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Abstract

A family of Boussinesq systems has recently been proposed by Bona, Chen, and Saut in [J.L. Bona, M. Chen, J.-C. Saut, Boussinesq equations
and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12 (4) (2002)
283–318] to describe the two-way propagation of small-amplitude gravity waves on the surface of water in a canal. In this paper, we investigate the
boundary stabilization of the Boussinesq system of KdV–KdV type posed on a bounded domain. We design a two-parameter family of feedback
laws for which the solutions issuing from small data are globally defined and exponentially decreasing in the energy space.
c
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1. Introduction

The classical Boussinesq systems were first derived by
Boussinesq to describe the two-way propagation of small-
amplitude, long wavelength gravity waves on the surface
of water in a canal. These systems and their higher-order
generalizations also arise when modelling the propagation of
long-crested waves on large lakes or on the ocean and in
other contexts. In [2] the authors derived a four-parameter
family of Boussinesq systems to describe the motion of small-
amplitude long waves on the surface of an ideal fluid under the
gravity force and in situations where the motion is sensibly two
dimensional. More precisely, they studied a family of systems
of the form{

ηt + wx + (ηw)x + awxxx − bηxxt = 0
wt + ηx + wwx + cηxxx − dwxxt = 0,

(1)

which are all approximations to the same order of the Euler
equations [2]. In (1), η is the elevation from the equilibrium
position, and w = wθ is the horizontal velocity in the flow
∗ Corresponding author at: Institut Elie Cartan, UMR 7502 UHP/CNRS/
INRIA, B.P. 239, F-54506 Vandœuvre-lès-Nancy Cedex, France.
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at height θh, where h is the undisturbed depth of the liquid.
The parameters a, b, c, d, that one might choose in a given
modelling situation, are required to fulfill the relations

a + b =
1
2

(
θ2

−
1
3

)
, c + d =

1
2
(1 − θ2) ≥ 0,

where θ ∈ [0, 1] specifies which horizontal velocity the
variable w represents (cf. [2]). Notice that a +b + c +d = 1/3.

In mathematical studies, considerations have been mainly
given to pure initial value problems and well-posedness
results [3]. However, the practical use of the above system
and its relatives does not always involve the pure initial value
problem. Instead, the initial boundary value problem often
comes to the fore.

In [11], a rather complete picture of the control properties
of (1) on a periodic domain with a locally supported forcing
term was given. According to the values of the four parameters
a, b, c, d, the linearized system may be controllable in any
positive time, or only in large time, or may not be controllable
at all. These results were also extended in [11] to the generic
nonlinear system (1), i.e., when all the parameters are different
from 0.

In this work we are concerned with the exponential decay
of the total energy associated to a Boussinesq system of
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KdV–KdV type (i.e. a = c > 0 and b = d = 0) posed on
a finite interval I = (0, L){

ηt + wx + (ηw)x + wxxx = 0 0 < x < L , t ≥ 0
wt + ηx + wwx + ηxxx = 0, 0 < x < L , t ≥ 0

(2)

satisfying the boundary conditions
w(0, t) = 0, wx (0, t) = α0ηx (0, t),

wxx (0, t) = 0, t > 0
w(L , t) = α2η(L , t), wx (L , t) = −α1ηx (L , t),

wxx (L , t) = −α2ηxx (L , t), t > 0

(3)

and the initial conditions{
η(x, 0) = η0(x), 0 < x < L
w(x, 0) = w0(x), 0 < x < L .

(4)

In (3), α0, α1 and α2 denote some nonnegative real constants.
For the sake of simplicity, we have assumed that a = c = 1 in
using the scaling t → λt , x → λx . The KdV–KdV system is
expected to admit global solutions on R, and it also possesses
good control properties on the torus [11].

