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Abstract

Airport pricing papers can be divided into two approaches. In the traditional approach the demand for airport services
depends on airport charges and on congestion costs of both passengers and airlines; the airline market is not formally mod-
eled. In the vertical-structure approach instead, airports provide an input for an airline oligopoly and it is the equilibrium
of this downstream market which determines the airports’ demand. We prove, analytically, that the traditional approach to
airport pricing is valid if air carriers have no market power, i.e. airlines are atomistic or they behave as price takers (perfect
competition) and have constant marginal operational costs. When carriers have market power, this approach may result in
a surplus measure that falls short of giving a true measure of social surplus. Furthermore, its use prescribes a traffic level
that is, for given capacity, smaller than the socially optimal level. When carriers have market power and consequently both
airports and airlines behave strategically, a vertical-structure approach appears a more reasonable approach to airport
pricing issues.
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1. Introduction

Airport pricing has been widely analyzed in the economics literature. Basso and Zhang (2007) present a
detailed account of models used and results obtained in analytical papers of airport pricing during the last
25 years. They show, among other things, that the models in the literature can be grouped into two broad
approaches. The traditional approach has used a classical partial equilibrium model where the demand for
airport services depends on airport charges and on congestion costs of both passengers and airlines; the airline
market is not formally modeled. In some cases the assumption has been that airline competition is perfect and
hence airport charges and delay costs are completely passed onto passengers. The vertical-structure approach
has instead recognized that airports provide an input for the airline market – which is modeled as a rather
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simple oligopoly – and that it is the equilibrium of this downstream market that determines the airports’
demand: the demand for airport services is therefore a derived demand.

Basso and Zhang (2007) show that not only the two approaches are different, but also the questions exam-
ined with each approach have not perfectly overlapped. This obviously raises questions about the transferabil-
ity of results, making it important to find the relationship, if any, between airport pricing models of the two
approaches. This is the purpose of the present paper.

We prove analytically that the traditional approach to airport pricing is indeed valid if air carriers have no
market power (airlines are atomistic or they behave as price takers and have constant marginal operational
costs). When there is market power at the airline level, the social surplus measure of the traditional approach
will fall short of giving a true measure of social surplus. Furthermore, the traditional approach would pre-
scribe a traffic level that is, for given capacity, smaller than the socially optimal level. Numerical examples fur-
ther show that, when there is a low degree of competition between air carriers, using the traditional approach
to determine the optimal prices and capacity levels may induce large deadweight losses. Therefore, when air
carriers have market power and consequently both airports and airlines behave strategically, a vertical-struc-
ture approach is needed to analyze airport pricing and capacity issues.

2. Traditional and vertical approaches

This section describes the basic setups of the traditional and vertical-structure approaches. We will be brief
here given the recent survey by Basso and Zhang (2007), where details and references may be found. The tra-
ditional approach has been used by, among others, Morrison (1987), Zhang and Zhang (1997), Oum et al.
(2004) and Lu and Pagliari (2004). The approach may be synthesized in a fairly concise way: in order to pro-
vide aviation services, an airport incurs both operating and capital costs. It collects user charges to cover these
costs and, for a private airport, to make a return on capital investments. Congestion at the airport induces
delays and therefore extra costs on passengers and airlines. In this approach it is assumed, usually implicitly,
that airlines fully pass airport charges to passengers; the same is assumed for airlines delay costs. Therefore,
passengers will perceive a full price consisting of the airport charge, the flight delay cost, travel-time cost, plus
other airline charges (e.g. air ticket). Oum et al. (2004) has argued that since other airline charges are exoge-
nous as far as the airport is concerned, the demand an airport faces may be considered to be a function only of
a full price which includes the airport charge P and the flight total delay cost D. The latter includes delay costs
to both airlines and passengers. The variables in the model with a single airport would be2

Q(q) demand for airport facilities measured by the number of flights, which is a function of the full price
q perceived by passengers

q P + D, the full price that determines the airport’s demand

P airport charge per flight

D = D(Q,K) flight delay cost experienced by each flight, which depends on traffic Q and airport capacity K

K capacity of the airport

C(Q) operating costs of the airport

r cost of capital

One of the main issues that have been analyzed using the traditional approach is the nature of the airport’s
choices of user charge P and capacity K, for cases in which social welfare is maximized (with and without a
budget constraint). The public airport objective function is then the following total social surplus function:
2 Fo
to ana
period
max
P ;K

Z 1

q
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r simplicity, we present a model with no intraday variations in demand, i.e. a ‘single period’ model. But this approach has been used
lyze the case of many periods. With the exception of Oum and Zhang (1990), all other papers assumed that the demands in each
were independent of each other.



