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Abstract. We review some recent existence results for the elliptic problem
∆u+up = 0, u > 0 in an exterior domain, Ω = R

N \D under zero Dirichlet and

vanishing conditions, where D is smooth and bounded, and p > N+2

N−2
. We prove

that the associated Dirichlet problem has infinitely many positive solutions.
We establish analogous results for the standing-wave supercritical nonlinear
Schrödinger equation ∆u− V (x)u + up = 0 where V ≥ 0 and V (x) = o(|x|−2)
at infinity. In addition we present existence results for the Dirichlet problem
in bounded domains with a sufficiently small spherical hole if p differs from
certain sequence of resonant values which tends to infinity.

1. Introduction and statement of the main results. In this paper we will
review some recent results concerning semilinear elliptic equations with a power
nonlinearity which is above the critical exponent. We will mostly deal with two
specific model problems. One is the classical Lane-Emden-Fowler equation in a
exterior domain,

∆u+ up = 0 , u > 0 in R
N \ D̄ , (1)

u = 0 on ∂D , lim
|x|→+∞

u(x) = 0 (2)

where D be a bounded domain in R
N with smooth boundary. Another problem,

largely treated in the literature is

∆u− V (x)u + up = 0, u > 0, lim
|x|→+∞

u(x) = 0, (3)

the standing-wave problem for a nonlinear Schrödinger equation. Here V is a non-
negative potential and we assume p > 1.

In both problems, as in nonlinear elliptic equations in general, solvability above

criticality namely p > N+2
N−2 is an issue widely open. A major technical obstacle in

understanding such problems stems from the lack of (local) Sobolev embeddings
suitably fit to a weak formulation of this problem. Direct tools of the calculus
of variation, very useful in subcritical, and even critical cases, see for instance
[1, 2, 3, 4, 14] are not appropriate in the supercritical case.

In this paper we find existence results for problems (1)-(2) and (3) from the optic
of singular perturbations. We find that these problems “hide” a parameter which
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indexes a continuum of solutions which asymptotically vanish over compact sets.
To describe our results our starting point is the problem in entire space

∆u+ up = 0, u > 0 in R
N , (4)

which for radially symmetric solutions u = u(r), r = |x| reduces to the equation

u′′ +
N − 1

r
u′ + up = 0 . (5)

This equation can be analyzed through phase plane analysis after a transformation

introduced by Fowler [10] in 1931: v(s) = r
2

p−1u(r), r = es, which transforms
equation (5) into the autonomous ODE

v′′ + αv′ − βv + vp = 0 (6)

where

α = N − 2 −
4

p− 1
, β =

2

p− 1

(

N − 2 −
2

p− 1

)

. (7)

Since α and β are positive for p > N+2
N−2 , the Hamiltonian energy

E(v) =
1

2
v̇2 +

1

p+ 1
vp+1 −

β

2
v2

strictly decreases along trajectories. Using this it is easy to see the existence of

a heteroclinic orbit which connects the equilibria (0, 0) and (0, β
1

p−1 ) in the phase
plane (v, v′), which correspond respectively to a saddle point and an attractor. A

solution v(s) of (6) corresponding this orbit satisfies v(−∞) = 0, v(+∞) = β
1

p−1

and w(r) = r−
2

p−1 v(log r) solves (5) and is bounded at r = 0. Then all radial
solutions of (4) defined in all R

N have the form

wλ(x) := λ
2

p−1w(λ|x|), λ > 0. (8)

We denote in what follows by w(x) the unique positive radial solution

∆w + wp = 0 in R
N , w(0) = 1. (9)

While Problems (1)-(2) and (3) do not carry any parameter explicitly, we can
make a parameter appear by means of replacing the variable u in both equations

by λ
2

p−1u(λx), in such a way that Problem (1)-(2) becomes

∆u+ up = 0 , v > 0 in R
N \ D̄λ , (10)

u = 0 on ∂Dλ , lim
|x|→+∞

u(x) = 0 (11)

where Dλ := λD is now a small region. Similarly Problem (3) becomes

∆u− Vλ(x)u + up = 0, u > 0, lim
|x|→+∞

u(x) = 0, (12)

where

Vλ(x) = λ−2V (λx). (13)

If the potential V is assumed to satisfy the asymptotic behavior

V (x) = o(|x|−2) as |x| → +∞

then we observe that away from the origin Vλ(x) → 0 as λ→ 0. Thus both problems
may be regarded, away from the origin, as small perturbations of problem (4) when
λ > 0 is sufficiently small.



Our aim is to establish that solutions to problem (10)-(11) and to (12) which lie
close to the radial solution w(x) of (9) indeed exist for any sufficiently small λ > 0,
in spite of the singular behavior of the problems near the origin. We will do this by
linearization and a perturbation argument in suitable functional spaces. Thus the
key element is to understand the invertibility properties of the operator ∆ + pwp−1

in entire space.

Equivalently, we will find solutions to (1)-(2) and (12) which lie close to wλ(x)
given by (8) for any small λ. We have the validity of the following results.

Theorem 1. [6], [7] For any p > N+2
N−2 there is a continuum of solutions uλ, λ > 0,

to Problem (1)-(2), such that

uλ(x) = β
1

p−1 |x|−
2

p−1 (1 + o(1)) as |x| → ∞ (14)

and uλ(x) → 0 as λ→ 0, uniformly in R
N \ D.

In reality this result hides two situations that are quite different. The continuum
of solutions in this result turns out to be a two-parameter family, dependent not
only on all small λ but also on a point ξ ∈ R

N used as the reference origin. The
bottom line is that an inverse for the linearized operator ∆ + pwp−1 indeed exists
for p > N+1

N−3 . However if N+2
N−2 < p ≤ N+1

N−3 the operator is not surjective, having
a range orthogonal to the generators of translations. It turns out that a further
adjustment of the origin ξ still yields the result.

Concerning the Schrodinger equation (3) we thus assume that V ≥ 0 satisfies
condition (13).

Theorem 2. Assume that V ≥ 0, V ∈ L∞(RN ) and that (13) holds. Let N ≥ 4,
p > N+1

N−3 . Then problem (3) has a continuum of solutions uλ(x) such that (14)

holds and uλ(x) → 0 as λ→ 0, uniformly in R
N .

Again, the situation in the remaining supercritical range is more difficult. We do
not know if the decay condition (13) of V suffices alone, but we have for instance,
the validity of the following result.

Theorem 3. Assume that V ≥ 0, V ∈ L∞(RN ) and N+2
N−2 < p ≤ N+1

N−3 . Then the

result of Theorem 2 also holds true if there exist C > 0 and µ > N such that

V (x) ≤ C|x|−µ, |x| ≥ 1.