Under the above boundary conditions, if we multiply the first
equation by η, the second equation by w and integrate over
(0, L), we obtain

dE

dt
= −α2|η(L , t)|2 − α1|ηx (L , t)|2 − α0|ηx (0, t)|2

−
1
3
w3(L , t) −

∫ L

0
(ηw)xηdx,

where E(t) =
1
2

∫ L
0 (η2

+ w2)dx is the total energy associated
to (2). This indicates that the boundary conditions play the role
of a feedback damping mechanism, at least for the linearized
system. Therefore, the following questions arise: Does E(t) →

0 as t → ∞? If it is the case, can we give the decay rate?
The problem might be easy to solve when the underlying model
has a intrinsic dissipative nature. Moreover, in the context of
coupled systems, in order to achieve the desired decay property,
the damping mechanism has to be designed in an appropriate
way in order to capture all the components of the system.

The main result of this paper provides a positive answer for
these questions.

Theorem 1.1. Assume that α0 ≥ 0, α1 > 0, and α2 = 1. Then
there exist some numbers ρ > 0, C > 0 and µ > 0 such
that for any (η0, w0) ∈ [L2(I )]2 with ‖(η0, w0)‖[L2(I )]2 ≤

ρ, the system (2)–(4) admits a unique solution (η, w) ∈

C(R+
; [L2(I )]2) ∩ C(R+∗

; [H1(I )]2) ∩ L2(0, 1; [H1(I )]2)

which fulfills

‖(η, w)(t)‖[L2(I )]2 ≤ Ce−µt
‖(η0, w0)‖[L2(I )]2 ∀t ≥ 0, (5)

‖(η, w)(t)‖[H1(I )]2 ≤ C
e−µt

√
t

‖(η0, w0)‖[L2(I )]2 ∀t > 0. (6)

Let us point out that a quite simple, but not very efficient,
boundary damping may be designed as follows. Setting v =

η + w, u = η − w, we notice that the Boussinesq system (2)
is transformed into a system of two KdV equations coupled
through nonlinearities

vt + vx + vxxx +
1
4
[(v − u)(v + u)]x

+
1
4
(v − u)(v − u)x = 0,

ut − ux − uxxx +
1
4
[(v − u)(v + u)]x

−
1
4
(v − u)(v − u)x = 0.

Therefore, the choice of the boundary conditions v(0) =

v(L) = vx (L) = 0 together with u(0) = u(L) =

ux (0) = 0 yields at once the global well-posedness and the
exponential stability of the Boussinesq system in the energy
space. However, the exponential stability property holds only
if L is not a critical length in the sense of [14], that is

L 6∈

2π

√
k2 + l2 + kl

3
; k, l ∈ N∗

 .

The main interest of Theorem 1.1 rests on the fact that, with the
damping mechanism proposed in (3), the stabilization holds for
any length of the domain.

The proof of Theorem 1.1 is obtained in two steps: First we
study the linearized system to derive some a priori estimates and
the exponential decay in the L2-norm. We establish the Kato
smoothing effect by means of the multiplier method, while the
exponential decay is obtained with the aid of some compactness
arguments that reduce the issue to a spectral problem (see,
for instance, [1,14]). These estimates are then combined to
prove the global well-posedness together with the exponential
stability of the solutions of the Boussinesq system issued from
small initial data. The trick is to combine the decay rate in
the H1-norm with the Kato smoothing effect to form a single
pointwise estimate, and next to apply the contraction mapping
theorem in a convenient weighted space.

The stabilization of the KdV equation has been investigated
by several authors. First, we can mention the work [6] where
a damping mechanism, distributed along all the domain and
guaranteeing the mass conservation, was introduced in a
periodic domain. In [6] it was shown that the solutions converge
exponentially to the averaged constant solution as time tends to
infinity (see also [5]). The same was done by Russell and Zhang
in [16,18] by means of a damping mechanism with localized
support, periodic boundary conditions and small initial data.
The same problem has also been addressed by means of a
boundary damping with (almost) periodic boundary conditions
(see [17]). All the above results, except [6], are local in the
sense that only small-amplitude solutions have been shown
to decay exponentially; they are essentially linear stability
results. For the KdV equation with homogeneous boundary
conditions, Rosier [14] proved that the decay of solutions of
the linearized system fails for some critical values of the length
of the interval (0, L). In order to handle the critical lengths
and to have the solutions of the KdV stabilized, Menzala
et al. [13] introduced the extra damping term Bu = a(x)u