In the vertical-structure approach, on the other hand, airports are viewed as providing an input for the pro-
duction of an output: travel.3 This output is produced by an oligopolistic airline industry which, taking the
airport’s price and capacity as given, would reach some equilibrium from where the airport’s demand is ob-
tained. In this approach, a passenger faces a full price which is the sum of her delay cost (rather than the air-
line’s) and the air ticket (rather than the airport charge). It follows from here that the equilibrium in the airline
market is not only equilibrium traffic but also equilibrium delays and air ticket prices. This would show that:
(i) as far as the airport is concerned, its demand will be some direct function of P, K and of the (exogenous)
airline-market structure, which in some papers is represented by the number of airlines N. Hence, the airport’s
derived demand would be Q(P,K;N). Delays enter the picture through the equilibrium of the downstream
market. (ii) How airport charges and airlines’ delay costs are passed to passengers is built inside the demand
faced by the airport and depends on the nature of the equilibrium reached in the airline market. And (iii), that
other airline charges are not exogenous to the airport because the downstream equilibrium depends on P and
K, which are decided by the airport.

From these brief explanations, it is clear that the two approaches are quite different. In fact, some authors
have been somewhat critical of the traditional approach based on the observation that it would not properly
consider all actors involved (e.g. Raffarin, 2004). As is obvious, vertical-structure models are more complex
and, therefore, they can indeed better account for the interactions between all agents. Hence, unveiling the
relationship between the two approaches boils down to find when it is legitimate to take a short-cut by using
a traditional approach rather than a vertical-structure approach. In our view, to clarify the connection
between the two approaches, there are three questions that need to be answered

1. It would seem that a full price model pertains more to the airline-market stage than the airport-market
stage. Under what conditions would it be reasonable to assume that the airport demand can be written
as Q(q) – with, q = P + D(Q,K) – rather than as Q(P,K;N)?

2. The vertical-structure approach shows that ‘consumers’ of airports are both airlines and passengers and,
therefore, a total (social) surplus function should include both airlines’ profits and passenger surplus. In
the traditional approach, however, this is not the case. There, consumer surplus has been obtained through
an integration of the airport demand function with respect to the full price, as in Eq. (1). If under some
conditions the airport demand can reasonably be written as Q(q), would its integration give a correct mea-
sure of total surplus, i.e. the sum of airlines’ profits and passenger surplus?

3. When the integration of Q(q) does not give a correct measure of the sum of airlines’ profits and passenger
surplus, but a traditional approach is used nonetheless, how do the prescribed traffic and capacity levels
compare to the real first-best ones?

3. Relationship between approaches

We build a general vertical-structure model to answer the three questions listed above.4 We start by describ-
ing the airline market, which takes airport charges and capacities as given. We use this model to derive the
demand for the airport. Consider N airlines servicing a congestible airport and producing homogeneous out-
puts. Let Qi be airline i’s number of flights, and Q ¼

PN
i¼1Qi be total output. Demand for airline services is

given by q(h), where h is the full price and q represents the total number of passengers. This full price is
the sum of the ticket price, t, and passenger delay costs:
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where a denotes passengers’ value of time and d(Q,K) is a flight’s delay. The difference between d(Q,K) here
and D(Q,K) in Section 2 is that the latter directly represented the time costs of delays, whilst d represents only
is approach was initiated by Brueckner (2002) and has been used by, among others, Brueckner (2005), Pels and Verhoef (2004),
(in press) and Zhang and Zhang (2006).
sso (in press), in a paper with completely different objectives, also examined the first two questions but using a model with restrictive

tions such as linear demands, Cournot competition and constant marginal operational cost. These restrictions are relaxed in the
t paper enabling more robust, general and precise answers.



delay in time units. To transform the demand in terms of passengers into a demand in terms of flights, we
simply assume that aircraft size times load factor equals S for all carriers. With this, we have QiS = qi, where
qi denotes the output in terms of the number of passengers carried by airline i.5 Assuming that airlines’ de-
mand is invertible, the inverse demand at the airline-market level is then represented by h(QS), with h0(QS) < 0
(i.e. downward-sloping demand).