Let us go back for a moment to the phase portrait associated to the radial problem
∆u + up = 0. We observe that the radial cases supercritical and subcritical with
p > N

N−2 are completely dual: In equation (6) β remains positive but α becomes
negative. The effect of this is basically to make the phase portraits equivalent, just
with arrows inverted in the orbits, with obvious dual consequences. For instance,
inner-subcritical in a ball has a classical solution, which in the phase diagram is
represented by the unstable manifold of (0, 0). Correspondingly, in the supercritical
case, to the orbit representing the stable manifold of (0, 0), it corresponds to the
unique solution w∗ to the exterior problem with fast decay, namely w∗ satisfies

∆w∗ + wp∗ = 0 , w∗ > 0 in R
N \ B̄1(0) , (15)

w∗ = 0 on ∂B1(0) , lim sup
|x|→+∞

|x|2−Nw∗(x) < +∞ , (16)



Given that we are finding solutions in exterior domains which decay at infinity,
it is reasonable to ask whether we can also find solutions in bounded domains with
small holes. We consider the Lane-Emden-Fowler equation in for exponents p above
critical in a domain Ω with a small hole drilled (A Coron type domain [4]). Thus
we assume that Ω has the form

Ω = D \Bδ(Q) (17)

where D is a bounded domain with smooth boundary, Bδ(Q) ⊂ D and δ > 0 is to
be taken small. Thus we consider the problem of finding classical solutions of

∆u+ up = 0 , u > 0 in D \Bδ(Q) , (18)

u = 0 on ∂D ∪ ∂Bδ(Q) . (19)

Our main result states that there is a sequence of resonant exponents,

N + 2

N − 2
< p1 < p2 < p3 < · · · , with lim

k→+∞
pk = +∞ (20)

such that if p is supercritical and differs from all elements of this sequence then
Problem (1)-(2) is solvable whenever δ is sufficiently small.

Theorem 4. [9] There exists a sequence of the form (20) such that if p > N+2
N−2 and

p 6= pj for all j, then there is a δ0 > 0 such that for any δ < δ0, Problem (18)-(19)
possesses at least one solution.

In the background of our result is problem (15). The solutions we find have a
profile similar to w suitably rescaled. More precisely, Let us observe that

w∗δ(x) = δ−
2

p−1w∗(δ
−1|x−Q|) (21)

solves uniquely the same problem with B1(0) replaced with Bδ(Q). The idea is to
consider w∗δ as a first approximation for a solution of Problem (18)-(19), provided
that δ > 0 is chosen small enough. What we shall prove is that an actual solution
of the problem, which differs little from w∗δ does exist. To this end, it is necessary
to understand the linearized operator around w∗δ.

The rest of this paper presents the main elements involved in the proofs of the
above results. Full details are provided in the articles [6, 7, 8, 9].

2. The operator ∆ + pwp−1
λ in R

N . The results of Theorems 1-3 are based on a
suitable linear theory devised for the linearized operator associated to the equation
∆u + up = 0 at u = wλ in entire space R

N and in the application of perturbation
arguments. As we have mentioned, a critical number p = N+1

N−3 is present where the
invertibility nature of the operator changes drastically.

2.1. The case p > N+1
N−3 . Let us consider the norms

‖φ‖∗,λ = λσ sup
|x|≤ 1

λ

|x|σ|φ(x)| + λ
2

p−1 sup
|x|≥ 1

λ

|x|
2

p−1 |φ(x)|

‖h‖∗∗,λ = λσ sup
|x|≤ 1

λ

|x|2+σ|h(x)| + λ
2

p−1 sup
|x|≥ 1

λ

|x|2+
2

p−1 |h(x)|.

The proof is based on a similar result valid in entire R
N : Let us consider the

problem

∆φ+ pwp−1
λ φ = h in R

N . (22)



Lemma 5. Assume N ≥ 4 and p > N+1
N−3 . For 0 < σ < N − 2 there exists a

constant C > 0 such that for any λ > 0 and h with ‖h‖∗∗,λ < +∞, equation (22)
has a solution φ = Tλ(h) such that Tλ defines a linear map and

‖Tλ(h)‖∗,λ ≤ C‖h‖∗∗,λ.

The invertibility analysis in this range is in strong analogy with one carried out
in [13] in the construction of singular solutions with prescribed singularities for
N
N−2 < p < N+2

N−2 in bounded domains.

2.2. The proof of Lemma 5. By scaling out λ and using the definitions of the
norms, we just need to prove the result for λ = 1. We denote the norms involved
simply by ‖ · ‖∗ and ‖ · ‖∗∗. Let us consider h with ‖h‖∗∗ < +∞ and decompose it
in the form

h(x) =

∞
∑

k=0

hk(r)Θk(θ), r > 0, θ ∈ SN−1 (23)

where Θk, k ≥ 0 are eigenfunctions of the Laplace-Beltrami operator in SN−1,
normalized so that they constitute an orthonormal system in L2(SN−1). We take
Θ0 to be a positive constant, associated to the eigenvalue 0 and Θi, 1 ≤ i ≤ N is
an appropriate multiple of xi

|x| which has eigenvalue λi = N − 1, 1 ≤ i ≤ N . We

recall that the set of eigenvalues is given by {j(N − 2 + j) | j ≥ 0}.

We look for a solution φ to (22) in the form

φ(x) =

∞
∑

k=0

φk(r)Θk(θ) . (24)

Then φ satisfies (22) if and only if

φ′′k +
N − 1

r
φ′k +

(

pwp−1 −
λk
r2

)

φk = hk, for all r > 0, for all k ≥ 0. (25)

To construct solutions of this ODE we need to consider two linearly independent
solutions z1,k, z2,k of the homogeneous equation

φ′′k +
N − 1

r
φ′k +

(

pwp−1 −
λk
r2

)

φk = 0, r ∈ (0,∞). (26)

Once these generators are identified, the general solution of the equation can be
written through the variation of parameters formula as

φ(r) = z1,k(r)

∫

z2,khkr
N−1dr − z2,k(r)

∫

z1,khkr
N−1dr

where the symbol
∫

designates arbitrary antiderivatives, which we will specify in
the choice of the operators. It is helpful to recall that if one solution z1,k to (26) is
known, a second, linearly independent solution can be found in any interval where
z1,k does not vanish as

z2,k(r) = z1,k(r)

∫

z1,k(r)
−2r1−Ndr . (27)

One can get the asymptotic behaviors of any solution z as r → 0 and as r → +∞
by examining the indicial roots of the associated Euler equations. It is known that



r2w(r)p−1 → β as r → +∞ where

β =
2

p− 1

(

N − 2 −
2

p− 1

)

.