where a ∈ L∞(0, L) and a(x) ≥ a0 > 0 a.e. in an open,
non-empty subset ω of (0, L) containing a set of the form
(0, δ) ∪ (L − δ, L), δ > 0. Combining multiplier techniques,
the so-called compactness-uniqueness argument and Unique
Continuation results they concluded that the energy decays
exponentially to zero in bounded sets of initial data. Later on,
proceeding as in [13], the general case was solved in [12].
This result has also been extended to the generalized KdV
model by Rosier and Zhang [15], and Linares and Pazoto [7].
More recently, it was shown in [9] that a very weak amount of
additional damping stabilizes the KdV equation. In particular,
a damping mechanism dissipating the L2-norm as a(·) does
is not needed. Dissipating the H−1(ω)-norm proves to be
sufficient. For instance, one can take the damping term Bu =

1ω(− d2

dx2 )−1u, where 1ω stands for the characteristic function

of the set ω, and (− d2

dx2 )−1 denotes the inverse of the Dirichlet
Laplacian.

The results described above, except [7,15], were extended
with similar statements in [9,10] for a nonlinear coupled system
of KdV equations derived by Gear and Grimshaw in [4] as a
model to describe strong interactions of long internal gravity
waves in stratified fluid.

The paper is outlined as follows: Section 2 is devoted to
the proofs of the Kato smoothing effect and of the exponential
decay in the L2-norm for the linearized system. These estimates
are next used in Section 3 to prove the local well-posedness
and the exponential stability of the solutions of the Boussinesq
system issued from small initial data.

2. Linear estimates

In this section we establish a series of linear estimates used
thereafter. To begin with, we apply the classical semigroup
theory to the linearized system

ηt + wx + wxxx = 0, 0 < x < L , t ≥ 0 (7)

wt + ηx + ηxxx = 0, 0 < x < L , t ≥ 0 (8)

with the boundary conditions
w(0, t) = 0, wx (0, t) = α0ηx (0, t),

wxx (0, t) = 0, t > 0
w(L , t) = α2η(L , t), wx (L , t) = −α1ηx (L , t),

wxx (L , t) = −α2ηxx (L , t), t > 0

(9)

and the initial conditions{
η(x, 0) = η0(x), 0 < x < L
w(x, 0) = w0(x), 0 < x < L .

(10)

Let X0 = [L2(I )]2 be endowed with its usual inner product,
and let us consider the operator A : D(A) ⊂ X0 → X0 with
domain

D(A) =

{
(η, w) ∈ [H3(I )]2

| w(0) = 0, w(L) = α2η(L),

wx (0) = α0ηx (0), wx (L) = −α1ηx (L), wxx (0) = 0,

wxx (L) = −α2ηxx (L)
}

and defined by A(η, w) = (−wx − wxxx , −ηx − ηxxx ). Then
the following result holds.

Proposition 2.1. If αi ≥ 0 for i = 1, 2, 3, then A generates a
continuous semigroup of contractions (S(t))t≥0 in X0.

Proof. Clearly, A is densely defined and closed, so we are done
if we prove that A and its adjoint A∗ are both dissipative in X0.
It is readily seen that A∗

: D(A∗) ⊂ X0 → X0 is given by
A∗(µ, v) = (vx + vxxx , µx + µxxx ) with domain

D(A∗) =

{
(µ, v) ∈ [H3(I )]2

| v(0) = 0, v(L) = α2µ(L),

vx (0) = −α0µx (0), vx (L) = α1µx (L), vxx (0) = 0,

vxx (L) = −α2µxx (L) − 2α2µ(L)
}

.

