)y + 82(105T(s*7w) (ya Z)(S“’L - Z)

Sin — Sout)vmax

1 (st (st W)y + 2 — sT(st w)w?
= m + az(psf(s*,w)(y’ Z)(S'Ln - T y)

_ (Szn - Sout)vmax
p(st(s*,w)(y + 2 — sT(s*, w))w?

from the expression (4.2). We distinguish now two cases.
i. $in — 2z —y > 0. Expressions (7.9) and (7.2) given by Lemma 7.1 with
c = st(s*,w) give together

Sm_ST(S*vw) 1 _ 1
AV 2 e w) <u(2) u(s*(s*,w») =0

ii. sip — 2z —y < 0. Gathering expressions (7.9) and (7.3) given by Lemma 7.1
with ¢ = s'(s*,w) leads to the following inequality:

Sin — % 1 1
AV (E) > 2 < - ) >0. 0O
VS BT F)

Remark 11. For initial conditions & = (y, z,w), with z > s* > sT(s*,w), the
value of (), defined by (7.6), represents the time spent on the singular arc s = s*
from volume w up to volume v'(3) defined in (3.4). Indeed, at time t; = @, (y, 2),
one has s(t1) = s*, v(t1) = w, and z(t1) = y + z — s* (see the invariant p(¢) defined
in (2.10)). Then, the suitable control in order to keep s = s* is obtained from the

d
equation @ _ 0, that is,

dr

w=us() = L)+ u(s”)

This implies that the v(-) is the solution of the ordinary differential equation

dv _ o n(sY) } .
7= us(v) = p— S*w(y + 2= Sin) + p(s")v




up to time ¢, such that v(ts) = v, that can be solved analytically, leading to ty —t; =
v(£)-

Remark 12. Proposition 7.4 extends to impulse controls the result obtained by
Moreno [20] for measurable controls, based on a Green’s theorem argumentation.

Moreover, notice that when s* < s, the SA(s*) strategy imposes a final impulse
before reaching the target. Such situations were not considered in [20].

Remark 13. Proposition 7.4 establishes that the time associated to the singular
arc strategy is the optimal value function, but we could have that there exists another
optimal control different to this strategy. Nevertheless, one can prove uniqueness
(analogously as in Proposition 7.3) using the PMP. We will not develop this approach
here because it is very similar to the one used in Proposition 7.3 and in the proof of
Theorem 8.2 below.

8. The two-species case. We first consider functions y;(-) that are C? and such
that p}/ph is a strictly monotonic function. Without loss of generality, we assume
that u} /ub is strictly decreasing, which is equivalent to the following condition.

Assumption A2. p)(s)ph(s) > pi(s)ph(s) for any s € (0, sp].

Remark 14. Assumption A2 is fulfilled for nonproportional Monod growth func-
tions. That is, for growth functions

_ Mmax,is

- Ki—f—S’

pi(s)

Assumption A2 holds when K7 < Ks.

LEMMA 8.1. Under Assumption A2, a singular arc® I is characterized by % =0
on I.

Proof. Consider p and k solutions of PMP-system (6.1) and m defined in (6.6).
Define the auxiliary variable p = p — k. Recall that the property p(7) # 0, for any
time 7, follows from (6.2).

If I is a singular arc, it follows that the first derivatives of ¢, and ¢, are null on I.
Since controls u and r are not simultaneously null, it is equivalent to write (p,m) =0
on I (via (6.5)). Differentiating this last equation w.r.t. 7 and using expression (6.7),
it holds that

d
(8.1) (p,m) =0 and <Z3,ATm+d—m>:0 on I.
T

Since p is always nonnull and has dimension 2, equalities (8.1) are satisfied if m
and ATm + ‘Z—T are linearly dependent on I. We easily verify that, under A2, this is

equivalent to % =0 on I. Indeed, a simple computation leads to

[ (a7 ) -
dr

Vectors ATm + ‘Z—T are linearly dependent exactly when their cross product (in R?)
is null, which holds if and only if g—j = 0. We have thus proved that if I is a singular
arc, then % =0on I

ds

7| w12 (11 (8) 15 (8) — i () (s))-

2See [4, Part ITT Chapter 2] for an exact definition. In our case, a singular arc consists of an open
interval of time I, where ¢,, = ¢» = 0, and then no information on controls u and r can be obtained
directly from (6.3).