Thus we get the limiting equation, for r → ∞,

r2φ′′ + (N − 1)rφ′ + (pβ − λk)φ = 0, (28)

while as r → 0,

r2φ′′ + (N − 1)rφ′ − λkφ = 0. (29)

In this way the respective behaviors will be ruled by z(r) ∼ r−µ as r → +∞ where
µ solves

µ2 − (N − 2)µ+ (pβ − λk) = 0

while as r → 0 µ satisfies

µ2 − (N − 2)µ− λk = 0.

Next we shall construct each of the φk’s in the expansion (24), in such a way that
they define bounded linear operators of hk in the norms considered. This method
is reminiscent to that in [13], see also [12].

2.2.1. The construction of φ0.

Lemma 6. Let k = 0 and p > N+2
N−2 . Then equation (25) has a solution φ0 which

depends linearly on h0 and satisfies

‖φ0‖∗ ≤ C‖h0‖∗∗. (30)

Proof. For k = 0 the possible behaviors at 0 for a solution z(r) to (26) are simply

z(r) ∼ 1, z(r) ∼ r2−N

while at +∞ this behavior is more complicated. The indicial roots of (29) are given
by

µ0± =
N − 2

2
±

1

2

√

(N − 2)2 − 4pβ.

The situation depends of course on the sign of D = (N − 2)2 − 4pβ. It is observed
in [11] that D > 0 if and only if N > 10 and p > pc where we set

pc =

{

(N−2)2−4N+8
√
N−1

(N−2)(N−10) if N > 10

∞ if N ≤ 10.

Thus when p < pc, µ0± are complex with negative real part, and the behavior of a
solution z(r) as r → +∞ is oscillatory and given by

Z(r) = O(r−
N−2

2 ).

When p > pc, we have µ0+ > µ0− > 2
p−1 .

Independently of the value of p, we have that the function

z1,0 = rw′ +
2

p− 1
w

satisfies equation (26) for k = 0. Using asymptotic formulae derived for w in [11],
we find the estimates



if p < pc : |z1,0(r)| ≤ Cr
N−2

2 (31)

if p = pc : z1,0(r) = cr−
N−2

2 log r (1 + o(1)) (32)

if p > pc : z1,0(r) = cr−µ0− (1 + o(1)) , (33)

where c 6= 0.

Case p < pc. We define z2,0(r) for small r > 0 by

z2,0(r) = z1,0(r)

∫ r

r0

z1,0(s)
−2s1−N ds (34)

where r0 is small so that z1,0 > 0 in (0, r0) (which is possible because z1,r ∼ 1 near
0). Then z2,0 is extended to (0,+∞) so that it is a solution to the homogeneous

equation (26) (with k = 0) in this interval. As mentioned earlier z2,0(r) = O(r−
N−2

2 )
as r → +∞.

We define

φ0(r) = z1,0(r)

∫ r

1

z2,0h0s
N−1 ds− z2,0(r)

∫ r

0

z1,0h0s
N−1 ds,

and omit a calculation that shows that this expression satisfies (30).

Case p ≥ pc. In this case we let

φ0(r) = −z1,0(r)

∫ r

1

z1,0(s)
−2s1−N

∫ s

0

z1,0(τ)h0(τ)τ
N−1 dτ ds,

which is justified because when p ≥ pc we have z1,0(r) > 0 for all r > 0, which

follows from the fact that λ 7→ λ
2

p−1w(λr) is increasing for λ > 0, see [11]. Again,
a calculation using now (32) and (33) shows that φ0 satisfies the estimate (30).

2.2.2. The construction of φk, 1 ≤ k ≤ N . All these modes are equivalent, so we
only consider k = 1. We have the following result.

Lemma 7. Let k = 1 and p > N+1
N−3 . Then equation (25) has a solution φ1 which

defines a linear operator of h1 and satisfies

‖φ1‖∗ ≤ C‖h1‖∗∗. (35)

Proof. In this case the indicial roots that govern the behavior of the solutions z(r)
as r → +∞ of the homogeneous equation (26) are given by µ1 = 2

p−1 + 1 and

µ2 = N − 3 − 2
p−1 . Since we are looking for solutions that decay at a rate r−

2

p−1

as r → +∞ we will need N − 3− 2
p−1 ≥ 2

p−1 , which is equivalent to the hypothesis

p ≥ N+1
N−3 . On the other hand the behavior near 0 of z(r) can be z(r) ∼ r or

z(r) ∼ r1−N .
Similarly as in the case k = 0 we have a solution to (26), namely z1(r) = −w′(r)

and luckily enough it is positive in all (0,+∞). With it we can build

φ1(r) = −z1(r)

∫ r

1

z1(s)
−2s1−N

∫ s

0

z1(τ)h1(τ)τ
N−1 dτ ds. (36)

From this formula and using p ≥ N+1
N−3 we obtain (35).



2.2.3. The construction of φk, k > N .

Lemma 8. Let k > N and p > N+2
N−2 . If ‖hk‖∗∗ < ∞ equation (25) has a unique

solution φk with ‖φk‖∗ <∞ and there exists Ck > 0 such that

‖φk‖∗ ≤ Ck‖hk‖∗∗. (37)

Proof. Let us write Lk for the operator in (25), that is,

Lkφ = φ′′ +
N − 1

r
φ′ +

(

pwp−1 −
λk
r2

)

φ.

This operator satisfies the maximum principle in any interval of the form (δ, 1
δ
),

δ > 0. Indeed let z = −w′, so that z > 0 in (0,+∞) and it is a supersolution,
because

Lkz =
N − 1 − λk

r2
z < 0 in (0,+∞), (38)

since λk ≥ 2N for k ≥ 2. To prove solvability of (25) in the appropriate space we
construct a supersolution ψ of the form

ψ = C1z + v, v(r) =
1

rσ + r
2

p−1

,

Choosing C1 sufficiently large, we can check that

Lkψ ≤ −cmin(r−σ−2, r−
2

p−1
−2) in (0,+∞).

for some c > 0.

Given hk with ‖hk‖∗∗ < ∞, by the method of sub and supersolutions, there
exists, for any δ > 0 a unique solution φδ of the two-point boundary value problem

Lkφδ = hk in (δ, 1
δ
)

φδ(δ) = φδ(
1
δ
) = 0.

This solution satisfies the bound

|φδ| ≤ Cψ ‖hk‖∗∗ in (δ, 1
δ
).