An airline’s cost function will be given by
5 Th
CiðQi;QÞ ¼ ciðQiÞ þ ½P þ bidðQ;KÞ�Qi ð3Þ
where ci is airline i’s operational cost, P is the airport charge per flight, and bi is the congestion cost per flight
per unit of time that airline i incurs. We now assume, for expositional simplicity, that airlines have identical
costs but, as shown in Appendix, our main insights will go through with the type of asymmetry presented in
(3). Obtaining t from (2), profits of airline i are then given by
piðQi;Q; P ;KÞ ¼ ½hðQSÞ � adðQ;KÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t

SQi � cðQiÞ � ½P þ bdðQ;KÞ�Qi ð4Þ
Each of the N firms chooses its strategy variable to maximize its profit. In equilibrium, this gives rise to the
derived demand for airports as a function of the airport’s price and capacity, and the number of airlines, i.e.
QðP ;K; NÞ ¼

P
1...N Qi. Under cost symmetry, this equilibrium is in effect such that Qi = Q/N. What we want to

know first is under what conditions this derived demand may be written as Q(q). For this, first note that while
q was defined as q = P + D(Q,K) in the traditional approach, here it will be defined as
q ¼ P þ ½aS þ b�dðQ;KÞ ð5Þ
Because d is a flight’s delay in time units, [aS + b]d(Q,K) corresponds to the flight’s total delay costs D. Then,
as will be seen below, the answers to our questions are determined by the market structure at the airline level
and the nature of airlines’ interactions.

Rather than deciding a priori in which particular way airlines interact among one another (including which
decision variable they use as the strategy variable), we model interactions between airlines using conjectural
variations. The term conjectural variation is defined as a firm’s anticipation of the change in industry output
as a result of a unit change in its own output. The mathematical expression would be vi = dQ/dQi. We assume
that airlines have identical conjectures; different conjectures lead to no useful result. Thus, each firm chooses
Qi to maximize (5) while taking into account that dQ/dQi = v. Using the symmetry in equilibrium, the set of
first-order conditions lead to
ShðQSÞ � P � ðaS þ bÞdðQ;KÞ þ Qv
N

S2h0ðQSÞ � ðaS þ bÞ od
oQ

� �
� c0

Q
N

� �
¼ 0 ð6Þ
What is practical about this model is that many types of airline interaction are nested within it. So, for exam-
ple, price-taking airlines (perfect competition) is captured by v = 0. To see this, note that with v = 0, Q is inde-
pendent of firm i’s output and, hence, so are h(QS) and d(Q,K). Eq. (2) then tells us that t is unaffected by firm
i’s choice of output. In that case (6) can be written as
t ¼ c0ðQ=NÞ þ P þ bdðQ;KÞ
S

ð7Þ
That is, each airline sets the ticket price t to be the same as its marginal cost (per passenger), which is what
indeed results from the maximization of profits (4), taking t as given. Similarly, Cournot competition – where
each firm chooses output assuming its choice will lead to no change in its rivals’ outputs – is captured by v = 1,
while cartel behavior – where firms choose output to maximize their joint profits – is captured by v = N. This
is fixed-proportions assumption is quite common in vertical-structure models; see Basso and Zhang (2007) for details.



can be easily seen by solving the Cournot and Cartel games directly and checking that the first-order condi-
tions coincide with (6) evaluated at these two values of v.6

Eq. (6) implicitly defines the airport demand Q. Using the expression for q in Eq. (5), we can write (6) as
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Since h(QS) is invertible, this equation shows that, in general, Q would depend not only on q but also on qQ

(�oq/oQ), i.e. the derivative of q with respect to Q. The (implicit) demand for airports then should in general
be Q � Q(q,qQ,N,v) and not Q(q). However, there are two special cases in which the airport demand can in-
deed be written as Q(q). First, when airlines behave competitively (v = 0) and have constant marginal opera-
tional cost, c0ð�Þ ¼ ~c. In this case, Eq. (8) becomes
ShðQSÞ � q� ~c ¼ 0 ð9Þ

From (9) it is easy to see that the airport’s demand could be expressed as a function Qðq; ~c; SÞ.