Reciprocally, suppose that % =0 on I. The above arguments imply that m and

ATm+ 42 are linearly dependent on I, obtaining from (6.7) that @ = X(7)(p, m)
on I, for a real-valued continuous map A : I — R.

This is equivalent to saying that (5, m) = Celo AD4 on T for a real constant C
and a real-valued continuous map A : I — R. Moreover, by replacing % = 01in (2.6),
it necessarily requires strictly positive controls u and r.

Suppose first that C' = 0. Then (6.5) implies that ¢, and ¢, are both constant
on I. Since u and r are strictly positive, this holds only if ¢, = ¢, =0 on I, i.e., I is
a singular arc.

Now, suppose that C' # 0. One obtains from (6.5) that ¢, and ¢, are both
strictly monotonic on I. This, together with inequalities (5.5)—(5.6), implies that ¢,
and ¢, are both strictly positive on I. But, since u and r are also strictly positive, it
contradicts (6.3). We thus conclude that C' = 0, and hence I is a singular arc. O

Consider now the next assumption on growth functions p;(+).

Assumption A3. For any s1, S2 € [Sout, Sin], One has

(82) s2 > s1 = pa(s2)pa(s1) = pa(s2)p2(s1).

Remark 15. Assumption A3 is fulfilled for growth functions constant or linear
on [Sout, Sin). For Monod functions

Mmax,is
pi(s) = K, +s’
condition (8.2) is exactly fulfilled when K; < K.

THEOREM 8.2. Assume that Assumptions A0-A1-A2-A3 are fulfilled. Then, for
any initial condition in D that satisfies (3.5), the optimal solution of the minimal time
problem associated to dynamics (2.6) consists in either the 101 strategy or the SA(s*)
strategy for some $* €]Sout, Sin|.

To prove this theorem, we need the three following technical lemmas.

LEMMA 8.3. Under Assumptions Al and A3, one has

(8.3) 1 >0 and ¢ =0 = (p,m) <O0.

Proof of Lemma 8.3. Observe that Assumption A3 implies that pfpe — piph < 0.
If ¢, = 0, then

(14 prpazr)

P2 = -
22

and then
~ /

- pr, / o
,m) = — — ] — —=,
(p > 112 (pype — papy) 1

which proves the desired result. a
LEMMA 8.4. Under Assumptions Al and A2, for p(t) € E(1) = {p = (p1,p2) |
(p,m(7)) = 0}, one has

(5.4 sen (2 om) ) = —sen (520 ).



Proof of Lemma 8.4. Let p(1) = (p1,p2) be in E(7), that is, po = —p1p)(s)z1/
1h(s)za. Tt is straightforward to check that the property

d . _ T dm _ ds _ LT
%<p,m> = <A m + —T,p> = %pl [Hl - M,2 T1

is fulfilled, from which (8.4) is deduced (recalling A2). O

LEMMA 8.5. If, for some interval of time [T_,71], one has ¢, = ¢, =0, then

(a) if p1 >0, ¢, and ¢, remain equal to zero for all T > T4 ;

(b) if p1 <0, either (p,m) >0 for all T > 74 or (p,m) <0 for all T > 7.

Proof of Lemma 8.5. Notice that if we have ¢, = ¢, = 0 in some interval of time,
necessarily, by (6.5), (p,m) = 0 on this interval. Since (p1,p2) # (0,0) for all 7 and
the vector m lies in ]0, +00[x]0, +oo[ (under Assumption 1), we deduce that p; # 0,
and therefore it does not change its sign in this interval.