Pick any (η, w) ∈ D(A). After some integrations by parts, we
obtain that

(A(η, w), (η, w))X0 = −α2|η(L)|2

−

{
α1|ηx (L)|2 + α0|ηx (0)|2

}
≤ 0,

which demonstrates that A is a dissipative operator in X0.
Analogously, we can deduce that for any (µ, v) ∈ D(A∗)

(A∗(µ, v), (µ, v))X0 = −α2|µ(L)|2

−

{
α1|µx (L)|2 + α0|µx (0)|2

}
≤ 0

so that A∗ is dissipative, as well. The proof is complete. �

The following proposition provides useful estimates for the
mild solutions of (7)–(10). The first ones are standard energy
estimates, while the last one reveals a Kato smoothing effect.

Proposition 2.2. Let (η0, w0) ∈ X0 and (η, w) =

S(·)(η0, w0). Then for any T > 0∫ L

0
(|η0(x)|2 + |w0(x)|2)dx

−

∫ L

0
(|η(x, T )|2 + |w(x, T )|2)dx

= 2
∫ T

0

{
α2|η(L , t)|2 + α1|ηx (L , t)|2

+ α0|ηx (0, t)|2
}

dt, (11)

T

2

∫ L

0
(|η0(x)|2 + |w0(x)|2)dx

=
1
2

∫ L

0

∫ T

0
(|η|

2
+ |w|

2)dtdx

+

∫ T

0
(T − t)

{
α2|η(L , t)|2 + α1|ηx (L , t)|2

+ α0|ηx (0, t)|2
}

dt. (12)

If in addition α2 = 1, then (η, w) ∈ L2(0, T ; [H1(I )]2) and

‖(η, w)‖L2(0,T ;[H1(I )]2) ≤ C‖(η0, w0)‖X0 , (13)

where C = C(T ) is a positive constant.



Proof. Let C denote a positive constant which may vary from
line to line. Pick any (η0, w0) ∈ D(A). Multiplying (7) by η, (8)
by w, adding the two obtained equations and integrating over
(0, L)× (0, T ), we obtain after some integrations by parts (11).
The identity may be extended to any initial state (η0, w0) ∈ X0
by a density argument. Multiplying (7) by (T − t)η, (8) by
(T − t)w, and integrating over (0, L) × (0, T ) we derive (12)
in a similar way. Let us proceed to the proof of (13). Multiply
(7) by xw, (8) by xη, integrate over (0, L)× (0, T ), and add the
obtained equations. We obtain∫ L

0

∫ T

0
x(ηw)t dxdt +

∫ L

0

∫ T

0

x

2
(w2

+ η2)x dxdt

+

∫ L

0

∫ T

0
x(wwxxx + ηηxxx )dxdt = 0. (14)

After some integrations by parts we obtain∫ L

0

∫ T

0
x(wwxxx + ηηxxx )dxdt =

3
2

∫ L

0

∫ T

0
(w2

x + η2
x )dxdt

+ (α1α2 − 1)

∫ T

0
η(L , t)ηx (L , t)dt

+

∫ T

0
η(0, t)ηx (0, t)dt −

L(α2
1 + 1)

2

∫ T

0
ηx (L , t)2dt

+ L(1 − α2
2)

∫ T

0
η(L , t)ηxx (L , t)dt. (15)

By standard inequalities, we may write for any δ > 0∫ T

0
η(0, t)ηx (0, t)dt ≤

∫ T

0

(
δ

2
η(0, t)2

+
1
2δ

ηx (0, t)2
)

dt

≤ Cδ

∫ L

0

∫ T

0
(η2

+ η2
x )dxdt + (2δ)−1

∫ T

0
ηx (0, t)2dt.

Picking δ so that Cδ ≤ 1/2, and assuming that α2 = 1, we infer
from (11) and (15) that∫ T

0

∫ L

0
(w2

x + η2
x )dxdt ≤

∫ L

0

∫ T

0
x(wwxxx + ηηxxx )dxdt

+ C
∫ L

0
(|η0(x)|2 + |w0(x)|2)dx . (16)

Then (13) follows from (14), (16) and (11). �

We are in a position to prove the exponential stability of the
linearized system.