The second case is when v > 0 and we let N approach to infinity, N ?1, so each firm produces infinites-
imal output (yet total output Q is obviously bounded). In this case, Eq. (8) will reduce to (9) by redefining ~c to
be the intercept of the marginal operational cost function, i.e. ~c ¼ limx!0c0ðxÞ. Note that this atomistic carriers’
case can only exist if airlines have no fixed-costs, and it corresponds to the classical idea of perfect competition
being the limiting case of oligopoly when the number of firms is very large.

Hence, from (6) and the two exceptions above we conclude that whenever airlines do not behave compet-
itively, the airport demand cannot be written as Q(q). These are the cases in which airlines possess market
power, that is, their price is above marginal cost, as can be seen by using (2) and (5) to rewrite (8) as
t � c0 þ P þ bd
S

¼ Qv
NS
½ðaS þ bÞdQ � h0ðQSÞS2� ð10Þ
The left-hand side of (10) is the difference between the (ticket) price and marginal cost per passenger. Under
both special cases this difference is zero but in general, since dQ(�od/oQ) > 0 (i.e. increasing traffic volume will,
for given airport capacity K, increase congestion) and h0(QS) < 0, oligopoly models with v > 0 and finite N will
result in price being greater than marginal cost, with the magnitude of the difference capturing the degree of
the price distortion. For example, collusion (v = N) will lead to a greater price distortion than Cournot com-
petition (v = 1).

The above discussions lead to Proposition 1:

Proposition 1. The airport demand can be expressed as Q(q) if and only if air carriers have no market power, i.e.

if and only if: (i) airlines are atomistic; or (ii) they are price takers and have constant marginal operational costs.
It is worth pointing out that this result is not necessarily limited to the conjectural-variation version of oli-
gopoly. To see this, define d (P0) as the difference between price and marginal cost. We can write
t � c0 þ P þ bd
S

¼ dðQ;N ; ðaS þ bÞdQÞ ð11Þ
are aware of the argument that the notion of ‘conjectural variations’ is logically flawed if interpreted literally. This happens because
del in question is a ‘one-shot’ game and hence firms do not have an opportunity to respond to changes in output by their rivals.
e take the approach of taking v’s as market conduct parameters that are used to include, in a single one-shot game, Cournot, cartel
rfect competition models as special cases (see Church and Ware, 2000, p. 273; Brander and Zhang, 1990). That is, by simply
ng v by these three values, we recover the outcomes of these three structures, but v does not need to have any other economic
g. As is to be seen in the text, while the conjectural-variations model facilitates the discussion, our insights are more general. Also, it

d that we refer to the case of v = 0 as perfect competition rather than as Bertrand competition. Under Bertrand competition, airlines
prices (rather than quantities as in Cournot), and it is usually understood that this leads to marginal cost pricing. This, however,
when marginal costs are constant but here, because of congestion costs, the marginal cost each firm is increasing in its output.

nd competition may still give rise to marginal cost pricing (and hence be captured by v = 0) under increasing marginal costs, but
to problems of existence and uniqueness of equilibria, this would require more conditions, such as certain rationing rules (see
ar, 1995, 1997).



in which d may vary with Q, dQ, N and possibly with other variables or parameters. In the conjectural-vari-
ation model, d reduces to Qv[(aS + b)dQ � h0(QS)S2]/NS; but it will take a different expression if firms’ inter-
actions arise in other forms, such as a Stackelberg leader–follower game, or a ‘dominant firm’ model. The crux
of the matter is that, as long as d is strictly positive, the third term in (8) is non-zero so one would not be able
to solve (8) in order to write the airport demand as Q(q).

We now turn to the second question: if the airport demand can be expressed as Q(q), would the integration
of Q(q) correspond to airlines’ profits plus passenger surplus? Specifically, we want to know how the two
equivalent expressions:
7 Th
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q
QðqÞdq ¼

Z Q

0

qðy;KÞdy � qðQ;KÞQ ð12Þ
relate to airlines’ profits and passenger surplus.7 To answer this question, we first compute passenger surplus
(denoted as PaxS). It is given by
PaxS ¼
Z q

0

hðxÞdx� hðqÞq ð13Þ
where q = QS. But, under the assumptions needed for Q(q) to be a sensible model, it is true from (9) that
hðxÞ ¼ ½qðx=S;KÞ þ ~c�=S. Replacing this in (13), we obtain
PaxS ¼ 1