Suppose now that 7 = sup{r | (p,m) =0} < 4o0. If

(8.5) 38 >0 suchthat V§€]0,0], onehas (p(7+3),m(7+4)) >0,

since ¢, and ¢, have to be nonnegative, necessarily, according to (6.5), the control r
must be zero, u = Umayx, and therefore % > 0 until (p,m) changes its sign.

(a) If p1 > 0 on [7—, 74], let us prove that (p, m) does not become positive. If it
occurs, we have (8.5), and, in such a case, % > 0. Nevertheless, by (8.4), we
obtain L (5, m) < 0 at 7, which contradicts (8.5).

With similar arguments, one can prove that (p, m) does not become negative,
and hence T = +o00.

(b) For the case p; < 0, if we have (8.5), then 4= > 0 until (5, m) changes its sign.
This change will never happen, because, from (8.4), one has %([), m) > 0 on
the set E(1) = {p = (p1,P2) | (B, m(7)) = 0}, and therefore, (p, m) remains
nonnegative.

Analogous arguments allow us to prove that if there exists § > 0 such that
for all § €]0,6] one has (p(7 + &), m(7 + J)) < 0, then (p,m) remains non-
positive. O

As a corollary of Lemma 8.5, one has that if the optimal strategy includes a
singular arc (¢, = ¢, = 0 during an interval), then it must occur with p; < 0. Indeed,
if p1 > 0 and ¢, = ¢, = 0 during an interval, the last equalities will remain for every
larger time. This situation is not allowed because p must be equal to (—1,—1) at the
final time.

On the other hand, if the optimal strategy includes a singular arc (with p; < 0),
after this process, necessarily, (p, m) must be negative. In fact, if (p, m) is positive, it
does not change its sign, and then p will never be equal to (—1, —1).

Thus, if a singular arc occurs, the volume at the end of this process must be
equal to vmax because, as (p,m) will remain nonpositive and ¢, and ¢, have to be
nonnegative, the control u is equal to zero and r = 1 for the rest of time, and then
the process of filling the tank has necessarily finished.

As a last consequence of Lemma 8.5, we obtain that in the case of a singular arc,
which is equivalent to keep the level of substrate s constant (see Lemma 8.1), this
level has to be greater than s,.¢. Indeed, if it is not the case, we have that all of the
processes finish at the end of the singular arc because v = vyax and Syt is greater
than the current substrate level, and hence the target has been reached. This cannot
occur, because, at the end, the vector p must be equal to (—1,—1).



Proof of Theorem 8.2. As in the proof of Proposition 7.3, the positivity of ¢, and
o, plays a crucial role (cf. (6.8), (5.5), and (5.6)).

Moreover, the considered admissible control set C (see Remark 2) tell us that only
optimal controls such that u # 0 or r # 0 are considered. And, therefore, ¢, and ¢,
cannot be both strictly positive.

Recall that, under Assumption Al, the matrix A of system (6.2) is cooperative
and the vector m, defined by (6.6), is always in ]0, +00[x]0, +0c0[. Then, since p =
(p1 — k,p2 — k) is equal to (—1,—1) at the final time 7', we deduce that p ¢ R? at
any time 7, and moreover, once § reaches the negative octant R? , it remains there
until time 7. Thus, thanks to Lemma 8.4, the study of the sign of p; will be a key
issue in the proof. Indeed, the arguments above imply that either p; remains always
negative, or it is positive at initial time and then it becomes negative until the final
time 7.

Hence, our proof splits into the following two cases.

Case 1: py(to) > 0. Let us first discard the following case:

(a) v < Vmax, P1 >0, (p,m) <0, and ¢, = 0.

In this situation, one has necessarily v = 0 and » = 1 in order to keep ¢,
nonnegative. Thus, s decreases, ¢, increases, and there exists a time 7 such that
(p,m) = 0 at 7 and (p, m) > 0 for larger time (because L (5, m) > 0, cf. (8.4)). Since
¢, = 0, we obtain a contradiction with Lemma 8.3.