Using standard estimates we have that, up to subsequences, φδ → φk as δ → 0
uniformly on compact subsets of (0,+∞) where φk is a solution of (25) which
satisfies

|φk| ≤ Cψ ‖hk‖∗∗ in (0,∞).

The maximum principle yields that the solution to (25) bounded in this way is
actually unique, and thus defines the desired linear operator.

2.2.4. Conclusion of the construction. Let m > 0 be an integer. By Lemmas 6, 7
and 8 we see that if ‖h‖∗∗ <∞ and its Fourier series (23) has hk ≡ 0 ∀k ≥ m there
exists a solution φ to (22) that depends linearly with respect to h and moreover

‖φ‖∗ ≤ Cm‖h‖∗∗.

We can prove that the constant Cm may actually be taken uniform in m. Indeed,
an indirect argument, based upon standard elliptic estimates, allows us to end up
with the situation that there exists a nonzero, bounded function φ which satisfies
the equation ∆φ + pwp−1φ = 0 and which has no Fourier components in its first
few Fourier components. Arguing mode by mode, we see that φ must be identically
zero. This shows that the solution φ defined by (24) defines an operator in h with
the desired property.



2.3. The case N+2
N−2 < p ≤ N+1

N−3 . The proof presented above fails only in one step:

in the construction of φk for 1 ≤ k ≤ N . Formula (36) for φ1 does not define a

solution which decays like r−
2

p−1 unless h1 satisfies the orthogonality condition
∫ ∞

0

w′(τ)h1(τ)τ
N−1 dτ = 0. (39)

This implies the following: Let us write

Zi =
∂w

∂xi
. (40)

Then if N+2
N−3 < p < N+1

N−3 and 0 < σ < N − 2, there is a linear operator φ = T (h)

defined for h with ‖h‖∗∗ < ∞, with the property that for certain unique scalars
c1, . . . , cN ,

∆φ+ pwp−1φ = h+

N
∑

i=1

ciZi in R
N , (41)

and ‖φ‖∗ ≤ C‖h‖∗∗,. It turns out that this operator is also bounded in a variation
of these norms which allows a singularity at a point different from the origin. We
have that given Λ > 0 there is a C > 0 such that for all ξ ∈ R

N with |ξ| ≤ Λ we
have that ‖φ‖∗,ξ ≤ C‖h‖∗∗,ξ, where

‖φ‖∗,ξ = sup
|x−ξ|≤1

|x− ξ|σ|φ(x)| + sup
|x−ξ|≥1

|x− ξ|
2

p−1 |φ(x)|

‖h‖∗∗,ξ = sup
|x−ξ|≤1

|x− ξ|2+σ|h(x)| + sup
|x−ξ|≥1

|x− ξ|2+
2

p−1 |h(x)|.

3. The Proof of Theorem 1 for p > N+1
N−3 .

3.1. The fixed point argument. We look for a solution of Problem (1)-(2) of the
form u = ηwλ + φ, where η is a smooth cut-off function with η(x) = 0 for |x| ≤ R,
η(x) = 1 for |x| ≥ R+ 1 and D ⊂ B(0, R). This u solves (1)-(2) if φ satisfies











∆φ + pwp−1
λ φ = N(φ) + E in R

N \ D̄

φ = 0 on ∂D

φ(x) → 0 as |x| → +∞

(42)

where

N(φ) = −(ηwλ + φ)p + (ηwλ)
p + p(ηwλ)

p−1φ+ p(1 − ηp−1)wp−1
λ φ,

and

E = −∆(ηwλ) − (ηwλ)
p.

We write the above problem in fixed point form on the basis of the existence of
a right inverse for the linear operator ∆ + pwp−1

λ in suitable weighted L∞-spaces.
Thus we consider the linear problem











∆φ+ pwp−1
λ φ = h in R

N \ D̄

φ = 0 on ∂D

φ(x) → 0 |x| → +∞,

(43)

We have the validity of the following result.



Lemma 9. Assume that N ≥ 4 and p ≥ N+1
N−3 . Then there exists a constant C > 0

such that for all sufficiently small λ > 0 and all h with ‖h‖∗∗,λ < +∞, Problem

(43) has a solution φ = Tλ(h) such that Tλ is a linear map and

‖Tλ(h)‖∗,λ ≤ C‖h‖∗∗,λ.

By this result, we have a solution to (42) if φ solves the fixed point problem

φ = Tλ(N(φ) + E). (44)

We can check the estimates

‖N(φ)‖∗∗,λ ≤ C(λ2‖φ‖∗,λ + λ−
2

p−1 ‖φ‖2
∗,λ + λ−2‖φ‖p∗,λ), (45)

and

‖E‖∗∗,λ ≤ Cλ
2

p−1
+σ. (46)

Let φ0 = Tλ(E). From Lemma 9, and (46), we get ‖φ0‖∗,λ ≤ Cλ
2

p−1
+σ. Let us

write φ = φ0 + φ1. Then solving equation (44) is equivalent to solving the fixed
point problem φ = Tλ(N(φ0 + φ)). We consider the set

F = {φ ∈ L∞(RN \ D) / ‖φ‖∗,λ ≤ ρλ
2

p−1 }

where ρ > 0 is going to be fixed independently of λ, and the operator

A(φ) = Tλ(N(φ0 + φ)).

Next we show that A has a fixed point in F . For φ ∈ F we have

‖A(φ)‖∗,λ ≤ C‖N(φ0 + φ)‖∗∗,λ (47)

≤ C(λ2‖φ0 + φ‖∗,λ + λ−
2

p−1 ‖φ0 + φ‖2
∗,λ + λ−2‖φ0 + φ‖p∗,λ). (48)

Thus for a fixed sufficiently small ρ and all small λ we get

‖A(φ)‖∗,λ ≤ Cλ
2

p−1 (ρλ2 + λ2σ + λpσ + ρ2 + ρp) ≤ ρλ
2

p−1 . (49)

Hence A(F) ⊂ F for all small λ.

On the other hand, we also check that A is a contraction mapping in F , and
hence a fixed point in this region indeed exists. The solutions uλ built this way
satisfy the requirement of Theorem 1.

3.2. The proof of Lemma 9. We shall solve (43) by writing φ = ηϕ+ψ where η
is a smooth cut-off function with

η(x) = 0 for |x| ≤ R0, η(x) = 1 for |x| ≥ R0 + 1

and R0 > 0 is fixed so that D ⊆ BR0
. We also set ζ(x) = η(x/2), so that ηζ = ζ.