Theorem 2.3. Assume that α0 ≥ 0, α1 > 0, and that α2 = 1.
Then there exist two constants C0, µ0 > 0 such that for any
(η0, w0) ∈ X0, the solution of (7)–(10) satisfies

‖(η(t), w(t))‖X0 ≤ C0e−µ0t
‖(η0, w0)‖X0 ∀t ≥ 0. (17)

Proof. Using (11) and a classical argument, we only have to
prove the following observability inequality

‖(η0, w0)‖
2
X0

≤ C
∫ T

0
{|η(L , t)|2 + α1|ηx (L , t)|2

+ α0|ηx (0, t)|2}dt, (18)
where (η, w) denotes the solution to (7)–(10). This is done in
three steps.

STEP 1. (COMPACTNESS-UNIQUENESS ARGUMENT)
We argue by contradiction, applying the compactness-

uniqueness argument due to E. Zuazua (see [8]). If (18) is false,
then we may find a sequence (ηn

0 , wn
0 ) in X0 such that

1 =

∫ L

0
(|ηn

0 |
2
+ |wn

0 |
2)dx > n

∫ T

0
(|ηn(L , t)|2

+ α1|η
n
x (L , t)|2 + α0|η

n
x (0, t)|2)dt. (19)

It follows from (13) and (19) that (ηn, wn) = S(·)(ηn
0 , wn

0 )

is bounded in L2(0, T ; [H1(I )]2). By (7) and (8), (ηn
t , wn

t )

is bounded in L2(0, T ; [H−2(I )]2), hence, applying Aubin’s
lemma, we see that a subsequence of {(ηn, wn)}, again denoted
by {(ηn, wn)}, converges strongly in L2(0, T ; X0) towards
some pair (η, w). Using (12) and (19), we see that (ηn

0 , wn
0 )

is a Cauchy sequence in X0, hence for some pair (η0, w0) ∈ X0
we have that

(ηn
0 , wn

0 ) → (η0, w0) in X0.

Clearly, (η, w) = S(·)(η0, w), and we infer from (19) that

η(L , .) = α1ηx (L , .) = α0ηx (0, .) = 0 (20)

and that ‖(η0, w0)‖X0 = 1.

STEP 2. (REDUCTION TO A SPECTRAL PROBLEM)
We eliminate the time in following the procedure described

in [1] for the wave equation and in [14] for the Korteweg–de
Vries equation.

Lemma 2.4. For any T > 0, let NT denote the space of all the
(initial states) (η0, w0) ∈ X0 for which the solution (η, w) =

S(·)(η0, w0) of (7)–(10) satisfies (20). If NT 6= ∅ for some
T > 0, then there exist λ ∈ C and (η0, w0) ∈ H3(0, L; C)2,
with (η0, w0) 6= (0, 0), such that

λη0 + w′

0 + w′′′

0 = 0 (21)

λw0 + η′

0 + η′′′

0 = 0 (22)

w0(0) = w′

0(0) = w′′

0(0) = 0 (23)

w0(L) = w′

0(L) = 0 (24)

w′′

0(L) = −η′′

0(L) (25)

α0η
′

0(0) = α1η
′

0(L) = η0(L) = 0. (26)

Proof. The proof is very similar to the one of [14, Lemma 3.4],
and so it is omitted. �

To obtain the contradiction, it remains to prove that a triplet
(λ, η0, w0) as above does not exist.

STEP 3. (NO NONTRIVIAL SOLUTION FOR THE SPECTRAL

PROBLEM)

Lemma 2.5. Let λ ∈ C and (η0, w0) ∈ H3(0, L; C)2 fulfilling
(21)–(26). Then η0 = w0 = 0.