S

Z q

0

ðqðx=S;KÞ þ ~cÞdx� qþ ~c
S

q ¼ 1

S

Z q

0

qðx=S;KÞdxþ ~cq
S
� qþ ~c

S
q

PaxS ¼ 1

S

Z q

0

qðx=S;KÞdx� qðQ;KÞQ
ð14Þ
Using y = x/S to change variables in (14) one finally shows that PaxS = I and, therefore, we have shown that
the integration of Q(q), given by I, is exactly equal to passenger surplus. What about airlines’ profits? An air-
line’s profit is given by Eq. (4). Using (5) and the symmetry condition, profit becomes pi = (Sh(QS) � q)
(Q/N) � c(Q/N). The aggregate (equilibrium) profit of airlines, P ¼

P
ip

i, is then easily obtainable as
P ¼ Q½ShðQSÞ � q� � Nc
Q
N

� �
ð15Þ
Next, if the operational costs of airlines c(Qi) have no fixed-cost component, then the last term on the right-
hand side (RHS) is equal to ~cQ under either set of assumptions, as we now show. For the case of perfect com-
petition conjectures, the assumption needed is constant marginal cost. Thus, we directly have cðQ=NÞ ¼ ~cQ=N ,
which leads to ~cQ in the last term on the RHS. In the case of atomistic airlines (N ?1), using the L0 Hopital
rule it is easy to see that limN!1NcðQ=NÞ ¼ ~cQ, where ~c ¼ limx!0c0ðxÞ, i.e. the intercept of the marginal oper-
ational cost function; hence, (15) becomes
P ¼ Q½ShðQSÞ � q� ~c� ¼ 0 ð16Þ

where the second equality arises from (9). We can thus conclude that

Proposition 2. The integral of the derived demand for airports will correspond to airlines’ profits plus passenger

surplus if: (i) airlines are atomistic or (ii) they are price takers and have constant marginal operational costs.

Certainly, all the assumptions needed are associated with competitive markets. Perfect competition in the
airline market was, in fact, the maintained assumption of Oum et al. (2004). Hence, we have provided theo-
retical support for their claim. But we have also provided boundaries for the use of the traditional approach: it
would be reasonable to use it only if market power at the airline level is absent.
is question in fact has to do with the more general subject of the relation between input and output market surplus measures (see
en, 1979; Quirmbach, 1984; Basso, 2006). The fact that full prices are being considered, however, implies that the established results
literature are not directly applicable.



We can then move to the third and final question, i.e. what would happen to the prescribed optimal traffic
and capacity levels if, despite the fact that airlines have market power, a traditional approach were used? Note
that with market power, modeling the demand for the airport as Q(q) is wrong, implying that calculatingR1

q QðqÞdq is incorrect as well. However, a modeler may still define q(Q,K) = P(Q,K) + [aS + b]d(Q,K) as
in (5) – where P(Q,K) is the inverse demand for the airport – and then maximize I ¼

R Q
0

qdQ� qQ with
respect to Q and K. I(Q,K) is then the measure of ‘consumer surplus’ from the traditional approach. What
we want to know first is how I compares to PaxS + P. Focusing on the case of constant marginal cost we
know, from (2) and (11), that hðQÞ ¼ qþ ~cþ SdðQ;N ; ðaS þ bÞdQÞ. Replacing this in (13) and using the same
change of variables as before, we obtain that the passenger surplus can be computed as
8 Fro
Q0 > Q
PaxS ¼
Z Q

0

qðy;KÞdy � qðQ;KÞQ
� �

þ
Z Q

0

Sdðy;KÞdy � SdðQ;KÞQ
� �
where, for notational simplicity, we write d as a function of only Q and K. On the other hand, the industry
profit is given by
P ¼ SdðQ;KÞQ > 0
Thus, the sum of passenger surplus and airlines’ profits is given by
PaxS þP ¼
Z Q

0

qdQ� qQ
� �

þ
Z Q

0

Sdðy;KÞdy
from where it follows that
IðQ;KÞ ¼ PaxS þP�
Z Q

0

Sdðy;KÞdy ð17Þ
Since d > 0, it flows that I will fall short of giving the sum of airlines’ profits and passenger surplus. Notice
further that, in line with Proposition 2, the above expression reduces to I if and only if d = 0. Hence, it is easy
to see that if one uses I(Q,K) to, for example, evaluate a project that changes the traffic level from Q0 to Q1 (at
a constant capacity), DI would underestimate the change in surplus of passengers and airlines if Q0 < Q1, and
would overestimate it if Q0 > Q1.8