Thus, if v < Vmax, p1 > 0, and (p,m) < 0, then ¢, > 0 and ¢, = 0. In such a
case, one has r = 0 and u = Umax, which implies that s increases and ¢, decreases
until a time such that ¢, = 0 (in order to reach the target). Since a singular arc is
not possible with f; > 0 (see Lemma 8.5), we discard the case (p,m) = £ (p, m) = 0.
On the other hand, as the case (a) above is not possible and £ (p,m) < 0 (on the set
E(7)), the equality v = vmax has to be fulfilled when ¢, = 0. For larger times, since
¢, must be nonnegative, one has u = 0, r = 1, and then the obtained trajectory is
exactly synthesized by the IOI strategy.

If v < Umax, P1 > 0, and (p, m) > 0, from Lemma 8.3, the unique possibility is to
have ¢, > 0, and consequently ¢, = 0. In such a case, one has r = 0 and u = Upyax-
Hence, s and ¢, increase. Then, there exists necessarily a time such that (p, m) = 0,
in order to reach the target. Note that, for larger time, (p,m) < 0 holds due to
%([), m) < 0. In this situation, ¢, decreases until ¢, = 0, and from Lemma 8.3, it
has to coincide with the time at which v = vya. After, since ¢, must be nonnegative,
one has u = 0 and » = 1. The obtained trajectory is again synthesized by the 101
strategy.

Hence, we have proved that when 1 (¢) is positive, the IOI strategy is optimal.

Case 2: p1(tp) < 0. Recall, from the above discussion, that p; remains always
negative. We now proceed to discard the following cases:

(b) v < Vmax, P1 <0, ¢, > 0, and (p, m) < 0.

This case implies that v = 0 and » = 1. Thus, s decreases, and, by (6.5), ¢,
increases. This together with (8.4) imply that the sign of d%(ﬁ, m) is negative (on the
set E(7) defined in Lemma 8.4). Consequently, (p, m) remains always negative, and
¢, always increases. Then the target cannot be reached because the tank is never
fulfilled.

(¢) v < Vmax, Pp1 <0, ¢, =0, and (p,m) > 0.

In this case, one necessarily obtains 7 = 0 and © = Umax (in order to keep ¢,
nonnegative). Hence, s and ¢, increase (see (6.5)). This together with (8.4) imply
that the sign of £ (p, m) is positive (on E(7)). Consequently, (5, m) remains always
positive, which is a contradiction with p = (—1,—1) at the final time.



Hence, if v < Umax, P1 < 0, and (p, m) > 0 necessarily ¢, > 0 and ¢, = 0, then
one has u = 0 and r = 1 implying that s and ¢,, decrease until (p, m) = 0. Equation
(8.4) allows us to say that the sign of - (p, m) is nonpositive, and hence (p,m) < 0
for larger times. If at time such that (p,m) = 0, we have ¢, > 0 immediately after
one has (p,m) < 0. Then u =0 (in order to keep ¢, nonnegative), and consequently
¢, remains always positive, and the tank will not be fulfilled, which discard this case.
Thus, necessarily ¢, becomes zero when (p,m) = 0. If (p, m) remains equal to zero
for an interval of time, this corresponds to a singular arc. If not, that is, (p,m) < 0
immediately after, this situation implies that « = 0 and r = 1 onwards, which is
impossible because the tank will never be filled.

Finally, we study the remaining case v < Umax, p1 < 0, ¢, = 0, and (p,m) < 0.
One has necessarily r = 0 and © = upyax, in order to keep ¢, nonnegative. Therefore,
s increases and ¢, decreases (see (6.5)) until a time 7* when one of the following three
cases occur:

- case ¢ > 0 and (p,m) = 0. This implies that © = upax and r = 0, and
consequently s increases. This together with (8.4) implies that the sign of
%([),m) is positive. Consequently, ¢, will always remain positive, which
cannot allow one to reach the target. This case is thus discarded.