To find a solution of (43) it is sufficient to solve the following system

∆ϕ+ pwp−1
λ ϕ = −pζwp−1

λ ψ + ζh in R
N (50)











∆ψ + p(1 − ζ)wp−1
λ ψ = −2∇η∇ϕ− ϕ∆η + (1 − ζ)h in R

N \ D̄

ψ = 0 on ∂D

ψ(x) → 0 |x| → +∞.

(51)



We assume ‖h‖∗∗,λ <∞. Let us consider the Banach spaceX consisting of functions
ϕ such that ‖ϕ‖∗,λ < ∞ and that are Lipschitz on E = B2R0

\BR0
equipped with

the norm

‖ϕ‖X = ‖ϕ‖∗,λ + ‖∇ϕ‖L∞(E).

Given ϕ ∈ X we solve first (51) and denote by ψ(ϕ, h) the solution, which is
clearly linear in its argument. Then note that ζψ is well defined in R

N and that
|ψ| ≤ C

|x|N−2 for large |x| so hence the right hand side of (50) has a finite ‖ ‖∗∗,λ
norm. We obtain a solution to the system, which defines a linear operator in h, if
we solve the fixed point problem

ϕ = Tλ(−pζw
p−1
λ ψ(ϕ, h) + ζh ) ≡ F (ϕ) .

where Tλ is the operator in Proposition 5. Then we have the estimate

‖F (ϕ)‖∗,λ ≤ C ‖ − pζwp−1
λ ψ + ζh‖∗∗,λ ≤ C(‖ζwp−1

λ ψ‖∗∗,λ + ‖h‖∗∗,λ). (52)

But

‖ζwp−1
λ ψ‖∗∗,λ = λσ sup

R1≤|x|≤ 1

λ

(

|x|2+σwλ(x)
p−1|ψ(x)|

)

+ λ
2

p−1 sup
|x|≥ 1

λ

(

|x|2+σ+ 2

p−1wλ(x)
p−1|ψ(x)|

)

.

Using equation (51) and the fact that wλ(x) → 0 uniformly on compact sets we
have

|ψ(x)| ≤
C

|x|N−2
(‖ϕ‖X + ‖h‖∗∗,λ). (53)

Using this, and the asymptotic behavior of w(x) we then obtain the estimate

‖ζwp−1
λ ψ‖∗∗,λ ≤ Cλγ(‖ϕ‖X + ‖h‖∗∗,λ).

where γ = min(2 + σ,N − 2). This together with (52) yields

‖F (ϕ)‖∗,λ ≤ C(λγ‖ϕ‖X + ‖h‖∗∗,λ). (54)

While, using elliptic estimates, we get

‖∇F (ϕ)‖L∞(E) ≤ C(‖F (ϕ)‖∗,λ + ‖h‖∗∗,λ + λγ(‖ϕ‖X + ‖h‖∗∗,λ)).

This and (54) imply that

‖F (ϕ)‖X ≤ C(λγ‖ϕ‖X + ‖h‖∗∗,λ).

It follows that for sufficiently small λ, F defines a contraction mapping of the region

{ϕ ∈ X | ‖ϕ‖X ≤ 2C‖h‖∗∗,λ}.

A unique fixed point thus exists in this region, which inherits a solution with the
required properties. The proof is concluded.



4. The proof of Theorem 1 when N+2
N−2 < p ≤ N+1

N−3 . The existence of the
operator predicted in §2.3 with similar bounds persists if one drills a small hole in
R
N and imposes Dirichlet boundary conditions on its boundary. Let us consider,

for given ξ the set

Dλ,ξ = {ξ + λz|z ∈ D}.

Then, let us consider the linear problem















∆φ+ pwp−1φ = h+

N
∑

i=1

ciZi in R
N \ Dλ,ξ

lim
|x|→+∞

φ(x) = 0, φ = 0 on ∂Dλ,ξ

(55)

We have the following result, whose proof can be carried out with arguments similar
to those in Lemma 9.

Lemma 10. Assume that N+2
N−2 < p ≤ N+1

N−3 . Given Λ > 0 there is a C > 0 such

that for all |ξ| ≤ Λ, all small λ > 0, and any h with ‖h‖∗∗,ξ <∞, Problem (62) has

a solution φ = T (h) which depends linearly on h such that

‖φ‖∗,ξ + max
1≤i≤N

|ci| ≤ C‖h‖∗∗,ξ.

In order to apply this result to solve Problem (1)-(2), we observe first that a
translation and a dilation makes it equivalent to







∆u+ up = 0 in R
N \ Dλ,ξ

lim
|x|→+∞

u(x) = 0, u = 0 on ∂Dλ,ξ.
(56)

Let ϕλ(z) be the unique solution of

∆ϕλ = 0 in R
N \ D, ϕλ(z) = w(ξ + λz) on ∂D, lim

|x|→+∞
ϕλ(x) = 0. (57)

Then ϕλ(z) = (w(ξ) +O(λ))ϕ0(z) where ϕ0 is the unique solution of

∆ϕ0 = 0 in R
N \ D, ϕ0(x) = 1 on ∂D, lim

|x|→+∞
ϕ0(x) = 0. (58)

We also note that

lim
|x|→+∞

|x|N−2ϕ0(x) = f0 :=
1

(N − 2)|SN−1|

∫

RN\D
|∇ϕ0|

2 > 0. (59)

The number
∫

RN\D |∇ϕ0|
2 corresponds precisely to the capacity of D.

We look for a solution of the form u = w−ϕλ(
x−ξ
λ

)+φ, which yields the following
equation for φ

∆φ+ pwp−1φ = N(φ) + Eλ

where

Eλ = pwp−1ϕλ, N(φ) = −(w + φ− ϕλ)
p + wp + pwp−1φ− pwp−1ϕλ. (60)



We consider the intermediate linear problem














∆φ+ pwp−1φ = N(φ) + Eλ +

N
∑

i=1

ciZi in R
N \ (Dλ,ξ)

φ = 0 on ∂Dλ,ξ, lim
|x|→+∞

φ(x) = 0.

(61)

This nonlinear problem can be solved via contraction mapping principle based on
the operator T above introduced in similar way as in the previous section, to yield
existence of a unique solution with

‖φλ‖∗,ξ + max
1≤i≤N

|ci(λ, ξ)| → 0 as λ→ 0,

uniformly on |ξ| ≤ Λ. Besides, the numbers ci(λ, ξ) define continuous functions of
ξ. We also have the estimate

‖φλ‖∗,ξ ≤ Cσλ
σ.

We recall that in the definition of the norms we are using an arbitrary σ with
0 < σ < N − 2. The desired result will be concluded if we manage to choose the
point ξ in such a way that

ci(λ, ξ) = 0 for all i = 1, . . . , N.