Proof. Let us introduce the function v := η0 + w0. Taking
the sum of (21) and (22) and using (24)–(26), we see that
v fulfills λv + v′

+ v′′′
= 0 and the (terminal) conditions

v(L) = v′(L) = v′′(L) = 0. (Recall that α1 > 0, hence
η′

0(L) = 0.) It follows that v ≡ 0, i.e., η0 ≡ −w0 on [0, L].
Thus (21) may be written −λw0 + w′

0 + w′′′

0 = 0, and we infer
from (23) that w0 ≡ 0. This completes the proofs of Lemma 2.5
and of Theorem 2.3. �

Remark 2.6. When α1 = 0, the exponential decay (17) fails to
be true in general. Indeed, when L =

π
2 +kπ , k ∈ N∗, we notice

that the triplet (λ, η0, w0) = (0, sin(x−L), 0) solves (21)–(26),
so that the energy of the solution issued from (η0, w0) is not
dissipated. A similar phenomenon was pointed out in [14] for
KdV.

For 0 ≤ s ≤ 3, let Xs denote the collection of all the
functions (η, w) ∈ [H s(I )]2 satisfying the s-compatibility
conditions

w(0) = w(L) − η(L) = 0 when 1/2 < s ≤ 3/2

w(0) = w(L) − η(L) = w′(0) − α0η
′(0) = w′(L) + α1η

′(L)

= w′′(0) = w′′(L) + η′′(L) = 0
when 3/2 < s ≤ 3.

Xs is endowed with the Hilbertian norm ‖(η, w)‖2
Xs

=

‖η‖
2
H s (I ) + ‖w‖

2
H s (I ). Using Theorem 2.3 and some interpola-

tion argument, we derive an exponential stability result in each
space Xs for 0 ≤ s ≤ 3.

Corollary 2.7. Let α0, α1, and α2 be as in Theorem 2.3. Then
for any s ∈ [0, 3] there exists a constant Cs > 0 such that
for any (η0, w0) ∈ Xs , the solution (η(t), w(t)) of (7)–(10)
belongs to C(R+

; Xs) and fulfills

‖(η(t), w(t))‖Xs ≤ Cse−µ0t
‖(η0, w0)‖Xs . (27)

Proof. (27) has already been established for s = 0 in
Theorem 2.3. Let us proceed to the case s = 3. Pick any U0 =

(η0, w0) ∈ X3 = D(A), and write U (t) = (η(t), w(t)) =

S(t)U0. Let V (t) = Ut (t) = AU (t). Then V is the mild
solution of the system{

Vt = AV
V (0) = AU0 ∈ X0

hence, by Theorem 2.3, the estimate ‖V (t)‖X0 ≤ C0e−µ0t

‖V0‖X0 holds. Since V (t) = AU (t), V0 = AU0, and the
norms ‖U‖X0 + ‖AU‖X0 and ‖U‖X3 are equivalent on X3, we
conclude that for some constant C3 > 0 we have that

‖U (t)‖X3 ≤ C3e−µ0t
‖U0‖X3 .

This proves (27) for s = 3. The fact that (27) is still valid for
0 < s < 3 follows by a standard interpolation argument, since
Xs = [X0, X3]s/3. �

3. Well-posedness and exponential stability

We now turn our attention to the well-posedness and to the
stability properties of (2)–(4). Let U = (η, w), U0 = (η0, w0)
and N (U ) = −((ηw)′, ww′), where ′
= d/dx . Then Eqs. (2)–

(4) may be recast in the following integral form

U (t) = S(t)U0 +

∫ t

0
S(t − s)N (U (s))ds. (28)

Using the Kato smoothing effect established in Proposi-
tion 2.2, we first prove that (28) is locally well-posed in the
space X0 = [L2(I )]2.

Theorem 3.1. For any (η0, w0) ∈ X0, there exists a time T > 0
and a unique solution (η, w) ∈ C([0, T ]; X0) ∩ L2(0, T ; X1)

of (28).

Proof. By computations similar to the ones performed in the
proof of Proposition 2.2, we obtain that for any ( f, g) ∈

L1(0, T ; X0), the solution (η, w) of the system{
ηt + wx + wxxx = f
wt + ηx + ηxxx = g

supplemented with (9) and (10) fulfills

sup
0≤t≤T

‖(η, w)(t)‖X0 +

(∫ T

0

∫ L

0
(|wx |

2
+ |ηx |

2)dxdt

) 1
2

≤ C

(
‖(η0, w0)‖X0 +

∫ T

0
‖( f, g)‖X0 dxdt

)
(29)

for some constant C = C(T, L) nondecreasing in T . A density
argument yields that (η, w) ∈ L2(0, T ; X1).