Moreover, using I instead of the true measure of surplus would prescribe a traffic level, for given capacity,
that is smaller than the social optimum. To see this, add the airport profit, U(Q,K), to both sides of (17), dif-
ferentiate with respect to Q and then evaluate it at QI(K), the traffic level that maximizes I + U for a given K.
This procedure leads to
oðPaxS þPþ UÞ
oQ

����
QI ðKÞ

¼ oðI þ UÞ
oQ

����
QI ðKÞ
þ o

oQ

Z Q

0

Sdðy;KÞdy

����
QI ðKÞ

¼ dðQIðKÞ;KÞ > 0 ð18Þ
and hence, Q*(K) > QI(K). Note that, since there is no budget constraint for the airport, there is no guarantee
that the airport would cover its costs in either the traditional or the vertical structure approach. However, our
results go through if budget constraints are included. The only thing that would change in Eq. (18) is that U
would be multiplied by (1 + k), where k is the Lagrange multiplier of the airport budget constraint, which en-
sures cost recovery.

These discussions lead to

Proposition 3. If airlines have market power, the surplus measure of the traditional approach will fall short of

giving a true measure of total social surplus. Furthermore, its use would prescribe a traffic level that is, for given

capacity, smaller than the socially optimal level.

As for the capacity level, it is easy to prove – with a similar procedure and the proof is available from the
authors upon request – that using I instead of the true measure of social surplus would prescribe a capacity
m (17) we see directly that DI ¼ DPaxS þ DP�
RQ1

Q0
Sdðy;KÞdy, and since d is positive, if Q0 < Q1 then DI < DPaxS + DP and if

1 then DI > DPaxS + DP.



Table 1
Parameter values for the numerical analysis

Demand Airlines Airport

a 40 S 100 r 10,000
A 2000 ~c 36,000 C 2000
B 0.15 b 2500
level, for given traffic volume, that is larger than the socially optimal level (for the same given traffic volume).
However, while thinking of cases with fixed capacity is relatively straightforward – a matter of short versus
long run – the intuition for a fixed level of traffic is harder. In reality, both prices and capacities may be
decision variables especially in the long run. This would nevertheless complicate the comparisons between the
approaches because it does not really make sense to compare only traffic levels, or only capacity levels. The
simplest thing to do is to directly compare social surplus levels. Hence, in order to give some idea about the
size of the mistake committed if the traditional approach is used when in effect airlines have market power, we
further conducted some numerical examples, which are presented in the next section.
4. Numerical examples

The first thing we need for conducting numerical simulation is explicit functional forms for the demand and
delay functions. We choose a simple linear inverse demand as follows:
9 Th
article
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pax/m
hðqÞ ¼ A� Bq ð19Þ

and use
dðQ;KÞ ¼ Q
KðK � QÞ ð20Þ
for the delay function, which obviously fulfills dQ(�o d/oQ) > 0.9 We also need to make explicit the airport’s
profit function U(Q,K). We consider a simple cost function, separable and linear in operating and capital
costs, so that the profit is given by
UðQ;KÞ ¼ P ðQ;KÞ � Q� C � Q� r � K ð21Þ

Here, P(Q,K) is the inverse demand function faced by the airport, which is derived from the equilibrium
downstream and which can be obtained from Eq. (6). With these functions, we now need to find reasonable
values for the parameters in the model in order to obtain good insights regarding the size of the differences
between approaches. We use the parameter values in Table 1.