- case ¢, = 0 and (p, m) < 0. This implies that w = 0 and r = 1, and therefore
(by (6.5)) ¢, becomes positive. Since (b) of Case 2 above has been discarded,
it necessarily follows that v reaches vy.x at the same time 7. The optimal
trajectory is synthesized by the 101 strategy.

- case ¢, = 0 and (p,m) = 0. Due to equality ¢, = 0 holding at the same time
7*, this configuration corresponds to a singular arc.

Thus, we have proved that if (u,7)(-) € C is optimal, then it corresponds to an
101 strategy or to the singular arc strategy for a level s* > s,,:. We finish concluding
that a singular arc cannot be applied on a substrate level greater that s;, because the
domain D = (R \ {0})x]0, sin]x]0, Ummax| is invariant. O

Remark 16. The value of s* depends on the initial condition and cannot be,
in general, explicitly determined as in the case with one nonmonotonic species (see
Proposition 7.4).

We give now an example that shows that an SA(-) strategy can be better than
an 101 strategy.

Ezample 1. We consider functions pi(-), pa(-) that fulfill Assumptions A1, A2,
and A3, but not A4:

p(s) = 8%, pa(s) =5y/s
for the values s, = 0.1 and s;, = 5 (see Figure 8.1).

We compare the strategies IOl and SA(s*), where s* minimizes the cost of the
SA(S) strategy for § € (Sout, Sin). FOr vmax = 10 and initial conditions with y;3 = 1,
z =3, and w = 1, we have computed numerically s* for different values of y5. Results
are reported in Table 8.1.

This example shows that, in the presence of a small population of a species more
efficient for small substrate concentrations, the singular arc strategy may be better
than the IOI one.

We focus now on sufficient conditions for which the 101 strategy is always optimal.
We first consider functions pu;(-) such that their graphs do not cross away from 0
(without loss of generality, one can assume that ps is above pq).

Assumption Ad. us(s) > pa(s) Vs € (0, sin).

Then, the functions ¢.(-) possess the following properties.
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Fic. 8.1. Graphs of the two growth functions.

TABLE 8.1

Y2 T(IOI) s* T(SA(s*)) | Gain

0 2.320765 | not reached - -
10~* 2.126756 1.678 1.973976 7%
1073 || 1.700494 1.97 1.515415 11%
10—2 1.186231 2.46 1.101530 7%
0.05 0.867009 3.05 0.842255 3%
0.1 0.746446 3.34 0.739046 1%
0.5 0.522361 | mot reached - -

LEMMA 8.6. Under Assumptions AO, Al, and A4, for any ¢ € (0, sin), (y,2) €
(R3\ {0}) x (¢, sin], one has

L 0:pe(y, 2) 2 Dyspe(y, 2),
il' 8yl SOC(y7 Z) 2 aygspc(y7 2)7
i 9y, pe(y, 2) < 0.

Proof. Notice that the dynamics (3.3) possesses the property that M = z1+x2+s
is constant. Then, fix a value M, and consider the reduced system

dzr
d_l = fl(xlﬂs) = Nl(s)xlﬂ
-

(8.6) ds

pri fa(z1, 8, M) = —pi(s)z1 — pa(s)(M — s — x1).
The Jacobian matrix [Jys of this two-dimensional vector field has the structure

« 4 (52 )
r1,8) = ,
T (@, 5) ( pals) = mls)

which has nonnegative off-diagonal terms for any fixed M. So, the dynamical system

(8.6) is cooperative (see [28]).
i. Consider two sets of initial conditions for system (3.3):

(y1_7y2_7zi) = (yl;y? + 67 Z) and (yi‘rayé‘raz+) = (y17y2az+6)7



where § is a positive (small) number. We check that these two initial conditions have
the same invariant x7 +x2 +s = M 4, and, from the cooperative property of system
(8.6) with M + 6, one has st (t) > s (¢) for any ¢t > 0. Thus ¢.(y1,y2,2 + ) >
we(y1,y2 + 9, z), or equivalently