Let U0 = (η0, w0) be given. To prove the existence of a
solution to the integral equation (28), we introduce the map Γ
defined by

(ΓU )(t) = S(t)U0 +

∫ t

0
S(t − s)N (U (s))ds.

We shall prove that Γ has a fixed point in some ball BR(0) in
the space E = L2(0, T ; X1), endowed with its natural norm.
We need the following

CLAIM 1. There exists a constant K > 0 such that

‖N (U1) − N (U2)‖X0 ≤ K (‖U1‖X1 + ‖U2‖X1)‖U1 − U2‖X1

∀U1, U2 ∈ X1. (30)

The claim follows at once from the following estimate, valid for
any (η, w) ∈ H1(I ) × H1(I ) and some constant C > 0

‖wη′
‖L2(I ) ≤ ‖w‖L∞(I )‖η

′
‖L2(I ) ≤ C‖w‖H1(I )‖η‖H1(I ).

Let T > 0, R > 0 be numbers whose values will be specified
later, and let U ∈ BR(0) ⊂ E be given. Then, by Claim 1,
N (U ) ∈ L1(0, T ; X0), hence ΓU ∈ L2(0, T ; X1) by (29).
Moreover

‖ΓU‖E ≤ ‖S(·)U0‖E + C
∫ T

0
‖N (U (s))‖X0 ds

≤ ‖S(·)U0‖E + C K‖U‖
2
E .

It follows that for R > 0 and T > 0 small enough, Γ maps
BR(0) into itself. Invoking Claim 1, one can show in a similar
way that this mapping contracts if R is small enough. Then by
the contraction mapping theorem, there exists a unique solution



U ∈ E to the fixed-point problem (28). It is easy to see that
U ∈ C([0, T ]; X0). �

Due to a lack of a priori X0-estimate, the issue of the
global existence of solutions is difficult to address. However,
the global existence together with the exponential stability may
be established for small initial data. To that end, the Kato
smoothing estimate and the exponential decay rate in X1 are
combined into a pointwise (in time) estimate.

Lemma 3.2. For any µ ∈ (0, µ0), there exists a constant
C = C(µ) > 0 such that for any U0 ∈ X0

‖S(t)U0‖X1 ≤ C
e−µt

√
t

‖U0‖X0 ∀t > 0. (31)

Proof. Pick any µ ∈ (0, µ0). Let u0 ∈ X0, and set U (t) :=

S(t)U0 for all t ≥ 0. By Proposition 2.2 applied with T = 1,
there exists a constant CK > 0 such that

‖U (·)‖L2(0,1;X1)
≤ CK ‖U0‖X0 . (32)

In particular U (t) ∈ X1 for almost t ∈ (0, 1). We may therefore
find a sequence tn ↘ 0 such that U (tn) ∈ X1 for each n. As
U (t) ∈ X1 for each t ≥ tn by Corollary 2.7, we conclude that
U (t) ∈ X1 for all t > 0. On the other hand, by (27), we have
that

‖U (T )‖X1 ≤ C1e−µ0(T −t)
‖U (t)‖X1 ∀T ≥ t (33)

whenever U (t) ∈ X1. Pick T ∈ (0, 1]. Integrating in (33) with
respect to t on (0, T ), we infer that

[C−1
1 ‖U (T )‖X1 ]

2
∫ T

0
e2µ0(T −t)dt

≤

∫ T

0
‖U (t)‖2

X1
dt ≤ C2

K ‖U0‖
2
X0

hence

‖U (T )‖X1 ≤ CK C1

√
2µ0

e2µ0T − 1
‖U0‖X0 ≤

CK C1
√

T
‖U0‖X0

for 0 < T ≤ 1. Therefore

‖U (t)‖X1 ≤ CK C1eµ e−µt

√
t

‖U0‖X0 ∀t ∈ (0, 1]. (34)

(31) follows easily from (33) and (34), since µ < µ0. �

We are in a position to prove the well-posedness and the
exponential stability for solutions issued from small initial data
in X1. Fix a number µ ∈ (0, µ0), and let us introduce the space

F = {U = (η, w) ∈ C(R+
; X1); ‖eµtU (t)‖L∞(R+;X1) < ∞}

endowed with its natural norm.