Most of these parameters – some of which were used by Basso (in press) in his numerical simulations – are
close to what have been found in empirical studies: For a, Morrison and Winston (1989, p. 90) empirically
found a value of $45.55 an hour in 1988 dollars. For S, recall that it reflects the product between aircraft size
and load factor. In North America, the average plane size in 2000 was 159 (see Swan, 2002; Table 2); consid-
ering in addition an average load factor of 65% (see Oum and Yu, 1997, p. 33) we obtain a value for S of
103.35. Regarding airlines’ operational per flight cost ~c, Brander and Zhang (1990) proposed the following
formula for the marginal cost per passenger in a direct connection: cpm(dist/AFL)�gdist, where cpm is the cost
per passenger-mile, dist is the origin–destination distance, AFL is the average flight length of the airline and g
is the cost sensitivity to distance. A value of ~c ¼ $36; 640 results from using g = �0.43, AFL = 800,
cpm = $0.20 and dist = 2000.10 For b, Morrison (1987, p. 51, footnote 20) finds that the hourly extra cost
for an aircraft due to delays is approximately $1700 (resulting from 3 484 to 18 * 100) in 1980 dollars.
is convex function of Q was proposed by the US Federal Aviation Administration (1969) and has been discussed and used in many
s. See details in Basso and Zhang (2007).
e following were the average values for American and United Airlines in the period 1981–1988 (see Oum et al., 1993): cpm = $0.12/
ile, AFL = 775 miles and g = �0.43.



The two objective functions that we seek to maximize with respect to Q and K are total social surplus and
the integral of the derived demand for airports. Total social surplus is obtained directly as the sum of passen-
ger surplus, airlines profits and airport profits. Note that total social surplus is directly a function of Q and K,
since passenger surplus depends on Q (see Eq. (13)), airlines profits depend on Q and P(Q,K) in Eq. (4), and
the same goes for airport profits in (21). On the other hand, the traditional approach maximizes the area under
the airport’s demand curve. Using the expression on the right hand side of (12), where q is defined as in (5), we
also obtain an expression that depends on Q and K. We solve these two programs subject to non-negativity
constraints and Q < K, using the software Mathematica (Wolfram Research Inc., 2007).

The numerical analysis showed that, for N = 2 and Cournot Competition, if the capacity is set at the socially
optimal level (K = 109 in this case), the socially optimal traffic would be Q = 101 flights per unit of time, while
the traditional approach would prescribe Q = 72. If both traffic and capacity levels are allowed to change, then
the traditional approach would prescribe Q = 67 and K = 75, generating deadweight losses that correspond to
11.32% of the maximum achievable. Under Cournot competition, these deadweight losses decrease rapidly as N

increases: they are 4.07% for N = 4 and 1.26% for N = 8. This is not surprising because it is well known that
Cournot competition has a quite fast rate of convergence to the competitive outcome (for homogenous goods
the rate is 1/N; see e.g. Vives, 2002), and we showed that the divergence between the two airport pricing
approaches is actually dependent on the degree of market power at the airline level (see Eq. (17)).

Finally, if one changes the values of the parameters for which there was less external information, such as
A, B, C and r, the values of Q and K one obtains change, but deadweight losses values do not change much.
For example, if for N = 2 we were to use A = 5000 and B = 1, as in Pels and Verhoef (2004), deadweight losses
would be 11.21%, even though traffic and capacity values are now less than half of what they were. If we
decrease the marginal cost of capital to half its value (r = 5000) deadweight losses would be 11.25%.

5. Conclusion

Our analysis has shown that the traditional approach to airport pricing is valid if air carriers have no mar-
ket power, i.e. if (i) airlines are atomistic or (ii) they behave as price takers and have constant marginal oper-
ational costs. Thus, we uncovered an implicit assumption made in the traditional approach: airlines are
passive players. However, when there is market power at the airline level, this approach may result in a surplus
measure that falls short of giving a true measure of surplus, and would prescribe a traffic level that is, for given
capacity, smaller than the socially optimal level. Its use would generate deadweight losses that may be large if
the degree of competition between air carriers is low.

Although a vertical-structure approach is a more reasonable approach to airport pricing and capacity
investment when carriers have market power and consequently both airports and airlines behave strategically,
our analysis shows that it also requires a detailed knowledge of how competition takes place in the airline mar-
ket, and of airlines’ costs and demands. Such requirement may obscure the problem of optimal pricing and
investment policies regarding airports. Furthermore, since our goal was to clearly delineate the boundaries
of the traditional approach, we have used a simplified model of airport operations. Yet, in reality, there
are a number of other issues that are of importance, such as concession revenues, competition between air-
ports, or environmental charges. When studying these or other airport-related issues in more complicated
models, it is quite clear that both approaches may still be used (see Basso and Zhang, 2007). However, we hope
that it is clear now that adding any of these complexities to the model, would not make the problem depicted
in this paper go away. Hence, if a particular topic has been analyzed only through the traditional approach,
our suggestion would be to reassess the conclusions, using a vertical-structure approach.