Testing the equation against Zi, and using the above stated estimate for φ we see
that these numbers can be expanded as

ci(λ, ξ) =

∫

RN\Dλ,ξ

EλZi + λN−2o(1),

where the quantity o(1) is uniform on |ξ| ≤ Λ. Now, we have that
∫

RN\Dλ,ξ

EλZi =

∫

RN\(Dλ,ξ)

ϕλ(
x
λ
)wp−1(x+ ξ)

∂w

∂xi
(x+ ξ) + o(λN−2) =

λN−2 ( f0

∫

RN

|x|−(N−2)wp−1(x+ ξ)
∂w

∂xi
(x+ ξ) + o(1) ) .

Hence we obtain, setting

F (ξ) :=
f0
2

∫

RN

|x|2−Nw(x + ξ)p dx.

that
c(ξ, λ) := (c1, . . . , cN ) = λN−2 (∇F (ξ) + o(1) )

where o(1) → 0 uniformly on |ξ| ≤ Λ. Observe that F is radial and has a non-
degenerate maximum at ξ = 0. It follows that the Brouwer degree of c(ξ, λ) in a
small ball around the origin is non zero. Hence there exists a point ξ = ξλ, small
with λ, that annihilates all ci’s simultaneously. This concludes the proof of the
theorem.

5. Nonlinear Schrödinger equations.

5.1. The operator ∆−Vλ+pwp−1 in R
N . The nonlinear equation, after a change

of variables, involves the linearized problem

















∆φ+ pwp−1φ− Vλφ = h+

N
∑

i=1

ciZi in R
N

lim
|x|→+∞

φ(x) = 0

(62)

where Zi is defined in (40) and given λ > 0 and ξ ∈ R
N we denote

Vλ(x) = λ−2V (
x− ξ

λ
).

Because of the concentration of Vλ at ξ it is desirable to have a linear theory which
allows singularities at ξ. Thus, for σ > 0 and ξ ∈ R

N we consider again the norms

‖φ‖∗,ξ = sup
|x−ξ|≤1

|x− ξ|σ|φ(x)| + sup
|x−ξ|≥1

|x− ξ|
2

p−1 |φ(x)|

‖h‖∗∗,ξ = sup
|x−ξ|≤1

|x− ξ|2+σ|h(x)| + sup
|x−ξ|≥1

|x− ξ|2+
2

p−1 |h(x)|.

We will also consider ξ with a bound |ξ| ≤ Λ and the estimates we present will
depend on Λ.

For the linear theory it suffices to assume

V ∈ L∞(RN ), V ≥ 0, V (x) = o(|x|−2) as |x| → +∞. (63)

Proposition 1. Let |ξ| ≤ Λ. Suppose V satisfies (63) and ‖h‖∗∗,ξ <∞.

(a) If p > N+1
N−3 for λ > 0 sufficiently small equation (55) with ci = 0, 1 ≤ i ≤ N

has a solution φ = Tλ(h) that depends linearly on h and there is C such that

‖Tλ(h)‖∗,ξ ≤ C‖h‖∗∗,ξ.

(b) If N+2
N−2 < p ≤ N+1

N−3 for λ > 0 sufficiently small equation (55) has a solution

(φ, c1, . . . , cN ) = Tλ(h) that depends linearly on h and there is C such that

‖φ‖∗,ξ + max
1≤i≤N

|ci| ≤ C‖h‖∗∗,ξ.

The constant C is independent of λ.

The proof of this result follows similar lines as those in the previous sections,
details can be found in [8]. In what follows we will prove Theorem 3, which the
most delicate case. Theorem 2 follows in simpler way with the aid of the above
proposition.

5.2. Sketch of proof of Theorem 3. Because of the obstruction in the solvability
of the linearized operator for p in this range, it will be necessary to do the rescaling
about a point ξ suitably chosen. For this reason we make the change of variables

λ−
2

p−1u(x−ξ
λ

) and look for a solution of the form u = w+φ, leading to the following
equation for φ:

∆φ− Vλφ+ pwp−1φ = N(φ) + Vλw

where

Vλ(x) = λ−2V (x−ξ
λ

)

and N is the same as in the previous section, namely

N(φ) = −(w + φ)p + wp + pwp−1φ.



We will change slightly the previous notation to make the dependence of the
norms in σ explicit. Hence we set

‖φ‖
(σ)
∗,ξ = sup

|x−ξ|≤1

|x− ξ|σ|φ(x)| + sup
|x−ξ|≥1

|x− ξ|
2

p−1 |φ(x)|

‖h‖
(σ)
∗∗,ξ = sup

|x−ξ|≤1

|x− ξ|2+σ|h(x)| + sup
|x−ξ|≥1

|x− ξ|2+
2

p−1 |h(x)|.

In the rest of the section we assume that
N + 2

N − 2
< p <

N + 1

N − 3
.

The case p = N+1
N−3 can be handled similarly, with a slight modification of the norms.

Lemma 11. Let N+2
N−2 < p ≤ N+1

N−3 and V satisfy (63) and Λ > 0. Then there is

ε0 > such that for |ξ| < Λ and λ < ε0 there exist φλ, c1(λ), . . . , cN (λ) solution to














∆φ − Vλφ+ pwp−1φ = N(φ) + Vλw +

N
∑

i=1

ciZi

lim
|x|→+∞

φ(x) = 0.

(64)

We have in addition

‖φλ‖∗,ξ + max
1≤i≤N

|ci(λ)| → 0 as λ→ 0.

If V satisfies also

V (x) ≤ C|x|−µ for all x (65)

for some µ > 2, then for 0 < σ ≤ µ− 2, σ < N − 2

‖φλ‖
(σ)
∗,ξ ≤ Cσλ

σ, for all 0 < λ < ε0. (66)

Proof. We fix 0 < σ < min(2, 2
p−1 ) and define for small ρ > 0

F = {φ : R
N → R / ‖φ‖

(σ)
∗,ξ ≤ ρ}

and the operator φ1 = Aλ(φ) where φ1, c1, . . . , cN is the solution in Lemma 1 to














∆φ1 − Vλφ1 + pwp−1φ1 = N(φ) + Vλw +

N
∑

i=1

ciZi in R
N

lim
|x|→+∞

|φ(x)| = 0,

where N is given by (60).
It is not hard to check that Aλ is a contraction mapping on F for the above

norm for small enough ρ. More precisely, we have

‖Vλw‖
(σ)
∗∗,ξ = o(1) as λ→ 0.