Theorem 3.3. There exists a number r0 > 0 such that for any
(η0, w0) ∈ X1 with ‖(η0, w0)‖X1 ≤ r0, the integral equation
(28) admits a unique solution (η, w) ∈ F.
Proof. Let U0 = (η0, w0) be given with ‖U0‖X1 ≤ r0, and let
U (·) = (η(·), w(·)) ∈ F be given with ‖U‖F ≤ R, r0 and R
being chosen later. We define the function ΓU by

(ΓU )(t) = S(t)U0 +

∫ t

0
S(t − s)N (U (s))ds ∀t ≥ 0.

We shall prove that Γ has a fixed point in the ball BR(0) ⊂ F
provided that r0 > 0 is small enough. We infer from (29) that
ΓU ∈ C(R+

; X0) ∩ L2
loc(R

+
; X1) with (ΓU )(0) = U0. We

claim that ΓU ∈ F . Indeed, by (27),

‖eµt S(t)U0‖X1 ≤ C1‖U0‖X1

and for all t ≥ 0∥∥∥∥eµt
∫ t

0
S(t − s)N (U (s))ds

∥∥∥∥
X1

≤ eµt
∫ t

0
C

e−µ(t−s)

√
t − s

‖N (U (s))‖X0ds

≤ C
∫ t

0

eµs

√
t − s

K (e−µs
‖U‖F )2ds

≤ C K‖U‖
2
F

∫ t

0

e−µ(t−s)

√
s

ds

≤ C K (2 + µ−1)‖U‖
2
F ,

where we used (31), Claim 1, the definition of F , and the
calculus estimate∫ t

0

e−µ(t−s)

√
s

ds ≤

∫ 1

0

ds
√

s
+

∫ max(1,t)

1
e−µ(t−s)ds ≤ 2 + µ−1.

Pick R > 0 such that 2C K (2 + µ−1)R ≤
1
2 , and r0 such that

C1r0 =
R
2 . Then, for ‖U0‖X1 ≤ r0 and ‖U‖F ≤ R, we obtain

that

‖eµt (ΓU )(t)‖X1 ≤ C1r0 + C K (2 + µ−1)R2
≤ R ∀t ≥ 0,

hence Γ maps the ball BR(0) ⊂ F into itself. Similar
computations show that Γ contracts. By the contraction
mapping theorem, Γ has a unique fixed point in BR(0). �

Let us now complete the proof of Theorem 1.1. Slightly
modifying the proof of Theorem 3.1, we obtain that for T = 1
there exists a number ρ > 0 such that for any U0 ∈ X0
with ‖U0‖X0 ≤ ρ, the integral equation (28) has a unique
solution U in the ball BR(0) ⊂ L2(0, 1; X1), where R =

2‖S(·)U0‖L2(0,1;X1)
≤ C‖U0‖X0 . In particular, there exists

t0 ∈ (0, 1) such that U (t0) ∈ X1 and ‖U (t0)‖X1 ≤ R. If in
addition R ≤ r0, then we infer from Theorem 3.3 that U (·)

may be extended to R+ as a solution of (2)–(4) with

‖U (t)‖X1 ≤ C‖U (t0)‖X1 e−µ(t−t0) ≤ Ce−µt
‖U0‖X0

∀t ≥ t0.

Using (29) and Claim 1, we easily establish (5) on [0, 1]. The
proof of (6) on (0, 1] is essentially the same as for Lemma 3.2.
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