Acknowledgements

We are very grateful to two anonymous referees and Ken Small for their perceptive and very helpful com-
ments. We also thank the seminar participants at University of British Columbia and the ATRS Conference
for helpful comments on an earlier version of the paper. Financial support from FONDECYT-Chile, Grant
1070711, from the Millenium Institute ‘‘Complex Engineering Systems” and from the Social Science and
Humanities Research Council of Canada (SSHRC) is gratefully acknowledged.



Appendix

We consider here the case in which airlines have (potentially) asymmetric costs, as in Eq. (3). With symmetry,
it was natural to define q as q = P + [aS + b]d(Q,K). However, when airlines have different bi, it is not obvious
how q should be defined. Finding an adequate definition for q is then part of the answer to question 1 in this
setting. The new equation that defines equilibrium in the price-taking case (perfect competition) case is
ShðQSÞ � P � ðaS þ biÞdðQ;KÞ �
ociðQiÞ

oQi

¼ 0 ðA:1Þ
Eq. (A.1) holds "i. Adding from 1 to N, and dividing by N we obtain
ShðQSÞ � P � ðaS þ �bÞdðQ;KÞ � 1

N

XN

i¼1

ociðQiÞ
oQi

¼ 0 ðA:2Þ
where �b is the average of the bi. If we now make the assumption that airlines have constant marginal opera-
tional cost, oci(Qi)/oQi = ci, and we define
q ¼ P þ ½aS þ �b�dðQ;KÞ ðA:3Þ

�c ¼ ð1=NÞ
XN

i¼1

ci ðA:4Þ
Then Eq. (A.2) becomes
ShðQSÞ � q� �c ¼ 0 ðA:5Þ
which shows that, under perfect competition and cost asymmetry, the airport demand can still be modeled as a
function of q, only that now q considers the average of the bi, and we need to consider the average of the (con-
stant) marginal operational costs.

For the conjectural-variation model, with asymmetry the set of first-order conditions are
opi

oQi

¼ ShðQSÞ � P � ðaS þ biÞd þ Qiv S2h0ðQSÞ � ðaS þ biÞ
od
oQ

� �
� ociðQiÞ

oQi

¼ 0 ðA:6Þ
Adding from 1 to N, and dividing by N we obtain
ShðQSÞ � P � ðaS þ �bÞd þ QvS2h0ðQSÞ
N

� v
N

XN

i¼1

QiðaS þ biÞ
od
oQ
� 1

N

XN

i¼1

ociðQiÞ
oQi

¼ 0 ðA:7Þ
Thus, again, under v = 0 we get back to the perfect competition case: Eq. (A.7) reduces to Eq. (A.2). For cases
in which v > 0, the only way to obtain an expression that leads to Q as a function of q, where q is as in (A.3), is
to let N approach infinity. When N ?1, each firm produces infinitesimal output, i.e. Qi ? 0, while total out-
put Q is bounded. Therefore (A.7) becomes
ShðQSÞ � P � ðaS þ �bÞd � 1

N

XN

i¼1

ci ¼ 0 ðA:8Þ
where this time ci is given by ci ¼ limQi!0
ocðQiÞ
oQi

. Thus, re-defining �c ¼ limN!1
1
N

PN
i¼1ci, Eq. (A.8) shows that the

airport’s demand could be expressed as a function Qðq; �cÞ, where q is still defined by (A.3). Thus, Proposition 1
may be relaxed to accommodate cost asymmetries as long as one considers an average q and the average of the
marginal costs (or their intercepts).

Next, Proposition 2 also holds with asymmetric costs. First, notice that it is still true that PS, given by Eq.
(13), is equal to I, given by Eq. (12). The only change is that in the derivation we would use �c rather than ~c. But
then, it is evident that under either set of assumptions, each airline will make zero profit if it does not have a
fixed-cost. For the perfect competition case, the ticket price equals the full marginal cost (per passenger) of an

airline, as (A.1) shows t ¼ P þ bidðQ;KÞ þ ociðQiÞ
oQi

� 	
=S. Since here we need to assume that marginal costs are



flat, multiplying both sides by SQi leads to SQit = ci(Qi) + (P + bid(Q,K))Qi, from where pi = 0 and P = 0. In
the case of atomistic carriers, pi is evidently zero because each airline produces infinitesimal output and there
are no fixed-costs by assumption.
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