0e(y1,Y2,2 +6) — c(y1, Y2, 2) < Ve(y1,y2 +6,2) — ey, y2, 2)
0 - 0 ’

and letting ¢ take arbitrary small values, we obtain

0:0c(Y,2) 2 Oy, pe(y, 2)-

ii. Similarly, we consider the sets of initial conditions

(y;,y;,z_) = (ylva +572) and (yfr7y;r,z+) = (yl +67 9272’)

and obtain, when ¢ tends toward zero,

ay1 ee(y,2) > aw‘%(ya z).

iii. We consider the sets of initial conditions

(yfvy;az_) = (ylayZ + 53 Z) and (ler,y;r’Z-i-) = (ylvaaz)a

with nonnegative . The first initial condition leads to the invariant x1+zo+s = M+,
while the second one has x; + 22 + s = M as an invariant. Dynamics (8.6) is such
that fa(x1,s, M +6) < fo(x1,s, M), and, by the cooperative property, we conclude
that p.(y1,y2 + 0,2) < @c(y1,y2, z) or equivalently

Oyspe(y,2) <0. O
Remark 17. From expression (3.1), one can notice that inequality
(8.7) 2>z

is always fulfilled. Thus, under assumptions A0, Al, and A4, if the function ¢, (-)
is such that

(8'8) 829080ut (y, Z) > 8yl Psout (y, Z), V(y, Z) € (R%r \ {O}) X (Soutv Sin]ﬂ

then, along with point i. of Lemma 8.6, inequality (8.7), and Lemma 5.2, we deduce
immediately that condition (5.11) of Proposition 5.3 is fulfilled. Unfortunately, condi-
tion (8.8) is rarely met, even for simple growth rates. In Figure 8.2, we plot iso-values
of the function

Ve(y) = 0y, M —y1 — y2)

(computed numerically) for pi(s) = s, ua(s) = 5s, M = 10, and ¢ = 1. We see that
Oy, e (+) is everywhere nonpositive, but the sign of d,,1.(-) can change. Notice that
the partial derivatives of ¥.(-) are linked to the partial derivatives of ¢.(-) as follows:

8UJ¢C(y) = ayj(pc(ya Z) - az(pc(y; Z); (] = 1, 2),

with 2 = M — y1 — y2, and we conclude that condition (8.8) is not fulfilled.
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F1G. 8.2. Iso-values of the function v.(-).

The following proposition imposes conditions on growth functions y;(-) that guar-
antee the optimality of the I0OI strategy.

PRrROPOSITION 8.7. Under Assumptions AO, A3, and A4, the IOI strategy is
optimal for any initial condition in D.

Proof. Consider ¢ € D such that Tror(§) > 0. Let us write A, Tror(§) given in
(5.8) as follows:

2 -

o - o g (2) — (2
B Tr01(6) = 3 Oy P (52) — Do (3:2)) iy (2110 E)
j=1 /'LJ (Z)
Recall that Z > z (8.7) and pu;(-) are nondecreasing (Assumption Al). Then, by
Assumption A3, one has

pa(z) —p2(2) _ mlz) —m(2)

@ mE

Lemma 8.6 gives the inequality

8@!2 Psout (gv 2) - aZ(pSout (gv 2) < 07

and consequently, from equation (4.2), we obtain

. oy sy 1) = ()
f (ayj (psout (y7 Z) 8z<psout (ya )) :u]( )yj 1 (2)
) - m)

T am Y

hE

A Tror(€) >
J

and conclude by Proposition 5.3. a

9. Conclusion. In this work, we have analyzed the minimal time problem for
fed-batch reactors with several species, for which impulse controls are allowed. We



have shown that even when all of the growth functions are monotonic, the most rapid
approach strategy is not necessarily optimal. In certain situations, it is better to follow
a singular arc instead of applying an impulse, a departure from the optimal strategy
in the one-species case. We believe that this result holds important implications for
biotechnological applications.
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