And for ρ = C‖Vλw)‖
(σ)
∗∗,ξ, suitable C, Aλ possesses a unique fixed point φλ in F

and it satisfies

‖φλ‖
(σ)
∗,ξ ≤ C‖Vλw‖

(σ)
∗∗,ξ = o(1). (67)

Under assumption (65) and for 0 < θ ≤ µ− 2 we can also estimate ‖Vλw‖
(θ)
∗∗,ξ as

follows:

‖Vλw‖
(θ)
∗∗,ξ ≤ Cλθ. (68)



Using this one can argue to find the validity of the desired estimate for φλ.

Proof of Theorem 3 We have found a solution φλ, c1(λ), . . . , cN (λ) to (64). The
solution constructed satisfies for all 1 ≤ j ≤ N :

∫

RN

(

Vλφλ + Vλw +N(φλ) +

N
∑

i=1

ciZi

)

∂w

∂xj
(y) = 0.

Thus, for all λ small, we need to find ξ = ξλ so that ci = 0, 1 ≤ i ≤ N , that is
∫

RN

(Vλφλ + Vλw +N(φλ))
∂w

∂xj
= 0 ∀1 ≤ j ≤ N. (69)

Condition (69) is actually sufficient under the assumption, which will turn out to
be satisfied in our cases, that ξλ is bounded as λ→ 0 because, in this situation, the
matrix with coefficients

∫

RN

Zi(y − ξ)
∂w

∂xj
(y) dy

is invertible, provided the number R0 in the definition of Zi is chosen large enough.
The dominant term in (69) is

λ−2

∫

RN

V (y−ξ
λ

)w
∂w

∂yj
= λ−2

∫

RN

V (x
λ
)w(x + ξ)

∂w

∂xj
(x+ ξ) (70)

whose asymptotic behavior depends on the decay of V (x) as |x| → +∞.

We recall that we are assuming V (x) ≤ C|x|−µ, µ > N . Thus we have

∫

RN

V (x
λ
)w(x + ξ)

∂w

∂xj
(x+ ξ) = λNCV w(ξ)

∂w

∂xj
(ξ) + o(λN ) as λ→ 0,

where CV =
∫

RN V and the convergence is uniform with respect to |ξ| < ε0. We
obtain the existence of a solution ξ to (69) thanks to the non-degeneracy of 0 as a
critical point of w2(ξ). Furthermore, the point ξ will be close to 0. After some work
we find the other terms in (69) are small compared to (70), in fact it turns out that

∣

∣

∣

∣

∫

RN

Vλφλ
∂w

∂xj

∣

∣

∣

∣

+

∫

RN

∣

∣

∣

∣

N(φλ)
∂w

∂wj

∣

∣

∣

∣

= o(λN−2) as λ→ 0. (71)

Going back to (69) we set

F
(j)
λ (ξ) = λ−2

∫

RN

V (x
λ
)uλ

∂w

∂xj
(x+ ξ) +

∫

RN

N(φλ)
∂w

∂xj
(x+ ξ)

and Fλ = (F
(1)
λ , . . . , F

(N)
λ ). Fix now δ > 0 small and work with |ξ| = δ. Then we

have for small λ

〈Fλ(ξ), ξ〉 < 0 for all |ξ| = δ.

By degree theory we deduce that Fλ has a zero in Bδ.



6. Sketch of the proof of Theorem 4. The proof of this result is similar in
spirit to that of the previous theorems. Now the basic point is to obtain a suitable
invertibility theory for the linearized operator ∆ + pwp−1 on R

N \ B1(0) where,
again with abuse of notation, we are calling w the unique solution w∗ of Problem
(15)-(16). Thus, we consider the problem

∆φ+ pwp−1φ = h in R
N \ B̄1(0) , (72)

φ = 0 on ∂B1(0) , lim
|x|→+∞

φ(x) = 0. (73)

6.1. Condition for non-resonance. We want to investigate under what condi-
tions the homogeneous problem with h = 0 in (72)-(73) admits only the trivial
solution. To this end, we consider the first eigenvalue of the problem

ψ′′ +
N − 1

r
ψ′ + pwp−1ψ + ν

ψ

r2
= 0 (74)

ψ(1) = 0, ψ(+∞) = 0 . (75)

This eigenvalue is variationally characterized as

ν(p) = inf
ψ∈E

∫∞
1 |ψ′|2rN−1dr − p

∫∞
1 wp−1|ψ|2rN−1dr

∫∞
1 ψ2rN−3dr

, (76)

with

E = {ψ ∈ C1[1,∞) / ψ(1) = 0,

∫ ∞

1

|ψ
′

(r)|2rN−1dr < +∞}.

This quantity is well defined thanks to Hardy’s inequality,

(N − 2)2

4

∫ ∞

1

ψ2rN−3dr ≤

∫ ∞

1

|ψ′|2rN−1dr.

The number ν(p) is negative, since this Rayleigh quotient gets negative when evalu-
ated at ψ = w. An extremal is easily found, using the fast decay of wp−1 = O(r−4).
This extremal represents a positive solution to problem (74)-(75) for ν = ν(p). Let
us consider now Problem (72)-(73) for h = 0, and assume that we have a solution
φ. The symmetry of the domain R

N \ B1(0) allows us to expand φ into spherical
harmonics. We write again φ as

φ(x) =
∞
∑

k=0

φk(r)Θk(θ), r > 0, θ ∈ SN−1

The components φk then satisfy the differential equations

φ′′k +
N − 1

r
φ′k +

(

pwp−1 −
λk
r2

)

φk = 0, r ∈ (1,∞), (77)

φk(1) = 0, φk(+∞) = 0.

Let us consider first the radial mode k = 0, namely λk = 0. We observe that the
function

Z1(r) = rw′(r) +
2

p− 1
w

satisfies

Z ′′
1 +

N − 1

r
Z ′

1 + pwp−1Z1 = 0, for all r > 1,



but Z1(1) 6= 0. We notice that Z1 is one-signed for all large r. It follows then that a
second generator of the solutions of this ODE is given, for large r, by the reduction
of order formula,

Z2 = Z1(r)

∫ r

R

dr

rN−1Z2

but since at main order Z1(r) ∼ cr2−N we see that Z2(+∞) 6= 0. Since φ0 is a
linear combination of Z1 and Z2 it follows that the only possibility is φ0 = 0. Let
us consider now mode 1, namely k = 1, . . . , N − 1, for which λk = (N − 1). In this
case we also have an explicit solution which does not vanish at r = 1 but it does at
r = +∞. Simply Z1(r) = w′(r). But the same argument as above gives us a second
generator Z2(r) ∼ r as r → +∞, hence again, the only possibility is that φk ≡ 0
for all k = 1, . . . , N .

Let us consider now modes N + 1 or higher. This case is harder. Not only we do
not have an explicit solution to the ODE to rely on, but it could be the case that
a non-trivial solution exists. Let us assume this is the case for an arbitrary mode
k ≥ N . We claim that φk cannot change sign in (1,∞). In fact if it did, we begin
by observing that it can only do it a finite number of times, since its behavior at
infinity must be eventually like that of a decaying solution of the Euler’s ODE

Z ′′ +
N − 1

r
Z ′ −

λk
r2
Z = 0

namely, at main order we must have

Z(r) = cr−µ(1 + o(1)), µ = −
N − 2

2
−

1

2

√

(N − 2)2 + 4λk .

Let r0 > 1 be the last zero of φk, and let us assume that φ > 0 on (r0,∞). We
observe now that since ∆w < 0, w′(r) has exactly one zero in (1,∞). Thanks to
Sturm’s theorem this zero must be less than r0. Hence w′ < 0 in (r0,∞). Let us
observe now that

W (r) = rN−1(w′φ′k − w′′φk)

satisfies in (r,∞)

W ′(r) = rN−3(λk − λ1)w
′φk < 0 in (r0,∞),

while W (r0) < 0 and W (+∞) = 0, which is impossible. This shows that φk must be
one-signed. Thus the only possibility for equation (77) to have a nontrivial solution
for a given k ≥ N is that λk = −ν(p). Thus we have proven the following result.

Lemma 12. Assume that p is such that

ν(p) 6= −j(N − 2 + j) for all j = 2, 3, . . . (78)

where ν(p) is the principal eigenvalue defined by (76). Then Problem (74)-(75) with

h = 0 admits only the solution φ = 0.

This non-resonance condition produces a good solvability theory for equation
(72)-(73). We can describe qualitatively the set of exponents p for which condition
(78) fails. We have:

Lemma 13. For each j ≥ 2 the set of numbers p for which ν(p) = −j(N − 2 + j)
is non-empty and finite. In particular, there exists a sequence of the form

N + 2

N − 2
< p1 < p2 < p3 < · · · ; pj → +∞ as j → +∞ , (79)

such that condition (78) holds if and only if p 6= pj for all j = 1, 2, . . . .



The proof of this result is contained in [9]. It consists of showing that the
eigenvalue ν(p) is a real analytic function of the parameter p. A basic ingredient
is the proof of analytic dependence of w as a function of p, in appropriate spaces,
which follows basically form an analysis due to Dancer [5].

6.2. Solvability of (72)-(73). We consider now the full problem (72)-(73), namely

∆φ+ pwp−1φ = h in R
N \ B̄1(0) ,

φ = 0 on ∂B1(0) , lim
|x|→+∞

φ(x) = 0 .

Let us fix a small number σ > 0 and consider the norms

‖φ‖∗ = sup
|x|>1

|x|N−2−σ|φ(x)| + sup
|x|>1

|x|N−1−σ|∇φ(x)| (80)

and

‖h‖∗∗ = sup
|x|>1

|x|N−σ|h(x)|. (81)

Lemma 14. Assume that p satisfies condition (78). Then for any h with ‖h‖∗∗ <
+∞, Problem (72)-(73) has a unique solution φ = T (h) with ‖φ‖∗ < +∞. Besides,

there exists a constant C(p) > 0 such that

‖T (h)‖∗ ≤ C‖h‖∗∗.

6.3. The operator ∆ + pwp−1 in δ−1D \ B1(0). We assume that Q = 0, and
consider the large expanded domain Dδ = δ−1D. We shall carry out a gluing
procedure that will permit us to establish the same conclusion of Proposition 14 in
this domain, provided that δ is taken sufficiently small. Thus we consider now the
linear problem

∆φ + pwp−1φ = h in Dδ \ B̄1(0) , (82)

φ = 0 on ∂B1(0) ∪ ∂Dδ. (83)

We consider the same norms as in (80), (81) restricted to this domain.

Lemma 15. Assume that p satisfies condition (78). Then there is a number δ0 such

that for all δ < δ0 and any h with ‖h‖∗∗ < +∞, Problem (82)-(83) has a unique

solution φ = Tδ(h) with ‖φ‖∗ < +∞. Besides, there exists a constant C(p,D) > 0
such that

‖Tδ(h)‖∗ ≤ C‖h‖∗∗.

The proof of this result follows a similar scheme to that of Lemma 9. The
point now is that the fact that the linear theory involves faster decays makes the
contribution of the far-away part of Dδ to enter at a substantially small order. An
analysis of this type is not possible if the basic cell w was taken as a slow-decaying
solution.



6.4. Conclusion of the proof of Theorem 4. Let us assume the validity of
condition (78) or, equivalently, that p 6= pj for all j, with pj the sequence in (79).

Problem (1)-(2) is, after setting v(x) = δ
2

p−1u(δx), equivalent to

∆v + vp = 0 in Dδ \ B̄1(0) , (84)

v = 0 on ∂B1(0) ∪ ∂Dδ. (85)

Let us consider the smooth cut-off function ηδ, introduced in the previous section,
which equals 1 in B(0, 2δ−1) and 0 outside B(0, 3δ−1). We search for a solution v
to problem (84)-(85) of the form

v = ηδw + φ,

which is equivalent to the following problem for φ:

∆φ+ pwp−1φ = N(φ) + E in Dδ \ B̄1(0) , (86)

φ = 0 on ∂B1(0) ∪ ∂Dδ. (87)

where

N(φ) = N1(φ) +N2(φ) ,

N1(φ) = −(ηδw + φ)p + (ηδw)p + p(ηδw)p−1φ,

N2(φ) = p(1 − ηp−1
δ )wp−1φ,

and

E = −∆(ηδw) − (ηδw)p.

According to Proposition 15 we thus have a solution to (84)-(85) if φ solves the
fixed point problem

φ = Tδ(N(φ) + E) . (88)

We get

‖E‖∗∗ ≤ Cδσ . (89)

On the other hand, we also find

‖N2(φ)‖∗∗ ≤ Cδ2‖φ‖∗

and so that

‖N1(φ)‖∗∗ ≤ C ( ‖φ‖p∗ + ‖φ‖2
∗ ) . (90)

Let us consider now the operator

T (φ) = Tδ(N(φ) + E)

defined in the region

B = {φ ∈ C1(D̄δ \B1(0)) / ‖φ‖∗ ≤ δ
σ
2 } .

We immediately get that T (B) ⊂ B, provided that δ is sufficiently small. The
existence of a fixed point thus follows from Schauder’s theorem.
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